Status of ITC-irst activities in RD50

Similar documents
irst: process development, characterization and first irradiation studies

Silicon Sensor Developments for the CMS Tracker Upgrade

Simulation and test of 3D silicon radiation detectors

SSD Development for the ATLAS Upgrade Tracker

A new Vertical JFET Technology for Harsh Radiation Applications

Radiation hardness and precision timing study of Silicon Detectors for the CMS High Granularity Calorimeter (HGC)

Monolithic Pixel Sensors in SOI technology R&D activities at LBNL

The HGTD: A SOI Power Diode for Timing Detection Applications

Recent RD50 Developments on Radiation Tolerant Silicon Sensors

Development of a large area silicon pad detector for the identification of cosmic ions

Measurements With Irradiated 3D Silicon Strip Detectors

PoS(EPS-HEP 2009)150. Silicon Detectors for the slhc - an Overview of Recent RD50 Results. Giulio Pellegrini 1. On behalf of CERN RD50 collaboration

1. Reasons for using p-type SSD

Development of Radiation hard semiconductor devices for very high luminosity colliders

Why p-type is better than n-type? or Electric field in heavily irradiated silicon detectors

Development of 3D detectors and

UNIVERSITY of CALIFORNIA SANTA CRUZ

F. Hartmann. IEKP - Universität Karlsruhe (TH) IEKP - Universität Karlsruhe (TH)

Silicon Sensor and Detector Developments for the CMS Tracker Upgrade

Simulation of new P-type strip detectors with trench to enhance the charge multiplication effect in the n- type electrodes

IRST SiPM characterizations and Application Studies

AIDA-2020 Advanced European Infrastructures for Detectors at Accelerators. Milestone Report

SiPM development within the FBK/INFN collaboration. G. Ambrosi INFN Perugia

Silicon Sensors for HL LHC Tracking Detectors

Development of Pixel Detectors for the Inner Tracker Upgrade of the ATLAS Experiment

Silicon Sensors for High-Luminosity Trackers - RD50 Collaboration status report

Signal-to. to-noise with SiGe. 7 th RD50 Workshop CERN. Hartmut F.-W. Sadrozinski. SCIPP UC Santa Cruz. Signal-to-Noise, SiGe 1

ATLAS Upgrade SSD. ATLAS Upgrade SSD. Specifications of Electrical Measurements on SSD. Specifications of Electrical Measurements on SSD

The SIRAD irradiation facility at the INFN - Legnaro National Laboratory

Single Sided and Double Sided Silicon MicroStrip Detector R&D

CMS Phase II Tracker Upgrade GRK-Workshop in Bad Liebenzell

Prototype Performance and Design of the ATLAS Pixel Sensor

CMS Tracker Upgrade for HL-LHC Sensors R&D. Hadi Behnamian, IPM On behalf of CMS Tracker Collaboration

Department of Physics & Astronomy

Simulation of High Resistivity (CMOS) Pixels

Forward bias operation of irradiated silicon detectors A.Chilingarov Lancaster University, UK

Silicon Sensors for HL-LHC Tracking Detectors - RD50 Status Report

Studies of silicon strip sensors for the ATLAS ITK project. Miguel Arratia Cavendish Laboratory, University of Cambridge

Measurement results of DIPIX pixel sensor developed in SOI technology

Pixel detector development for the PANDA MVD

SIM-Detecteurs 2014 LPNHE-Paris

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1

Cosmic Rays induced Single Event Effects in Power Semiconductor Devices

PoS(Vertex 2016)028. Small pitch 3D devices. Gian-Franco Dalla Betta 1, Roberto Mendicino, DMS Sultan

Development of Double-sided Silcon microstrip Detector. D.H. Kah*, H. Park, H.J. Kim (BAERI JikLee (SNU) E. Won (Korea U)

High-Ohmic Resistors using Nanometer-Thin Pure-Boron Chemical-Vapour-Deposited Layers

ATLAS Upgrade SSD Project:

Study of X-ray radiation damage in silicon sensors

IV curves of different pixel cells

Evaluation of the Radiation Tolerance of Several Generations of SiGe Heterojunction Bipolar Transistors Under Radiation Exposure

