CPE/EE 427, CPE 527 VLSI Design I CMOS Inverter. CMOS Inverter: A First Look

Similar documents
Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1

5. CMOS Gates: DC and Transient Behavior

ECE520 VLSI Design. Lecture 5: Basic CMOS Inverter. Payman Zarkesh-Ha

EEC 118 Lecture #11: CMOS Design Guidelines Alternative Static Logic Families

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. October 25, 2005

Digital Electronics. Assign 1 and 0 to a range of voltage (or current), with a separation that minimizes a transition region. Positive Logic.

EE 40. Midterm 3. November 14, 2002

Chapter 6 DIFFERENT TYPES OF LOGIC GATES

EXPERIMENT 4 CMOS Inverter and Logic Gates

Written Examination on. Wednesday October 17, 2007,

VLSI Design I; A. Milenkovic 1

The CMOS Inverter. Lecture 3a Static properties (VTC and noise margins)

Digital circuits. Bởi: Sy Hien Dinh

General Structure of MOS Inverter

Session 10: Solid State Physics MOSFET

Digital Integrated Circuits EECS 312

Lecture 11 Digital Circuits (I) THE INVERTER

Lecture 4. The CMOS Inverter. DC Transfer Curve: Load line. DC Operation: Voltage Transfer Characteristic. Noise in Digital Integrated Circuits

I. Digital Integrated Circuits - Logic Concepts

Lecture 11 Circuits numériques (I) L'inverseur

Basic Circuits. Current Mirror, Gain stage, Source Follower, Cascode, Differential Pair,

Digital Electronics Part II - Circuits

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

Reading. Lecture 17: MOS transistors digital. Context. Digital techniques:

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

EECE2412 Final Exam. with Solutions

EE 42/100 Lecture 23: CMOS Transistors and Logic Gates. Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad

ELEC 350L Electronics I Laboratory Fall 2012

Chapter 6 DIFFERENT TYPES OF LOGIC GATES

DIGITAL ELECTRONICS. A2: logic circuits parameters. Politecnico di Torino - ICT school

DIGITAL ELECTRONICS. Digital Electronics - A2 28/04/ DDC Storey 1. Politecnico di Torino - ICT school. A2: logic circuits parameters

CMOS VLSI Design (A3425)

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

DIGITAL VLSI LAB ASSIGNMENT 1

Week 9a OUTLINE. MOSFET I D vs. V GS characteristic Circuit models for the MOSFET. Reading. resistive switch model small-signal model

Improved Inverter: Current-Source Pull-Up. MOS Inverter with Current-Source Pull-Up. What else could be connected between the drain and V DD?

Lecture 12 - Digital Circuits (I) The inverter. October 20, 2005

Digital Microelectronic Circuits ( ) Pass Transistor Logic. Lecture 9: Presented by: Adam Teman

Shorthand Notation for NMOS and PMOS Transistors

Solution HW4 Dr. Parker EE477

ECE 484 VLSI Digital Circuits Fall Lecture 02: Design Metrics

Digital Electronics. Assign Ò1Ó and Ò0Ó to a range of voltage (or current), with a separation that minimizes a transition region.

Topic 6. CMOS Static & Dynamic Logic Gates. Static CMOS Circuit. NMOS Transistors in Series/Parallel Connection

MOS TRANSISTOR THEORY

CPE/EE 427, CPE 527 VLSI Design I: Homeworks 3 & 4

Module 4 : Propagation Delays in MOS Lecture 19 : Analyzing Delay for various Logic Circuits

ECE/CoE 0132: FETs and Gates

Lecture 13. Biasing and Loading Single Stage FET Amplifiers. The Building Blocks of Analog Circuits - III

Learning Outcomes. Spiral 2-6. Current, Voltage, & Resistors DIODES

ECE 3110: Engineering Electronics II Fall Final Exam. Dec. 16, 8:00-10:00am. Name: (78 points total)

55:041 Electronic Circuits

Combinational Logic Gates in CMOS

Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs)

Microelectronics, BSc course

EE434 ASIC & Digital Systems

ELEC451 Integrated Circuit Engineering Fall 2009 Solution to CAD Assignment 2 Inverter Voltage Transfer Characteristic (VTC)

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press

Lecture Summary Module 1 Switching Algebra and CMOS Logic Gates

Today's Goals. Finish MOS transistor Finish NMOS logic Start CMOS logic

Introduction to Electronic Devices

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Two Problems. Outline. Output not go to Rail

6.012 Microelectronic Devices and Circuits

In this experiment you will study the characteristics of a CMOS NAND gate.

