A METHOD TO VISUALLY RATIONALISE SUPERIMPOSED PIGMENT MOTIFS

Similar documents
MODULE No. 34: Digital Photography and Enhancement

On the rocks: ships at Aboriginal rock-art sites. Author. Published. Journal Title. Copyright Statement. Downloaded from. Link to published version

Appendix 8.2 Information to be Read in Conjunction with Visualisations

Australian Dragon Boat Federation Corporate Style Guide. Australian Dragon Boat Federation Style Guide

GE 113 REMOTE SENSING. Topic 7. Image Enhancement

Robert Mark and Evelyn Billo

Digital Image Processing

Beacon Island Report / Notes

How to combine images in Photoshop

Colour correction for panoramic imaging

Image Extraction using Image Mining Technique

USE OF HISTOGRAM EQUALIZATION IN IMAGE PROCESSING FOR IMAGE ENHANCEMENT

Original colours of Van Gogh s paintings Research project REVIGO

Lineament Extraction using Landsat 8 (OLI) in Gedo, Somalia

CHARACTERISTICS OF REMOTELY SENSED IMAGERY. Spatial Resolution

High Resolution Multi-spectral Imagery

Design and Technology Subject Outline Stage 1 and Stage 2

Dynamic Figures of Mirarr Country: Chaloupka s four-phase theory and the question of variability within a rock art style

YEAR 7 & 8 THE ARTS. The Visual Arts

Objective Evaluation of Edge Blur and Ringing Artefacts: Application to JPEG and JPEG 2000 Image Codecs

Digital Design and Communication Teaching (DiDACT) University of Sheffield Department of Landscape. Adobe Photoshop CS4 INTRODUCTION WORKSHOPS

Spatial Modelling an Aboriginal Cave Painting : Easy with Modern Technology?

The upper rail is adjusted so that the gold ring is vertically in line with the axis of rotation as shown in the image below.

VERTICAL AERIAL PHOTOGRAPHY

2010 Visual Communication and Design GA 3: Written examination

Interactive comment on PRACTISE Photo Rectification And ClassificaTIon SoftwarE (V.2.0) by S. Härer et al.

Rendering a perspective drawing using Adobe Photoshop

Year 6 Visual Arts Unit 2016 Perspective Art Term: Week:

Years 7 and 8 standard elaborations Australian Curriculum: Visual Arts

Bemis Visual Identity Standards. Key Guidelines for External Users

HISTOGRAMS. These notes are a basic introduction to using histograms to guide image capture and image processing.

CanImage. (Landsat 7 Orthoimages at the 1: Scale) Standards and Specifications Edition 1.0

PAINTED ABORIGINAL ROCK SHELTER ON MOUNT PORCUPINE, NE. VICTORIA, AUSTRALIA

Photoshop 01. Introduction to Computer Graphics UIC / AA/ AD / AD 205 / F05/ Sauter.../documents/photoshop_01.pdf

Diachronic variation in the art of the Sydney

Preparing Images For Print

Scientific Working Group on Digital Evidence

BSc in Music, Media & Performance Technology

Exercise 4-1 Image Exploration

Advanced Diploma in. Photoshop. Summary Notes

Digital Image Processing. Lecture # 6 Corner Detection & Color Processing

Basic Digital Image Processing. The Structure of Digital Images. An Overview of Image Processing. Image Restoration: Line Drop-outs

VCE Art Study Design. Online Implementation Sessions. Tuesday 18 October, 2016 Wednesday 26 October, 2016

The techniques with ERDAS IMAGINE include:

Introduction. Lighting

Application of GIS to Fast Track Planning and Monitoring of Development Agenda

Published in: The Oxford Handbook of the Archaeology and Anthropology of Rock Art. Link to publication in the UWA Research Repository

ADOBE PHOTOSHOP CS 3 QUICK REFERENCE

Vassilis S. Vassiliadis, Ph.D., Senior Lecturer,

Adobe Photoshop CS 6 Level II. Topics: Selection Tools Layers Photo Correction

REMOTE SENSING OF RIVERINE WATER BODIES

Artwork Preparation Guide

Additive Color Synthesis

Raster (Bitmap) Graphic File Formats & Standards

How to reproduce an oil painting with compelling and realistic printed colours (Part 2)

Digital database creation of historical Remote Sensing Satellite data from Film Archives A case study

REPORT ON THE QUANTITATIVE ANALYSIS OF LEOPARD (Panthera pardus) TRACKS. Summary of the original paper. H. Rüther, T. Stuart* and C.T.

