Simulation and optimization of lm GaSb-based VCSELs

Similar documents
Long wavelength electrically pumped GaSb-based Buried Tunnel Junction VCSELs

Mode analysis of Oxide-Confined VCSELs using near-far field approaches

Single mode and tunable GaSb-based VCSELs for wavelengths above

2.34 μm electrically-pumped VECSEL with buried tunnel junction

Bistability in Bipolar Cascade VCSELs

InP-based Waveguide Photodetector with Integrated Photon Multiplication

Semiconductor Lasers Semiconductors were originally pumped by lasers or e-beams First diode types developed in 1962: Create a pn junction in

VERTICAL CAVITY SURFACE EMITTING LASER

Design of InGaAs/InP 1.55μm vertical cavity surface emitting lasers (VCSEL)

InP-based Waveguide Photodetector with Integrated Photon Multiplication

Design, Simulation and optimization of Midinfrared Ultra broadband HCG mirrors for 2.3µm VCSELs

Implant Confined 1850nm VCSELs

Vertical External Cavity Surface Emitting Laser

Spatial Investigation of Transverse Mode Turn-On Dynamics in VCSELs

ULTRALOW BEAM DIVERGENCE AND INCREASED LATERAL BRIGHTNESS IN OPTICALLY PUMPED MIDINFRARED LASER (POSTPRINT)

Physics of Waveguide Photodetectors with Integrated Amplification

Semiconductor Lasers Semiconductors were originally pumped by lasers or e-beams First diode types developed in 1962: Create a pn junction in

Review of Semiconductor Physics

Improved Output Performance of High-Power VCSELs

Recent advances in high-performance 2.X µm Vertical External Cavity Surface Emitting Laser (VECSEL)

64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array

Diode laser systems for 1.8 to 2.3 µm wavelength range

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

High-power diode lasers between 1.8µm and

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade:

Improved Output Performance of High-Power VCSELs

Optoelectronics ELEC-E3210

Continuous-Wave Characteristics of MEMS Atomic Clock VCSELs

Optodevice Data Book ODE I. Rev.9 Mar Opnext Japan, Inc.

ECE 340 Lecture 29 : LEDs and Lasers Class Outline:

High-Power Semiconductor Laser Amplifier for Free-Space Communication Systems

Key Questions. What is an LED and how does it work? How does a laser work? How does a semiconductor laser work? ECE 340 Lecture 29 : LEDs and Lasers

Electrically-Pumped GaSb-Based Vertical-Cavity Surface-Emitting Lasers. Shamsul Arafin

VCSELs With Enhanced Single-Mode Power and Stabilized Polarization for Oxygen Sensing

RECENTLY, using near-field scanning optical

Sub 300 nm Wavelength III-Nitride Tunnel-Injected Ultraviolet LEDs

Hybrid vertical-cavity laser integration on silicon

Quantum-Well Semiconductor Saturable Absorber Mirror

Copyright 2006 Crosslight Software Inc. Analysis of Resonant-Cavity Light-Emitting Diodes

Modal and Thermal Characteristics of 670nm VCSELs

PHYSICAL ELECTRONICS(ECE3540) APPLICATIONS OF PHYSICAL ELECTRONICS PART I

Vertical Cavity Surface Emitting Laser (VCSEL) Technology

Semiconductor Optical Communication Components and Devices Lecture 18: Introduction to Diode Lasers - I

Performance Characterization of a GaAs Based 1550 nm Ga In N As 0.89 Sb 0.08 MQW VCSEL

NGS-13, Guildford UK, July 2007

The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook

Surface-Emitting Single-Mode Quantum Cascade Lasers

High-power diode lasers between 1.8µm and 3.0µm for military applications

Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a)

SUPPLEMENTARY INFORMATION

Lecture 9 External Modulators and Detectors

Ultra-low voltage resonant tunnelling diode electroabsorption modulator

nd IEEE International Semiconductor Laser Conference (ISLC 2010) Kyoto, Japan September IEEE Catalog Number: ISBN:

MBE Growth of Terahertz Quantum Cascade Lasers Harvey Beere

3550 Aberdeen Ave SE, Kirtland AFB, NM 87117, USA ABSTRACT 1. INTRODUCTION

MID-INFRARED OPTICALLY PUMPED, UNSTABLE RESONATOR LASERS (Postprint)