CHAPTER 3 PERFORMANCE OF A TWO INPUT NAND GATE USING SUBTHRESHOLD LEAKAGE CONTROL TECHNIQUES

ELEC 2210 EXPERIMENT 12 NMOS Logic

Microelectronics Circuit Analysis and Design. MOS Capacitor Under Bias: Electric Field and Charge. Basic Structure of MOS Capacitor 9/25/2013

55:041 Electronic Circuits

Digital logic families

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Two Problems. Outline. Output not go to Rail

3.CMOS Inverter-homework

ECE 471/571 The CMOS Inverter Lecture-6. Gurjeet Singh

Digital Microelectronic Circuits ( ) CMOS Digital Logic. Lecture 6: Presented by: Adam Teman

Gechstudentszone.wordpress.com

EEC 118 Spring 2010 Lab #1: NMOS and PMOS Transistor Parameters

Digital CMOS Logic Circuits

2009 Spring CS211 Digital Systems & Lab 1 CHAPTER 3: TECHNOLOGY (PART 2)

Design and Simulation of Low Voltage Operational Amplifier

D n ox GS THN DS GS THN DS GS THN. D n ox GS THN DS GS THN DS GS THN

FAMILIARIZATION WITH DIGITAL PULSE AND MEASUREMENTS OF THE TRANSIENT TIMES

2-Bit Magnitude Comparator Design Using Different Logic Styles

BICMOS Technology and Fabrication

Field Effect Transistors

Microelectronics Circuit Analysis and Design

Homework Assignment 07

ECE 334: Electronic Circuits Lecture 10: Digital CMOS Circuits

Electronics Basic CMOS digital circuits

Digital Microelectronic Circuits ( ) Terminology and Design Metrics. Lecture 2: Presented by: Adam Teman

Chapter 4. CMOS Cascode Amplifiers. 4.1 Introduction. 4.2 CMOS Cascode Amplifiers

EECS 141: FALL 98 FINAL

Digital Circuits Introduction

CPE/EE 427, CPE 527 VLSI Design I L01: Introduction, Design Metrics. What is this course all about?

Analysis and Design of Analog Integrated Circuits Lecture 8. Cascode Techniques

Basic Fabrication Steps

Design cycle for MEMS

Chapter 6 Combinational CMOS Circuit and Logic Design. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 22, 2001

Quad 2-Input NAND Gate High-Voltage Silicon-Gate CMOS

VLSI Design I; A. Milenkovic 1

Gunning Transceiver Logic Interface Bus Design Project

IC Logic Families. Wen-Hung Liao, Ph.D. 5/16/2001

Transcription:

CPE/EE 427, CPE 527 VLSI Design I CMOS Inverter Department of Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovic CMOS Inverter: A First Look C L 9/11/26 VLSI Design I; A. Milenkovic 2 VLSI Design I; A. Milenkovic 1

CMOS Inverter: Steady State Response V OL = V OH = V M = f(r n, R p ) R p = 1 = R n = = 9/11/26 VLSI Design I; A. Milenkovic 3 CMOS Properties Full rail-to-rail swing high noise margins Logic levels not dependent upon the relative device sizes transistors can be minimum size ratioless Always a path to V dd or GND in steady state low output impedance (output resistance in kω range) large fan-out (albeit with degraded performance) Extremely high input resistance (gate of MOS transistor is near perfect insulator) nearly zero steady-state input current No direct path steady-state between power and ground no static power dissipation Propagation delay function of load capacitance and resistance of transistors 9/11/26 VLSI Design I; A. Milenkovic 4 VLSI Design I; A. Milenkovic 2