Camera Requirements For Precision Agriculture

Essential Skills - 3 Key Blend Modes. Ken Fisher

The detection of petroglyphs through digital image processing. The particular case of the stone inside the chapel of Saint Bartolomé (Lugo-Spain)

Image Processing for Mechatronics Engineering For senior undergraduate students Academic Year 2017/2018, Winter Semester

The Archaeology of Rock Art in Western Arnhem Land, Australia

Remote Sensing in an

LAYERS, THE HEART OF PHOTOSHOP AND ELEMENTS

Practical Scanner Tests Based on OECF and SFR Measurements

A PICTOGRAPH ROCK SHELTER IN GUADALUPE CANYON, BAJA CALIFORNIA, MEXICO

Preparing Photos for Laser Engraving

SR&ED International R&D Tax Credit Strategies

SHPO Position on The Roles of Archaeological Testing

[GEOMETRIC CORRECTION, ORTHORECTIFICATION AND MOSAICKING]

Saturation And Value Modulation (SVM): A New Method For Integrating Color And Grayscale Imagery

Stitching distortion-free mosaic images for QWA using PTGui. Georg von Arx

Digitisation. A panacea for Increased Access to Historical Information at the National Archives of Zambia.

Image Processing by Bilateral Filtering Method

Visual Arts. Art criticism and art history 2001 HIGHER SCHOOL CERTIFICATE EXAMINATION. Total marks 50. General Instructions Reading time 5 minutes

Creating a Panorama Photograph Using Photoshop Elements

Determining MTF with a Slant Edge Target ABSTRACT AND INTRODUCTION

Using Adobe Photoshop

An Introduction to Layers, Masks and Channels in Photoshop

ABORIGINAL AND TORRES STRAIT ISLANDER ART ECONOMIES PROJECT

Colour Theory Basics. Your guide to understanding colour in our industry

Image Processing Tutorial Basic Concepts

Prep to Year 2 standard elaborations Australian Curriculum: Visual Arts

PICTURE AS PAINT. Most magazine articles written. Creating a seamless, tileable texture in GIMP KNOW-HOW. Brightness. From Photo to Tile

IMAGE ENHANCEMENT - POINT PROCESSING

GE 113 REMOTE SENSING

Philpot & Philipson: Remote Sensing Fundamentals Color 6.1 W.D. Philpot, Cornell University, Fall 2012 W B = W (R + G) R = W (G + B)

Maloney, Cath. LAARC Version 05 Date 08/05/2013

Students will be able to create movement through the use of line or implied line and repetition.

PSSA Calibration and Colour Management

Digital Photography Standards

Marmot & Little Sandy Dam Removal

A Method to Build Cloud Free Images from CBERS-4 AWFI Sensor Using Median Filtering

Archaeo-Geophysical Associates, LLC

When you first open the dialog box you only see two sliders.

SAMPLE ASSESSMENT TASKS MATERIALS DESIGN AND TECHNOLOGY ATAR YEAR 12

Camera Requirements For Precision Agriculture

Color Science. What light is. Measuring light. CS 4620 Lecture 15. Salient property is the spectral power distribution (SPD)

Computer Art Semester Exam

T I P S F O R I M P R O V I N G I M A G E Q U A L I T Y O N O Z O F O O T A G E

Transcription:

Rock Art Research 2010 - Volume 27, Number 2, pp. 000-000. R. G. Gunn, C. L. Ogleby, D. Lee and R. L. Whear KEYWORDS: Superimposition D-stretch Graphic layer Arnhem Land Australia A METHOD TO VISUALLY RATIONALISE SUPERIMPOSED PIGMENT MOTIFS R. G. Gunn, C. L. Ogleby, D. Lee and R. L. Whear Abstract. Through combining the functions of three different digital image programs, a method to document and interpret superimposed pigment motifs is described. Introduction The study of superimposed motifs is one of the principal methods of developing sequences in rock art (Leroi-Gourhan 1967; McCarthy 1974; Keyser 2001). Although widely used, it is rarely visually documented other than by a single photograph or drawing (e.g. Trezise 1971; Morwood 1976; Chaloupka 1977; but note Clegg 1980; Chippindale and Taçon 1993). These graphics are generally inadequate to illustrate or describe the complexities that can occur, particularly on panels with many motifs in multiple superimposed layers (cf. Clegg 1983: 95 99); to date, very few such sites recorded in detail have been published. In Australia, notable exceptions are those of McCarthy (1976) and Coutts and Lorblanchet (1982). This paper proposes a method to resolve some of these problems. Initially, the methods are described and then an example is used to illustrate the process. Methods Following a close visual inspection of the art panel and making notes on what superimposition can be observed, it is essential to capture an adequate photograph of the art panel. In many cases, large panels cannot be photographed in a single image due to either a lack of distance between the ceiling panel and the floor, or lack of any vantage point to photograph the wall. This problem can be overcome by either taking overlapping photographs at right angles to the panel and stitching the individual photographs into a single composite image (photomosaic) using software such as PTGUI (Panorama Tools Graphic User Interface), Hugin, or recent versions of Adobe Photoshop (version 7 or above); or using a fisheye lens and an appropriate program to remove the distortion (such as with the Fisheye-Nikkor 10mm and the Nikon Capture software; Figs 1 and 2). Image stitching is, mathematically, a complex task (Szeliski 2004). It is also a very popular and common Figure 1. Nikon Fisheye photograph and software corrected image (Nawarla Gabarnmung panel D). Figure 2. Nikon Fisheye photograph after software correction (Nawarla Gabarnmung panel D).