Integrated High Speed VCSELs for Bi-Directional Optical Interconnects

HIGH-EFFICIENCY MQW ELECTROABSORPTION MODULATORS

Design and Optimization of High-Performance 1.3 µm VCSELs

RECENTLY, studies have begun that are designed to meet

High-efficiency, high-speed VCSELs with deep oxidation layers

REPORT DOCUMENTATION PAGE

Polarization Control of VCSELs

Chapter 3 OPTICAL SOURCES AND DETECTORS

GaAs polytype quantum dots

Introduction to Optoelectronic Devices

Degradation analysis in asymmetric sampled grating distributed feedback laser diodes

SUPPLEMENTARY INFORMATION

Modulation of light. Direct modulation of sources Electro-absorption (EA) modulators

Synchronization in Chaotic Vertical-Cavity Surface-Emitting Semiconductor Lasers

Nano electro-mechanical optoelectronic tunable VCSEL

Nd:YSO resonator array Transmission spectrum (a. u.) Supplementary Figure 1. An array of nano-beam resonators fabricated in Nd:YSO.

Mid-IR Resonant Cavity Detectors

Integrated Optoelectronic Chips for Bidirectional Optical Interconnection at Gbit/s Data Rates

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

Lecture 18: Photodetectors

Optical Receiver Operation With High Internal Gain of GaP and GaAsP/GaP Light-emitting diodes

Advanced semiconductor lasers

Longitudinal Multimode Dynamics in Monolithically Integrated Master Oscillator Power Amplifiers

Supporting Information: Determination of n-type doping level in single GaAs. nanowires by cathodoluminescence

10 W reliable operation of 808 nm broad-area diode lasers by near field distribution control in a multistripe contact geometry

ANISOTYPE GaAs BASED HETEROJUNCTIONS FOR III-V MULTIJUNCTION SOLAR CELLS

SUPPLEMENTARY INFORMATION

High-power semiconductor lasers for applications requiring GHz linewidth source

Modelling and Analysis of Four-Junction Tendem Solar Cell in Different Environmental Conditions Mr. Biraju J. Trivedi 1 Prof. Surendra Kumar Sriwas 2

SUPPLEMENTARY INFORMATION

Cavity QED with quantum dots in semiconductor microcavities

Monolithically-integrated long vertical cavity surface emitting laser incorporating a concave micromirror on a glass substrate

Graded P-AlGaN Superlattice for Reduced Electron Leakage in Tunnel- Injected UVC LEDs

High-power diode lasers between 1.8µm and 3.0µm for military applications

Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane

Optical Amplifiers. Continued. Photonic Network By Dr. M H Zaidi

Luminous Equivalent of Radiation

SUPPLEMENTARY INFORMATION

MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University

LEDs, Photodetectors and Solar Cells

Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes

Diode laser arrays for 1.8 to 2.3 µm wavelength range

Hybrid Pulsed Laser Diode with Integrated Driver Stage 70 W Peak Power Version 1.2

Low threshold continuous wave Raman silicon laser

Transcription:

Opt Quant Electron (217) 49:199 DOI 1.17/s1182-17-127-2 Simulation and optimization of 2.6 2.8 lm GaSb-based VCSELs Łukasz Piskorski 1 Magdalena Marciniak 1 Jarosław Walczak 1,2 Received: 3 August 216 / Accepted: 18 April 217 / Published online: 5 May 217 Ó The Author(s) 217. This article is an open access publication Abstract We present the of threshold operation of mid-infrared GaSbbased vertical-cavity surface-emitting lasers (VCSELs) obtained with the use of comprehensive fully self-consistent optical-electrical-thermal-recombination numerical model. The results show that by a proper design of VCSEL structure and composition of the active region it is theoretically possible to achieve room-temperature (RT) threshold operation for wavelength of 2.8 lm which is about.2 lm longer than those reported so far in the literature for III-V VCSELs with type-i quantum wells. Calculated values of the RT threshold current were equal to 2.5 and 4. ma for tunnel-junction diameters of 2 and 4 lm, respectively. Keywords VCSELs Semiconductor devices GaInAsSb Mid-infrared range Computer simulation 1 Introduction Mid-infrared vertical-cavity surface-emitting lasers (VCSELs) have a great potential as low cost, ultra-low threshold, small beam divergence light sources in distant air monitoring. Although there are several important gases, like C 2 O, N 2 O, H 2 S, CH 4 in the midinfrared spectral range, the longest wavelength reported to date for electrically pumped room-temperature (RT) continues-wave (CW) VCSELs is 2.62 lm (Arafin 21). In this work we present the results of numerical analysis carried out for devices designed to emit This article is part of the Topical Collection on Numerical Simulation of Optoelectronic Devices 216. Guest edited by Yuh-Renn Wu, Weida Hu, Slawomir Sujecki, Silvano Donati, Matthias Auf der Maur and Mohamed Swillam. & Łukasz Piskorski lukasz.piskorski@p.lodz.pl 1 2 Photonics Group, Institute of Physics, Lodz University of Technology, Wolczanska 219, 9-924 Lodz, Poland JWS, Piotrkowska 24/21/115, 9-924 Lodz, Poland