AVALANCHE PHOTODIODES FOR THE CMS ELECTROMAGNETIC CALORIMETER

Development of Integration-Type Silicon-On-Insulator Monolithic Pixel. Detectors by Using a Float Zone Silicon

Quality Assurance for the ATLAS Pixel Sensor

arxiv: v2 [physics.ins-det] 15 Jan 2019

Monolithic Pixel Detector in a 0.15µm SOI Technology

Sensor production readiness

Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI

RD39 STATUS REPORT RD39 Collaboration

The CMS Silicon Pixel Detector for HL-LHC

Silicon Detectors in High Energy Physics

Development of Ultra Fast Silicon Detectors for 4D Tracking

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 5, OCTOBER /$ IEEE

Topic 3. CMOS Fabrication Process

MOSFET & IC Basics - GATE Problems (Part - I)

Silicon detectors for particle physics laboratory

New fabrication and packaging technologies for CMOS pixel sensors: closing gap between hybrid and monolithic

Julia Thom-Levy, Cornell University, for the CMS Collaboration. ECFA High Luminosity LHC Experiments Workshop-2016 October 3-6, 2016

Measurement of charge collec1on in irradiated miniature sensors for the upgrade of ATLAS Phase-II Strip tracker

TCAD simulations of silicon strip and pixel sensor optimization

BaBar SVT: Radiation Damage and Other Operational Issues

EPE 2005 Dresden ESCAPEE. ESCAPEE Project. SiC Workshop. EPE 2005, September 12

Characteristics of the ALICE Silicon Drift Detector.


Layout of a Inverter. Topic 3. CMOS Fabrication Process. The CMOS Process - photolithography (2) The CMOS Process - photolithography (1) v o.

Pixel sensors with different pitch layouts for ATLAS Phase-II upgrade

The CMS Pixel Detector Upgrade and R&D Developments for the High Luminosity LHC

Thin Silicon R&D for LC applications

arxiv: v2 [physics.ins-det] 15 Feb 2013

Ultra-Fast Silicon Detector

ECSE-6300 IC Fabrication Laboratory Lecture 9 MOSFETs. Lecture Outline

FACTOR: first results on SiPM characterization

CMS Beam Condition Monitoring Wim de Boer, Hannes Bol, Alexander Furgeri, Steffen Muller

Review of Silicon Inner Tracker

The BaBar Silicon Vertex Tracker (SVT) Claudio Campagnari University of California Santa Barbara

A new Silicon Photomultiplier structure for blue light detection

Recent Technological Developments on LGAD and ilgad Detectors for Tracking and Timing Applications

AIDA Advanced European Infrastructures for Detectors at Accelerators. Journal Publication

TRINAT Amplifier-Shaper for Silicon Detector (TASS)

Fabrication, Corner, Layout, Matching, & etc.

The CMS Silicon Strip Tracker and its Electronic Readout

A Prototype Amplifier-Discriminator Chip for the GLAST Silicon-Strip Tracker

Maxim MAX3940E Electro-Absorption Modulator Structural Analysis

Monitoring of the Fabrication Process of Silicon Strip Sensors for Large Scale Productions

SDD from device modeling to mass production - practical experience

ORTEC. Research Applications. Pulse-Height, Charge, or Energy Spectroscopy. Detectors. Processing Electronics

21 rue La Noue Bras de Fer Nantes - France Phone : +33 (0) w7-foldite :

RD53 status and plans

Role of guard rings in improving the performance of silicon detectors

Transcription:

Status of ITC-irst activities in RD50 M. Boscardin ITC-irst, Microsystem Division Trento, Italy

Outline Materials/Pad Detctors Pre-irradiated silicon INFN Padova and Institute for Nuclear Research of NASU, KieV; Detectors on MCz, Cz and Epitaxial silicon SMART collaboration: INFN of Bari, Firenze, Padova Perugia, Pisa and Trieste; New detectors Thin Detectors - INFN of Firenze and Padova; 3-D detectors Glasgow and CNM Barcelona.

