GHz 10 Watt Power Amplifier

Similar documents
5 6 GHz 10 Watt Power Amplifier

11-15 GHz 0.5 Watt Power Amplifier

5 6.4 GHz 2 Watt Power Amplifier

8 11 GHz 1 Watt Power Amplifier

GHz Low Noise Amplifier

DC-12 GHz Tunable Passive Gain Equalizer

8-18 GHz Wideband Low Noise Amplifier

GHz Ultra-wideband Amplifier

2 40 GHz Ultra-Wideband Amplifier

9-10 GHz LOW NOISE AMPLIFIER

18-40 GHz Low Noise Amplifier

1-22 GHz Wideband Amplifier

9-10 GHz GaAs MMIC Core Chip

6-18 GHz Double Balanced Mixer

2 18GHz Double Balanced Ring Mixer

GHz Voltage Variable Attenuator (Absorptive)

9-10 GHz GaAs MMIC Core Chip

DC-10GHz SPDT Reflective Switch

GHz Broadband Low Noise Amplifier

GHz 6-Bit Digital Attenuator

GHz 6-Bit Digital Attenuator

Advance Datasheet Revision: May 2013

Advance Datasheet Revision: April 2015

Features. = +25 C, Vdd = +6V, Idd = 375mA [1]

Features. = +25 C Vdd = Vdd1, Vdd2, Vdd3, Vdd4, Vdd5, Vdd6, Vdd7, Vdd8 = +6V, Idd = 1400 ma [1]

Advance Datasheet Revision: October Applications

MECGaNC30. 4 to 6 GHz GaN HEMT Power Amplifier. Main Features. Product Description. Applications

Features. = +25 C, Vdd = 5V, Idd = 85mA*

Features OBSOLETE. Output Third Order Intercept (IP3) [2] dbm Total Supply Current ma

Features. = +25 C, Vdd = Vdd1 = Vdd2 = Vdd3 = Vdd4 = Vdd5 = +7V, Idd = 1200mA [1]

ASL 1005P3 Data Sheet Rev: 1.0 Apr 2017

MAAP Power Amplifier, 15 W GHz Rev. V1. Features. Functional Schematic. Description. Pin Configuration 2. Ordering Information

1.0 6 GHz Ultra Low Noise Amplifier

Features. = +25 C, Vdd = 5V, Idd = 200 ma*

HMC906A. Amplifiers - Linear & Power - CHIP. Electrical Specifications, T A. Typical Applications. Features. General Description. Functional Diagram

CHA5294 RoHS COMPLIANT

Preliminary Datasheet Revision: January 2016

CMD217. Let Performance Drive GHz GaN Power Amplifier

0.5-20GHz Driver. GaAs Monolithic Microwave IC

HMC998. Amplifiers - Linear & Power - Chip. GaAs phemt MMIC 2 WATT POWER AMPLIFIER, GHz. Electrical Specifications, T A.

Features. = +25 C, Vdd = +5V, Idd = 63 ma

CMD GHz Distributed Driver Amplifier. Features. Functional Block Diagram. Description

Features dbm

GHz GaAs MMIC Power Amplifier

Features. = +25 C, Vdd1, Vdd2 = +5V

HMC465 AMPLIFIERS- DRIVERS & GAIN BLOCKS - CHIP. GaAs phemt MMIC MODULATOR DRIVER AMPLIFIER, DC - 20 GHz. Electrical Specifications, T A.

Features. = +25 C, Vdd = +3V

Features. = +25 C, Vdd 1, 2, 3 = +3V

VWA ACAA. Features. Description. Applications. Ordering information. Pin out and dimensions (4,5 X 4,1 X 0.10 mm) Functional Block Diagram

Advance Datasheet Revision: January 2015

4 Watt Ka-Band HPA Key Features Measured Performance Primary Applications Ka-Band VSAT Product Description

Features. = +25 C, Vdd= 5V, Idd= 60 ma*

2 3 ACG1 ACG2 RFIN. Parameter Min Typ Max Units Frequency Range

CMD GHz Low Noise Amplifier. Functional Block Diagram. Features. Description

2 3 ACG1 ACG2 RFIN. Parameter Min Typ Max Units Frequency Range

Features. = +25 C, Vdd 1, 2, 3 = +3V

ENGDA Wideband Distributed Amplifier, DIE, 0.8 to 20 GHz ENGDA Features. Typical Applications. Description. Functional Block Diagram