Short Channel I-V Plot (NMOS) I D (A) 2.5 2 1.5 1.5 X 1-4 V GS = 2.5V V GS = 2.V V GS = 1.5V V GS = 1.V Linear dependence.5 1 1.5 2 2.5 V DS (V) NMOS transistor,.25um, L d =.25um, W/L = 1.5, = 2.5V, V T =.4V 9/11/26 VLSI Design I; A. Milenkovic 5 Short Channel I-V Plot (PMOS) All polarities of all voltages and currents are reversed -2 V DS (V) -1 V GS = -1.V -.2 V GS = -1.5V V GS = -2.V -.4 -.6 I D (A) -.8 V GS = -2.5V -1 X 1-4 PMOS transistor,.25um, L d =.25um, W/L = 1.5, = 2.5V, V T = -.4V 9/11/26 VLSI Design I; A. Milenkovic 6 VLSI Design I; A. Milenkovic 3

nmos Operation Cutoff V gsn < Linear V gsn > V dsn < Saturated V gsn > V dsn > I dsp 9/11/26 VLSI Design I; A. Milenkovic 7 nmos Operation Cutoff V gsn < V tn Linear V gsn > V tn Saturated V gsn > V tn V dsn < V gsn V tn V dsn > V gsn V tn I dsp 9/11/26 VLSI Design I; A. Milenkovic 8 VLSI Design I; A. Milenkovic 4

nmos Operation Cutoff V gsn < V tn Linear V gsn > V tn Saturated V gsn > V tn V dsn < V gsn V tn V dsn > V gsn V tn V gsn = I dsp V dsn = 9/11/26 VLSI Design I; A. Milenkovic 9 nmos Operation Cutoff V gsn < V tn < V tn Linear V gsn > V tn > V tn V dsn < V gsn V tn < -V tn Saturated V gsn > V tn > V tn V dsn > V gsn V tn > -V tn V gsn = I dsp V dsn = 9/11/26 VLSI Design I; A. Milenkovic 1 VLSI Design I; A. Milenkovic 5

pmos Operation Cutoff V gsp > Linear V gsp < V dsp > Saturated V gsp < V dsp < I dsp 9/11/26 VLSI Design I; A. Milenkovic 11 pmos Operation Cutoff V gsp > V tp Linear V gsp < V tp Saturated V gsp < V tp V dsp > V gsp V tp V dsp < V gsp V tp I dsp 9/11/26 VLSI Design I; A. Milenkovic 12 VLSI Design I; A. Milenkovic 6

pmos Operation Cutoff V gsp > V tp Linear V gsp < V tp Saturated V gsp < V tp V dsp > V gsp V tp V dsp < V gsp V tp V gsp = - V tp < V dsp = - I dsp 9/11/26 VLSI Design I; A. Milenkovic 13 pmos Operation Cutoff V gsp > V tp > + V tp Linear V gsp < V tp < + V tp V dsp > V gsp V tp > -V tp Saturated V gsp < V tp < + V tp V dsp < V gsp V tp < -V tp V gsp = - V tp < V dsp = - I dsp 9/11/26 VLSI Design I; A. Milenkovic 14 VLSI Design I; A. Milenkovic 7

I-V Characteristics Make pmos is wider than nmos such that β n = β p V gsn5 V gsn4 V gsp1 V gsp2 - -V dsp V gsn3 V gsn2 V gsn1 V gsp3 V dsn V gsp4 -I dsp V gsp5 9/11/26 VLSI Design I; A. Milenkovic 15 Current vs., 5, I dsp 1 4 2 3 3 4 2 1 9/11/26 VLSI Design I; A. Milenkovic 16 VLSI Design I; A. Milenkovic 8

Load Line Analysis =, I dsp 9/11/26 VLSI Design I; A. Milenkovic 17 Load Line Analysis =.2, I dsp 1 1 9/11/26 VLSI Design I; A. Milenkovic 18 VLSI Design I; A. Milenkovic 9

Load Line Analysis =.4, I dsp 2 2 9/11/26 VLSI Design I; A. Milenkovic 19 Load Line Analysis =.6, I dsp 3 3 9/11/26 VLSI Design I; A. Milenkovic 2 VLSI Design I; A. Milenkovic 1