Pre-irradiated material Layout BaBar detector masks (single side) Diode + test structure Silicon Fz <100> n-type 6 kω MCz <111> n-type Okmetic >500Ω Pre-irradiation Pre-irradiation by fast neutrons at Kiev reactor, fluence 10 17 n/cm 2 annealing at a temperature of 850 C Polishing, lapping rocess Fz material = standard Irst (LTO, sintering@420 C) MCz material = No LTO and sintering @380 C.

Electrical Characterization Type n V dep (V) N eff (10 11 cm 3 ) ρ (kωcm) j D (µa/cm 3 ) Fz 1 reference 60 6 7.7 5 15 1 Pre-irradiated 75 115 8 12 4 6 2 3 2 70 110 7 11 4 7 0.5 4 3 65 110 6.5 11 4 7 0.4 0.9 4 70 95 7 9.5 5 6.5 2 8 5 60 125 6 12.5 4 8 4 16 MCz 1 reference 450 85 0.55 0.7 1 Pre-irradiated 800 150 0.3 1-2 2 490 730 90 140 0.33 0.5 0.6 6 Data from INFN Padova

activities in progress: diodes have been tested on wafer and cut now: Irradiation by: 1. 24 GeV protons at CERN; 2. Fast neutrons at Kiev and Lubljana Research Reactor; 3. 58 MeV Li ions at LNL INFN Tandem Padova.

Run SMART MART collaboration: INFN groups of Firenze, Pisa, rieste, Bari, Padova, Perugia and ITC-irst Test structure: diode, OS, gated diodes, esistor, etc. diodes Microstrip detectors AC oupled, poly-resistor iased Diodes MG

SMART layout 5 + 5 Microstrip detectors per wafer AC coupled, poly-resistors biased external dimension of about 6x47mm 10 GR pitch Implant width number 50 15 20 25 64 100 15 25 35 32 Large guard Width/pitch field plate 15/50 25/100 2 4 4 6 6 8 Bias ri

SMART layout Square Diode Area 13.6 mm2 DIE 6x6mm Multiguard structure 27 per wafer Circular Diode Area 4 mm2 DIE 4x4mm Multiguard structure 10 per wafer

SMART layout Test Structure MOS capacitor (Poly) Gated Diode, Capacitors, resistors,.. DIE 6x6mm 9 per wafer Test Structure Diode area 4 mm2, double G MOS capacitor (Metal) DIE 6x6mm 13 per wafer

Run SMART Process STANDARD (LTO as passivation layer, sintering@420 C) NO passivation, sintering @380 C or @350 C Silicon Fz n-type 6 kω-cm <111> MCz n-type >500Ω-cm <100> Cz n-type >900Ω-cm <100> Epi ITME ( 50 and 75 mm 0.02Ω-cm ) Process Status Process just completed

New Detectors Thin Detectors in collab. With INFN of Firenze and Padova; 3-D detectors in collab. With Glasgow and CNM Barcelona.

Thin Detectors Standard process (single side) Silicon wet etching (TMAH Si <100>) From 300 µm to 50 µm 1/C Jleak 2 [1/pF [na/cm 2 ] 2 ] 0.20 0.15 0.10 0.05 5 IV 1/C diode 2 THICK DIODE THICK DIODES THINNED 100 DIODES µm DIODE (100 µm and 50 µm) 50 µm DIODE 0.00 0 0 0 1 50 2 3 100 Rev. Bias [V] Rev. Bias [V] square diodes (1.9 mm 2 )