Features OUT E S T CODE. = +25 C, Vdd= 8V, Idd= 60 ma*

CMD GHz Distributed Low Noise Amplifier RFIN

Preliminary Datasheet Revision: July 2014

CMD GHz Low Noise Amplifier. Features. Functional Block Diagram. Description

3 4 ACG1 ACG2. Vgg2 2 RFIN. Parameter Min Typ Max Units Frequency Range

Product Datasheet Revision: April Applications

CMD GHz GaN Low Noise Amplifier. Features. Functional Block Diagram. Description

18W X-Band High Power Amplifier. GaN Monolithic Microwave IC

CMD GHz Low Noise Amplifier

CMD GHz GaN Low Noise Amplifier. Features. Functional Block Diagram. Description

Features. = +25 C, Vdd = 5V

CMD GHz Driver Amplifier. Features. Functional Block Diagram. Description

5W X Band Medium Power Amplifier. GaN Monolithic Microwave IC

Features. = +25 C, Vdd 1, 2, 3 = +3V

Features. Noise Figure db Supply Current (Idd) ma Supply Voltage (Vdd) V

33-47 GHz Wide Band Driver Amplifier TGA4522

HMC994A AMPLIFIERS - LINEAR & POWER - CHIP. GaAs phemt MMIC 0.5 WATT POWER AMPLIFIER, DC - 30 GHz. Features. Typical Applications

CMD GHz Low Noise Amplifier. Functional Block Diagram. Features. Description

MMA C3 6-22GHz, 0.1W Gain Block Data Sheet

3 4 ACG1 ACG2. 2 Vgg2 RFIN. Parameter Min Typ Max Units. Frequency Range DC - 24 GHz. Gain 18 db. Noise Figure 2.5 db. Output P1dB 25 dbm

Customised Pack Sizes / Qtys. Support for all industry recognised supply formats: o o o. Waffle Pack Gel Pak Tape & Reel

NPA100-D GHz GaN 20W Power Amplifier. Product Description: Key Features:

Features. DC - 2 GHz GHz Supply Current (Idd) 400 ma

Features. Gain: 15.5 db. = +25 C, Vdd = 5V

GaAs, phemt, MMIC, Power Amplifier, HMC1126. Data Sheet FEATURES FUNCTIONAL BLOCK DIAGRAM APPLICATIONS GENERAL DESCRIPTION

MMA GHz, 0.1W Gain Block Data Sheet

TGA2509. Wideband 1W HPA with AGC

DC-20 GHz Distributed Power Amplifier

MMA R GHz, 0.1W Gain Block Data Sheet October, 2012

Electrical Characteristics (Ambient Temperature T = 25 o C) Units GHz db db db db db dbm dbm VDC VDC ma

Parameter Min Typ Max Units Frequency Range

Ka-Band 2W Power Amplifier

it to 18 GHz, 2-W Amplifier

MMA GHz, 0.1W Gain Block

Parameter Min Typ Max Units Frequency Range

GaAs phemt MMIC Low Noise Amplifier, 0.3 GHz to 20 GHz HMC1049

CHA2098b RoHS COMPLIANT

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Features. = +25 C, Vdd = +10V, Idd = 350mA

Features. = +25 C, Vdd = +5V, Idd = 400mA [1]

GHz GaAs MMIC Power Amplifier

CMD GHz Active Frequency Doubler. Features. Functional Block Diagram. Description

TGA Watt Ka-Band HPA. Key Features. Measured Performance Bias conditions: Vd = 6 V, Idq = 3200 ma, Vg = -0.7 V Typical

Transcription:

ASL 1 8. 1 GHz 1 Watt Power Amplifier Features Frequency Range : 8. 1GHz. dbm Psat 14 db Power gain 27% PAE High IP3 Input Return Loss > 1 db Output Return Loss > 9 db Dual bias operation DC decoupled input and output. µm InGaAs phemt Technology Chip dimension:.2 x. x.1 mm Vg1 RFIN Vg1 Functional Diagram Vd1 Vg2 Vd1 Vg2 Vd2 RFOUT Vd2 Typical Applications RADAR Military & space LMDS, VSAT Description The ASL1 is a X-band Power amplifier with.dbm saturated output power. The PA uses 2 stages of amplification and operates in 8. 1 GHz frequency range. The PA features 14dB of gain with input and output return losses of 1 db and 9 db respectively. The PA has a high IP3 of 47dBm and 27% PAE. This feature enables it to be used in the applications requiring efficiency along with linearity. The chip operates with dual bias supply voltage.the die is fabricated using a reliable.µm InGaAs phemt technology. The Circuit grounds are provided through vias to the backside metallization. Absolute Maximum Ratings (1) Parameter Absolute Maximum Units Drain bias voltage (Vd) +1 volts Drain current (Id) A RF input power (RFin at Vd=9V) 33 dbm Operating temperature to +8 o C Storage Temperature -6 to +1 o C 1. Operation beyond these limits may cause permanent damage to the component Fax: +6 636 Page 1 of 11

ASL 1 Electrical Specifications (1) @ TA = o C, Vd1 = Vd2 = 8V, Vg1 = Vg2 = -1.1V Zo = Parameter Typ. Units Frequency Range 8. 1 GHz Gain 14 db Gain Flatness +/-. db Output Power (P1 db).4 dbm Input Return Loss 1 db Output Return Loss 9 db Saturated output power (Psat). dbm Output Third Order Intercept (IP3) 47 dbm Power Added Efficiency (PAE) 27% -- Supply Current(Idq) 2.9 A Supply Current(Idsat 2 ) 4.3 A Note: 1. Electrical specifications as measured in test fixture. 2. Idsat is the drain current corresponding to saturated output power. Fax: +6 636 Page 2 of 11

ASL 1 Test fixture data V d1 = V d2 = V d, V g1 = V g2 = -1.1V, Total Current (Idq) =2.9A, T A = o C, Continuous DC Mode Output Power P1dB & Psat (dbm) P1dB Psat 8. 8.7 8.9 9.1 9.3 9. 9.7 9.9 1.1 1.3 1. Output power @ Vd = 8V Fax: +6 636 Page 3 of 11

ASL 1 Test fixture data V d1 = V d2 = V d, V g1 = V g2 = -1.1V, Total Current (Idq) =2.9A, T A = o C, Continuous DC Mode Output Power P1dB & Psat (dbm) P1dB Psat 8. 8.7 8.9 9.1 9.3 9. 9.7 9.9 1.1 1.3 1. Output power @ Vd = 9V Fax: +6 636 Page 4 of 11

ASL 1 Test fixture data V d1=v d2=v d, V g1=v g2=-1.1v, Total Current (Idq=2.9A, Idsat=4.3A); T A= o C, DC Pulsed Mode Output Power P1dB & Psat (dbm) P1dB Psat 8. 8.7 8.9 9.1 9.3 9. 9.7 9.9 1.1 1.3 1. Output power at Vd = 8V; Gate Pulsed @ 1% Duty Cycle Output Power Psat P1dB & Psat (dbm) P1dB 8. 8.7 8.9 9.1 9.3 9. 9.7 9.9 1.1 1.3 1. Output power at Vd = 9V; Gate Pulsed @ 1% Duty Cycle Fax: +6 636 Page of 11

ASL 1 Test fixture data V d1 = V d2 = 8V, V g1 = V g2 = -1.1V, Total Current (Idq) =2.9A, T A = o C, Continuous DC Mode Return Losses S22 S11 & S22 (db) -1-1 -2 S11 - - 8. 8.7 8.9 9.1 9.3 9. 9.7 9.9 1.1 1.3 1. S12 (db) -2 - - -3 - -4-6 -6-7 Isolation 8. 8.7 8.9 9.1 9.3 9. 9.7 9.9 1.1 1.3 1. Fax: +6 636 Page 6 of 11