199 Page 2 of 7 Ł. Piskorski et al. the light from the 2.6 2.8 lm wavelength range. Due to the fact that the single-fundamental-mode operation is particularly suitable for absorption spectroscopy, we concentrate on suppression of the higher-order transverse modes in the modelled devices. 2 The laser structure The structure under consideration was the GaSb-based quantum-well (QW) GaInAsSb/ GaSb VCSEL (Fig. 1) similar to the device proposed in (Arafin 29).Its intentionally undoped active region is assumed to be composed of 8-nm Ga 1 x In x As :15 Sb :85 QWs (indium content x is equal to.43 and.49 for 1.6% and 2.% compressively strained QWs, respectively) separated by 1-nm GaSb barriers. The active region is embedded in Al :15 Ga :85 As :1 Sb :99 waveguide and sandwiched by p- and n-type GaSb spacers. Above p-type spacer, the tunnel junction (TJ) composed of p þþ -GaSb and n þþ InAs :91 Sb :9 is located. To minimize the absorption loss, the TJ is situated at the standing-wave node. Upper spacer is manufactured from n-gasb. The 3-k cavity with several n þ -GaSb current spreading layers situated in cavity nodes is terminated on both sides by distributed-braggreflectors (DBRs): the 4-pair a Si/SiO 2 top DBR and the 24-pair AlAs :8 Sb :92 /GaSb bottom n-type DBR. Bottom DBR diameter is assumed to be equal to 1 lm, whereas the upper DBR diameter is larger by 1 lm than TJ diameter. The top contact is produced in a form of a ring of 5 lm width. It is separated from the top spacer with the 2-nm thick highly-doped n þ InAs :91 Sb :9 contact layer. The whole bottom 1-lm diameter surface of the n-type GaSb substrate is covered by the bottom contact. 3 The model Our three-dimensional optical-electrical-thermal-gain self-consistent VCSEL thresholdmodel has been adapted to simulate the CW operation of the GaSb-based VCSELs. The detailed description of the numerical algorithm applied in our model can be found in 4 α-si/sio 2 top DBR n ++ -InAsSb/p ++ -GaSb tunnel junction GaInAsSb/GaSb active region 24 GaSb/AlAsSb bottom DBR 1 µm 22-28µm 2-5 µm Ti/Pt/Au n + -InAsSb contact layer n + -GaSb current spreading layers In solder n-gasb Cu heat sink Ti/Pt/Au Fig. 1 The structure of the modelled GaSb-based VCSELs. Not to scale