Irradiation with Li ions: depletion voltage and N eff 250 V dep (V) 200 150 100 300 µm 100 µm 50 µm N eff (cm -3 ) 6 10 12 4 10 12 2 10 12 300 µm 100 µm 50 µm 0 0 4 10 12 8 10 12 12 10 12 16 10 12 20 10 12 Φ (58 MeV Li/cm 2 ) 50 6 V 0 0 4 10 12 8 10 12 12 10 12 16 10 12 20 10 12 Φ (58 MeV Li/cm 2 )

hin silicon diode irradiation: leakage current J D scaled to 20 C (A/cm 3 ) 0.04 0.03 0.02 0.01 50 µm: Alfa=(106±2) 10-17 A/cm 100 µm: Alfa=(132±1) 10-17 A/cm 300 µm: Alfa=(223±10) 10-17 A/cm 300 µm 100 µm 50 µm Radiation source Devices Radiation Fluence α after 4 min at 80 C (A/cm) This experiment 58 MeV Li IRST (FZ) 300 µm 0-1.02 10 13 Li/cm 2 (223±10) 10-17 A/cm 58 MeV Li IRST (FZ) 100 µm 0-1.83 10 13 Li/cm 2 (132± 1) 10-17 A/cm 58 MeV Li IRST (FZ) 50 µm 0-1.83 10 13 Li/cm 2 (106±2) 10-17 A/cm Other experiments 0.00 0 4 10 12 8 10 12 12 10 12 16 10 12 20 10 12 Φ (Li/cm 2 ) 58 MeV Li ST (FZ) 300 um 0-0.52 10 13 Li/cm 2 (206±2) 10-17 A/cm CNM (FZ) 280 um 58 MeV Li Hamburg (Epi) 50 µm 0-2.12 10 13 Li/cm 2 (114±5) 10-17 A/cm 1 MeV neutrons ----------------------- ----------------------- 4.56 10-17 A/cm

Thin silicon diode: future activity Irradiation by 24 GeV protons at CERN: Φ=10 15 p/cm 2-10 16 p/cm 2 (7-28 May 2004) Irradiation by 58 MeV Li ions at Padova: Φ=8 10 13 Li/cm 2-16 10 13 Li/cm 2 (23 May 2004) Comparison of the damage induced by 24 GeV protons and 58 MeV Li ions in diodes with different thickness (50µm - 100µm - 300µm): -depletion voltage; -leakage current density at full depletion; -CCE; -annealing characteristics.

CCE - Florence set-up is a low noise charge integrator with - shaping factor = 2.4µsec - ENC = (280+5.6C/pF)eis optimized for single channel detectors single channel charge sensitive preamplifier + shaping amplifier 90 Sr source + collimator calibration circuit 1mV = 226.5 e - 600 90Sr 550 500 450 m.p. Measured Landau+noise distri in a 300 µm thick Si detector Deconvolved Landau fit BIAS HV DIODE SCINTILLATOR NaI + PMT AMPTEK 225 TRIGGER LINE CONTROL UNIT ADC Counts 400 350 300 250 200 150 100 50 0 Landau gaussian noise mean value -50-50 0 50 100 150 200 250 300 350 Signal (mv) diode

Devices under test: single diode - single guard ring non irradiated diodes 50µm 100µm 300µm 1.9 mm 2 3 3 3 3.5 mm 2 1 1 2 Diodes irradiated with Li iones at 58MeV and 10 13 cm -2 Annealing at 80 C for 4 min Li + irradiated Diodes 50µm 100µm 300µm 1.9 mm 2 1 1 2

3-D detector diameter 15 µm Mask: Glasgow CNM Barcelona: deep-trench Irst: process ~200 micron

3-D poly and TEOS deposition poly Surface Top botton TEOS Poly 1.05µm 0.8µm 0.7µm TEOS 0.96µm 0.7µm 0.6µm

Metal deposition Aluminium sputtering uminium is deposited to the first -30 µm silicon aluminium hole

3-D photoresist definition Hole diameter 5µm distance 5µm Optical Microscope SEM picture

3-D photoresist definition Photoresist line

First results on MCz silicon at Irst rocess:. standard Irst process for detector realization (sintering @ 420 C). no LTO deposition (sintering at 380 C) Fz <111> n-type 6 Kohm MCz <100> n-type >0.5 Kohm FDV (V) 23.2 23.9 > 1700 estimated 367-450 Q ox (1/cm 2 ) 1.56E+11 3.40E+11 2.68E+10 4.63E+10 I @ 100V (na/cm 2 ) 0.50 2.67 0.97 0.78 s 0 (cm/sec.) 0.9 1.5 0.4 0.7