Load Line Analysis =.8, I dsp 4 4 9/11/26 VLSI Design I; A. Milenkovic 21 Load Line Analysis = 5, I dsp 1 2 3 4 9/11/26 VLSI Design I; A. Milenkovic 22 VLSI Design I; A. Milenkovic 11

Load Line Summary 5, I dsp 1 4 2 3 3 4 2 1 9/11/26 VLSI Design I; A. Milenkovic 23 DC Transfer Curve Transcribe points onto vs. plot 5 A B 1 4 C 2 3 3 4 2 1 D E V tn /2 +V tp 9/11/26 VLSI Design I; A. Milenkovic 24 VLSI Design I; A. Milenkovic 12

CMOS Inverter Load Lines PMOS = V 2.5 2 X 1-4 NMOS = 2.5V I Dn (A) =.5V = 1.V 1.5 1 = 2V.5 = 1.5V = 2.V V = 1.5V in = 1V = 2.5V.5 1 1.5 2 2.5 (V) = 2.V = 1.5V =.5V = 1.V =.5V = V.25um, W/L n = 1.5, W/L p = 4.5, = 2.5V, V Tn =.4V, V Tp = -.4V 9/11/26 VLSI Design I; A. Milenkovic 25 CMOS Inverter VTC (V) 2.5 2 1.5 1.5.5 1 1.5 2 2.5 (V) 9/11/26 VLSI Design I; A. Milenkovic 26 VLSI Design I; A. Milenkovic 13

Operating Regions Revisit transistor operating regions Region A B C D E nmos pmos A B C D E V tn /2 +V tp 9/11/26 VLSI Design I; A. Milenkovic 27 CMOS Inverter VTC 2.5 2 NMOS off PMOS res NMOS sat PMOS res (V) 1.5 1 NMOS sat PMOS sat.5 NMOS res PMOS sat NMOS res PMOS off.5 1 1.5 2 2.5 (V) 9/11/26 VLSI Design I; A. Milenkovic 28 VLSI Design I; A. Milenkovic 14

Beta Ratio If β p / β n 1, switching point will move from /2 Called skewed gate Other gates: collapse into equivalent inverter β p.1 β = n β p 1 β = n 2 1.5 9/11/26 VLSI Design I; A. Milenkovic 29 Noise Margins How much noise can a gate input see before it does not recognize the input? Logical High Output Range Output Characteristics V OH NM H V IH V IL Input Characteristics Indeterminate Region Logical High Input Range Logical Low Output Range V OL NM L GND Logical Low Input Range 9/11/26 VLSI Design I; A. Milenkovic 3 VLSI Design I; A. Milenkovic 15

Logic Levels To maximize noise margins, select logic levels at β p /β n > 1 9/11/26 VLSI Design I; A. Milenkovic 31 Logic Levels To maximize noise margins, select logic levels at unity gain point of DC transfer characteristic Unity Gain Points Slope = -1 V OH β p /β n > 1 V OL V tn V IL V IH - V tp 9/11/26 VLSI Design I; A. Milenkovic 32 VLSI Design I; A. Milenkovic 16

CMOS Inverter: Switch Model of Dynamic Behavior R p C L R n C L = = 9/11/26 VLSI Design I; A. Milenkovic 33 CMOS Inverter: Switch Model of Dynamic Behavior R p C L R n C L = = Gate response time is determined by the time to charge C L through R p (discharge C L through R n ) 9/11/26 VLSI Design I; A. Milenkovic 34 VLSI Design I; A. Milenkovic 17

Relative Transistor Sizing When designing static CMOS circuits, balance the driving strengths of the transistors by making the PMOS section wider than the NMOS section to maximize the noise margins and obtain symmetrical characteristics 9/11/26 VLSI Design I; A. Milenkovic 35 Switching Threshold V M where = (both PMOS and NMOS in saturation since V DS = V GS ) V M r /(1 + r) where r = k p V DSATp /k n V DSATn Switching threshold set by the ratio r, which compares the relative driving strengths of the PMOS and NMOS transistors Want V M = /2 (to have comparable high and low noise margins), so want r 1 (W/L) p k n V DSATn (V M -V Tn -V DSATn /2) = (W/L) n k p V DSATp ( -V M +V Tp +V DSATp /2) 9/11/26 VLSI Design I; A. Milenkovic 36 VLSI Design I; A. Milenkovic 18