Simulation and optimization of 2.6 2.8 lm... Page 3 of 7 199 (Sarzała 212), whereas in (Piskorski 215) the method to calculate the shifts in the conduction and valence bands due to strain effects is presented. Values of all necessary material parameters can be obtained with the use of formulas given in (Piskorski 216). 4 The results As a verification of correctness of the set of material data we compared the experimental and numerical results for the voltage-current characteristics (Figs. 2a and 3a) and ambient temperature dependences of the threshold current (Figs. 2b and 3b) for two VCSELs emitting in the mid-infrared wavelength range. The first structure with the emission wavelength of 2.4-lm was proposed in (Bachmann 29), whereas the second one with the emission wavelength of 2.6-lm in (Arafin 29). The TJ diameters were equal to 6 lm and 5.5 lm, respectively. The main difference between these two VCSELs is the composition of the active region. In the 2.4-lm device barriers are made from AlGaAsSb, whereas in the 2.6-lm laser GaSb material is used in order to increase the valence band offset. As can be seen in Figs. 2a and 3a, there is a very good agreement between experimental data for the voltage-current characteristics and theoretical results obtained with the use of our model. From that we can conclude that the electrical parameters (electrical conductivities, mobilities, free carrier concentrations) and the thermal conductivities have been correctly estimated. A slightly poorer agreement has been found for the ambient temperature dependences of the threshold current (Figs. 2b and 3b). However, the general trends are similar. The observed discrepancy can take its origin from the fact that in the real structure QWs might have slightly different material compositions and widths, whereas, in the simulation, they were identical to simplify the calculations. Moreover, we assumed that the carrier concentration is the same in every QW, which is not true in the real device. Both simplifications lead to broadening of the gain spectrum, and therefore have an influence on the ambient temperature dependences of the threshold current. Nevertheless, the gain and optical parameters seem to have reasonable values to perform the simulation of a device based on the antimonides. In the above calculations five parameters were adjusted to fit the : (1) reverse saturation current density j s ¼ 1: A/m 2 and (2) shape factor b pn ¼ 4 V 1 (a) voltage (V) 2. 1.6 1.2.8.4 = 5.5 µm = 2.4 µm. 2 4 6 8 1 current (ma) (b) 3.5 3. 2.5 2. =5.5µm = 2.4 µm 24 26 28 3 32 34 Fig. 2 Comparison between experimental and numerical results for the: a voltage-current characteristics and b ambient temperature dependences of the threshold current for 2.4-lm GaInAsSb/AlGaAsSb VCSEL with the 5.5-lm TJ

199 Page 4 of 7 Ł. Piskorski et al. (a) voltage (V) 1.2.8.4 =6µm = 2.6 µm. 4 8 12 16 current (ma) (b) 4.5 4. 3.5 3. 2.5 =6µm = 2.6 µm 26 27 28 29 3 31 Fig. 3 Comparison between experimental and numerical results for the: a voltage-current characteristics and b ambient temperature dependences of the threshold current for 2.6-lm GaInAsSb/GaSb VCSEL with the 6-lm TJ from the classical diode equation (Piskorski 211) which are necessary to find the effective conductivity of the active-region (Sarzała 212), (3) effective electrical conductivity of the tunnel junction r TJ ¼ 5:5 ðx mþ 1, (4) matrix element M ¼ 14 m ev from the relation used in gain calculations (Piskorski 215), and (5) shift of the conduction-band edge DE c;bs ¼ 3 mev due to the blueshift. Although matrix element can be obtained with the use of the Kane model (Vurgaftman 21), its theoretical value is underestimated compared to the experimentally determined one (Chuang 29). Blueshift, however, is the effect of annealing-induced interdiffusion on the electronic structure during the growth of the active region (Dier 25). Energy shift caused by the above interdiffusion depends on the growth conditions, and therefore, it is specific for the given structure. In Fig. 4 we present the values of the threshold current I th for various ambient temperatures T amb calculated for 2.6-lm VCSEL with the strain in the QW equal to ¼ 1:6%. As can be seen, with the increase of the T amb the threshold current increases for all considere diameters. This behaviour can be explained with the use of Fig. 5 in which we present the gain spectra calculated for VCSELs designed to emit the light from the 2.6 2.8 lm wavelength range. For the 2.6-lm device the gain peak is shifted to a longer wavelength than the emission one. To achieve the threshold operation for higher T amb it is necessary to obtain the similar value of gain in the active region (in our calculations the threshold gain slightly increases which is a result of temperature influence on absorption coefficients taken into account). However, for higher temperatures, gain Fig. 4 Calculated threshold current vs. ambient temperature for 2.6-lm VCSEL with 1.6% compressively strained QWs. Filled and empty symbols correspond to LP 1 and LP 11 mode operation, respectively 6 4 2 = 2.6 µm = 1.6 % 6 µm 4 µm 24 26 28 3 32 34 36