ASL 1 Output Power Plots (Continuous DC Mode): Output power (dbm) Output power (dbm) 4 3 2 1 1 4 3 2 1 1-1 DB(PT(PORT_2))[*,X] (L, dbm) Pgain, Pt and P.A.E DB(PGain(PORT_1,PORT_2))[*,X] (L) DB(PAE(PORT_1,PORT_2))[*,X] (R) -1-4 2 8 14 2 26 Input Power (dbm) V d1 = V d2 = 8V, V g1 = V g2 = -1.1V, Total Current (Idsat) =4A, Freq = 9.GHz, T A = o C Output power (dbm) Output power (dbm) -1 Pgain, Pt Pt and P.A.E -1 4 4-1 -4 2 8 14 2 26 4 DB(PT(PORT_2))[*,X] (L, dbm) p3 Input Power (dbm) 3 DB(PGain(PORT_1,PORT_2))[*,X] (L) 3 3 2 1 1 2 1 1-1 DB(PAE(PORT_1,PORT_2))[*,X] (R) -1-4 2 8 14 2 26 Input Power (dbm) V d1 = V d2 = 9V, V g1 = V g2 = -1.1V, Total Current (Idsat) =4A, Freq = 9.GHz, T A = o C Aelius Semiconductors Input Power Pte. (dbm) Ltd., Singapore Fax: +6 636 Page 7 of 11 p3 4 3 2 1 p1 1 p2-1 2 1 p1 1-1 4 3 2 1 1 % P.A.E % P.A.E -1-1 -1-4 2 8 14 2 26 p2 3 2 1 1 % P.A.E % P.A.E

ASL 1 Temperature data: V d1 = V d2 = 8V, V g1 = V g2 = -1.1V, Total Current (Idq) =2.9A, T A = o C, Continuous DC Mode S21 (db) 24 22 2 18 16 14 12 1 8 6 4 2 - C Gain Over Temperature C 8. 8.7 8.9 9.1 9.3 9. 9.7 9.9 1.1 1.3 1. 7 C P1dB Over Temperature P1dB (dbm) C 7 C - C 8. 8.7 8.9 9.1 9.3 9. 9.7 9.9 1.1 1.3 1. Fax: +6 636 Page 8 of 11

ASL 1 Temperature data: V d1 = V d2 = 8V, V g1 = V g2 = -1.1V, Total Current (Idq) =2.9A, T A = o C, Continuous DC Mode Psat Over Temperature C - C Psat (dbm) 7 C 8. 8.7 8.9 9.1 9.3 9. 9.7 9.9 1.1 1.3 1. Fax: +6 636 Page 9 of 11

ASL 1 Bond Pad Locations 2 3 4 6 1 7 11 1 9 8 Units: millimeters (inches) Note: 1. All RF and DC bond pads are 1µm x 1µm 2. Pad no. 1 : RF IN 3. Pad no. 3,11 : 1st stage gate voltage(vg1) 4. Pad no. 7 : RF Output. Pad no. 4,1 : 1 st stage drain voltage(vd1) 6. Pad no.,9 : 2 nd stage gate voltage(vg2) 7. Pad no. 6,8 : 2 nd stage drain voltage (Vd2) 8. All the dimensions shown above are measured taking bottom left corner as reference. Fax: +6 636 Page 1 of 11

ASL 1 Recommended Assembly Diagram Vg = -1.1V Vd = 8V 1uF 1uF.1uF.1uF.1uF.1uF 1pF 1pF 1pF 47pF Open Stub ohm line 1 mil Allumina ASTRA 21111 ohm line 1 mil Allumina 1pF 1pF 1pF 47pF.1uF.1uF.1uF.1uF 1uF 1uF Vg = -1.1V Vd = 8V Note : 1. Open stub of 4mm length, 1mm width and.mm thickness to be placed at output immediate to the chip as shown above, so as to improve output power match. 2. Two 1 mil (.4mm) bond wires of minimum length should be used for RF input and output. 3. Two 1 mil (.4mm) bond wires of minimum length should be used from chip bond pad to 1pF capacitor. 4. Input and output ohm lines are on mil RT Duroid substrate.. 1pF (Single Layer),.1uF and 1uF bypass capacitors are used as shown above. 6. The RF input & output ports are DC decoupled on-chip. 7. Proper heat sink like Copper tungsten or copper molybdenum to be used for better reliability of chip. Die attach: For Epoxy attachment, use of a two-component conductive epoxy is recommended. An epoxy fillet should be visible around the total die periphery. If Eutectic attachment is preferred, use of fluxless AuSn (8/2) 1-2 mil thick preform solder is recommended. Use of AuGe preform should be strictly avoided. Wire bonding: For DC pad connections use either ball or wedge bonds. For best RF performance, use of 1-2µm length of wedge bonds is advised. Single Ball bonds of -µm though acceptable, may cause a deviation in RF performance. GaAs MMIC devices are susceptible to Electrostatic discharge. Proper precautions should be observed during handling, assembly & testing All information and Specifications are subject to change without prior notice Fax: +6 636 Page 11 of 11