Switch Threshold Example In our generic.25 micron CMOS process, using the process parameters from slide L3.25, a = 2.5V, and a minimum size NMOS device ((W/L) n of 1.5) NMOS PMOS V T (V).43 -.4 γ(v.5 ).4 -.4 V DSAT (V).63-1 k (A/V 2 ) 115 x 1-6 -3 x 1-6 λ(v -1 ).6 -.1 (W/L) p (W/L) n = 9/11/26 VLSI Design I; A. Milenkovic 37 Switch Threshold Example In our generic.25 micron CMOS process, using the process parameters, a = 2.5V, and a minimum size NMOS device ((W/L) n of 1.5) NMOS PMOS V T (V).43 -.4 γ(v.5 ).4 -.4 V DSAT (V).63-1 k (A/V 2 ) 115 x 1-6 -3 x 1-6 λ(v -1 ).6 -.1 (W/L) p 115 x 1-6.63 (1.25.43.63/2) = x x = 3.5 (W/L) n -3 x 1-6 -1. (1.25.4 1./2) (W/L) p = 3.5 x 1.5 = 5.25 for a V M of 1.25V 9/11/26 VLSI Design I; A. Milenkovic 38 VLSI Design I; A. Milenkovic 19

Simulated Inverter V M V M (V) 1.5 1.4 1.3 1.2 1.1 1.9.8.1 ~3.4 1 1 (W/L) p /(W/L) n Note: x-axis is semilog V M is relatively insensitive to variations in device ratio setting the ratio to 3, 2.5 and 2 gives V M s of 1.22V, 1.18V, and 1.13V Increasing the width of the PMOS moves V M towards Increasing the width of the NMOS moves V M toward GND 9/11/26 VLSI Design I; A. Milenkovic 39 Noise Margins Determining V IH and V IL 3 By definition, V IH and V IL are where d /d = -1 (= gain) V OH = 2 1 V OL = GND VIL V M A piece-wise linear approximation of VTC VIH NM H = -V IH NM L = V IL -GND Approximating: V IH = V M -V M /g V IL = V M + ( -V M )/g So high gain in the transition region is very desirable 9/11/26 VLSI Design I; A. Milenkovic 4 VLSI Design I; A. Milenkovic 2

(V) 2.5 2 1.5 1.5 CMOS Inverter VTC from Simulation.5 1 1.5 2 2.5 (V).25um, (W/L) p /(W/L) n = 3.4 (W/L) n = 1.5 (min size) = 2.5V V M 1.25V, g = -27.5 V IL = 1.2V, V IH = 1.3V NM L = NM H = 1.2 (actual values are V IL = 1.3V, V IH = 1.45V NM L = 1.3V & NM H = 1.5V) Output resistance low-output = 2.4kΩ high-output = 3.3kΩ 9/11/26 VLSI Design I; A. Milenkovic 41 Gain Determinates gain -1-12 -14-16 -18.5 1 1.5 2-2 -4-6 -8 Gain is a strong function of the slopes of the currents in the saturation region, for = V M (1+r) g ---------------------------------- (V M -V Tn -V DSATn /2)(λ n - λ p ) Determined by technology parameters, especially channel length modulation (λ). Only designer influence through supply voltage and V M (transistor sizing). 9/11/26 VLSI Design I; A. Milenkovic 42 VLSI Design I; A. Milenkovic 21

Impact of Process Variation on VTC Curve (V) 2.5 2 1.5 1.5 Bad PMOS Good NMOS Good PMOS Bad NMOS Nominal.5 1 1.5 2 2.5 (V) process variations (mostly) cause a shift in the switching threshold 9/11/26 VLSI Design I; A. Milenkovic 43 Scaling the Supply Voltage 2.5.2 2.15 (V) 1.5 1.5.5 1 1.5 2 2.5 (V) Device threshold voltages are kept (virtually) constant (V).5.1.15.2 9/11/26 VLSI Design I; A. Milenkovic 44.1.5 Gain=-1 (V) Device threshold voltages are kept (virtually) constant VLSI Design I; A. Milenkovic 22