Simulation and optimization of 2.6 2.8 lm... Page 5 of 7 199 Fig. 5 Gain spectra calculated for VCSELs with 4-lm TJ diameter emitting in the 2.6 2.8 lm wavelength range with 1.6% (solid lines) and 2.% (dashed line) compressively strained QWs. Wavelengths corresponding to the LP 1 and LP 11 modes have been additionally shown gain (cm -1 ) 8 6 4 2 2.7 µm VCSELs 2.6 µm VCSEL 11 1 11 1 11 1 =4µm T amb =32K = 1.6 % 2. VCSEL b) 2.2 2.4 2.6 2.8 3. 3.2 wavelength (µm) calculated for a fixed carrier concentration decreases. Therefore, it is necessary to increase the carrier concentration in the active region which leads to the higher I th. From Fig. 4 it can be also seen that for wider apertures the temperature range, in which the LP 1 mode operation is achieved, decreases. This can be explained by the fact that for wider apertures the LP 11 mode losses calculated in respect to LP 1 mode become smaller. For the device with the same active region but designed to emit the wavelength of 2.7 lm by increasing the thickness of DBR layers and the optical length of the cavity, we obtained the stable LP 1 mode operation only for the TJ with the smallest aperture (Fig. 6a). As can be seen from Fig. 5, for 2.7-lm VCSEL and ¼ 1:6%, due to the shift of gain spectrum towards the longer wavelengths, the value of gain for the wavelength corresponding to LP 11 mode is higher than the one for LP 1 mode. This leads to the significant reduction of the LP 11 mode losses, and therefore we observe LP 11 mode operation for all considered apertures wider than 2 lm, for which the LP 11 mode losses are still enough high to provide LP 1 mode emission. We performed analogous calculations for 2.8-lm VCSEL with the strain in the QW equal to ¼ 1:6%. For this device LP 11 mode operation is more favourable than for the 2.7-lm VCSEL with the same active region. The (a) 15 1 5 6 µm = 2.7 µm = 1.6 % 4 µm 24 26 28 3 32 34 36 (b) 6 4 6 µm 4 µm 2 = 2.7 µm = 2. % 24 26 28 3 32 34 36 Fig. 6 Calculated threshold current vs. ambient temperature for 2.7-lm VCSEL with a 1.6% and b 2.% compressively strained QWs. Filled and empty symbols correspond to LP 1 and LP 11 mode operation, respectively

199 Page 6 of 7 Ł. Piskorski et al. values of the threshold current which, we do not report here, follow the same trend where the threshold current increases and the temperature range, for which LP 1 mode operation is observed, decreases. As a result, for the 2.8-lm VCSEL, we obtained the stable fundamental mode operation only for device with TJ diameter of 2 lm One of methods to increase the LP 11 mode losses and therefore to obtain laser operation in the LP 1 mode is to shift the gain spectrum toward the longer wavelength. In VCSELs, for the situation when the wavelength corresponding to the gain peak is longer than the emission wavelength, the LP 1 mode operation is more favourable than the LP 11 one. In our calculations we shifted the gain spectrum for the 2.7-lm VCSEL (Fig. 5) by increasing the indium content in the GaInAsSb QWs from.43 to.49 which was followed by the increase in the value of compressive strain by.4%. As a result we obtained the stable LP 1 mode operation for TJ diameters up to 6 lm (Fig. 6b) with the distinctly lower values of the threshold currents. Although the compressive strain of 1.6% in our initial structure is high, surface-emitting lasers with antimonide-based active regions with even higher strain in QWs were already reported. In (Rösener 211) the solid-source molecular beam epitaxy was used to grow active region which consists of ten compressively strained GaInAsSb QWs for whose the compressive strain was determined to be of 1.8% with the use of highresolution x-ray diffraction. Higher strain (2.8%) for active region with ten GaInAsSb QWs was reported in (Holl 216), where it is also mentioned that the thickness of each QW was equal to 1 nm. It is the same value which we used in calculations described in this paper. Although the higher strain leads to a reduction of the critical thickness at which relaxation of the QW layers occurs, it seems that active regions considered here can be realized with the use of present technology. The structure with the 2% compressively-strained active-region was further modified in order to achieve emission around 2.8 lm. Similarly to the 2.7-lm devices, the thickness of DBR layers and n-gasb layers in the cavity have been increased. As can be seen from Fig. 7 after the above modifications we obtained LP 1 mode operation above RT for TJ diameters up to 4 lm. Calculated values of the RT threshold current were equal to 2.5 and 4. ma for tunnel-junction diameters of 2 and 4 lm, respectively. The threshold current values and temperature-operation ranges for the corresponding TJ diameters are similar to those from Fig. 6a which is the result of the similar cavity-gain detuning for these lasers. Fig. 7 Calculated threshold current vs. ambient temperature for 2.8-lm VCSEL with 2.% compressively strained QWs. Filled and empty symbols correspond to LP 1 and LP 11 mode operation, respectively 15 1 5 6 µm 4 µm = 2. = 2. % 24 26 28 3 32 34 36

Simulation and optimization of 2.6 2.8 lm... Page 7 of 7 199 5 Conclusion We performed the threshold analysis of an operation of GaSb-based VCSELs emitting in the 2.6 2.8 lm wavelength range. The simulation was performed for VCSELs with various TJ diamters and for ambient temperatures ranging from 25 K to the maximal operating temperature for a given device. The results show that by a proper design of VCSEL structure and composition of the active region it is theoretically possible to achieve the threshold operation for wavelengths about.2 lm longer than those reported so far in the literature. Moreover, obtaining the desired low-threshold stable single-fundamental-mode operation in these devices is also possible. Our results may be useful for designing the electrically-pumped continuous-wave III-V VCSELs able to achieve the emission wavelength of 3 lm. Acknowledgements This work has been supported by the Polish National Science Centre (DEC-212/7/ D/ ST7/2581). Open Access This article is distributed under the terms of the Creative Commons Attribution 4. International License (http://creativecommons.org/licenses/by/4./), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. References Arafin, S., Bachmann, A., Kashani-Shirazi, K., Amann, M.-C.: Continuous-wave electrically-pumped GaSbbased VCSELs at 2.6 lm operating up to 5 C. In: Proceeding of the 22nd Annual Meeting of the IEEE Photonics Society, p. 837 (29) Arafin, S., Bachmann, A., Vizbaras, K., Amann, M.-C.: Large-aperture single-mode GaSb-based BTJ- VCSELs at 2.62 lm. In: Proceeding of the 22nd IEEE International Semiconductor Laser Conference, p. 47 (21) Bachmann, A., Arafin, S., Kashani-Shirazi, K.: Single-mode electrically pumped GaSb-based VCSELs emitting continuous-wave at 2.4 and 2.6 lm. New J. Phys. 11, 12514-1 12514-17 (29) Chuang, S.L.: Physics of Photonic Devices. Wiley, Hoboken (29) Dier, O., Dachs, S., Grau, M., Chun, L., Lauer, C., Amann, M.-C.: Effects of thermal annealing on the band gap of GaInAsSb. Appl. Phys. A 86, 15112-1 15112-3 (25) Holl, P., Rattunde. M., Adler, S., Bächle, A., Diwo-Emmer, E., Aidam, R., Manz, C., Köhler, K., Wagner, J.: Optimization of 2.5 lm VECSEL: influence of the QW active region, in Vertical External Cavity Surface Emitting Lasers (VECSELs) VI, Wilcox K.G. (ed.), In: Proceeding of SPIE 9734, p. 9734S (216) Piskorski, Ł., Sarzała, R.P., Nakwaski, W.: Investigation of temperature characteristics of modern InAsP/ InGaAsP multi-quantum-well TJ-VCSELs for optical fibre communication. Opto-Electron. Rev. 19, 32 326 (211) Piskorski, Ł., Frasunkiewicz, L., Sarzała, R.P.: Comparative analysis of GaAs- and GaSb-based active regions. Bull. Pol. Acad.Tech 63, 597 63 (215) Piskorski, Ł., Sarzała, R.P.: Material parameters of antimonides and amorphous materials for modelling the mid-infrared lasers. Opt. Appl. 46, 227 24 (216) Rösener, B., Rattunde, M., Moser, R., Kaspar, S., Töpper, T., Manz, Ch., Köhler, K., Wagner, J.: Continuous-wave room-temperature operation of a 2.8 lm GaSb-based semiconductor disk laser. Opt. Lett. 36, 319 321 (211) Sarzała, R.P., Czyszanowski, T., Wasiak, M., Dems, M., Piskorski, Ł., Nakwaski, W., Panajotov, K.: Numerical self-consistent analysis of VCSELs. Adv. Opt. Technol. 212, 689519-1 689519-17 (212) Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815 5875 (21)