Rock Art Research 2009 - Volume 26, Number 2, pp. 000-000. R. G. Gunn, C. L. Ogleby, D. Lee and R. L. Whear Figure 3. Stitched panorama from eight 18 mm wide-angle photographs (Nawarla Gabarnmung panel D). method for photographers to create large, photomosaic images from multiple photographs, which means that for most users the algorithm is irrelevant as the software is readily available. Most image stitching software currently uses a feature-based approach, where the software searches through the matrix of pixels in a digital image seeking patterns or trends. These are then located in the other images being joined, and geometric and radiometric transformations applied to the images. They can then be joined seamlessly into a much larger picture (Fig. 3). The resultant stitched image is then imported into a graphics program that utilises layers, such as Adobe Photoshop. This enables the isolation of motifs from different layers of the superimposition onto their own layer sheet, either through drawing (outlining or detailed tracing), or selective capture using the magic wand feature. This process is relatively easy with the upper and most recent layers, where all or most of the motif is readily visible. In the case of lower layers, the motifs can be enhanced using image processing software optimised for pictograms, such as D-Stretch, which highlights colours selectively depending on the enhancing combination (or colour space) used (Alley 1996; Harman 2008). The process undertaken by D-Stretch is an image processing technique frequently used with multi-spectral satellite imagery; the de-correlation of colour bands via transformation into alternative colour spaces, and then performing a contrast stretch or enhancement to highlight the differences (Alley 1996; Mark and Billo 2002; Gillespie et al. 2006). The process is very similar to a Principal Component Analysis that can be applied to many data sets where there may be a relationship between one variable and another, including bands of light intensity values found in digital images. This image transformation can be achieved with advanced image processing and analysis software, but the image manipulations in D-Stretch have been optimised by a rock art researcher (Harman 2008) as being the most useful for analysing pictograms. While not replacing the more manual methods previously Figure 4. Nawarla Gabarnmung panel A3. used (Ogleby 1995; David et al. 2001; McNiven et al. 2002), as the D-Stretch colour spaces are standardised, the resultant images can be readily repeated by other researchers. Also, while only rarely revealing invisible motifs, D-Stretch makes the visualising of very faint images much clearer and in a number of cases where only traces of pigment can be seen on the original photograph, D-Stretch will permit the form of the motif to be defined. D-Stretch operates as a plug-in for ImageJ (Abramoff et al. 2004), a public domain, Java-based, image processing and analysis program freely available through National Institutes of Health (U.S.A.) [http://rsb.info.nih.gov/ij/index.html, accessed January 2010]. Using software like Photoshop that incorporates multiple layers within a single file, if the superimpositions are simply those of one colour layer over another, each colour can be given its own layer sheet and when the visual analysis has been completed, the layers can be printed separately, motifs numbered and described, and the layers flattened to give a drawing of the mosaic. If the superimpositions are complex with different colours or colour combinations represented in each layer, then, starting from the upper layer, each layer of motifs is given a layer sheet and the above process repeated. The ability to keep the interpreted layers of superimposition separate also gives an opportunity for greater analysis of regional and chronological styles or features. To produce the final interpretation of the underlying layers, where possible the disparate fragments of each motif (such as legs and body) are joined and filled with a less intense colour of the pigment so that the interpretation can be visually appreciated. In many instances, however, the full interpretation of the underlying motifs will not be possible due to their high

Rock Art Research 2010 - Volume 27, Number 2, pp. 000-000. R. G. Gunn, C. L. Ogleby, D. Lee and R. L. Whear Figure 5. Photomosaic of the A3 panel with D-Stretch enhancements. A: photomosaic. B: white enhancement. C: yellow enhancement. D: red enhancement. degree of fragmentation. Example The demonstration panel is from Nawarla Gabarnmung, an unrestricted Jawoyn site from the central Arnhem Land plateau. The panel is 4 3.5 m in size on a horizontal ceiling, 2 m above the ground (Fig. 4). It is dominated by several layers of different white paintings (Fig. 5A). Underlying the white layers are less distinct layers of yellow and red paintings. Apart from one large red figure (which overlays a yellow figure) the sequence appears to be coherent but the results have yet to be checked against the original. A photomosaic of the panel was produced in PTGUI from five 18 mm wide-angle photographs acquired with a Nikon D90 in RAW/jpg format. This process can include corrections for lens distortions (usually generalised from the camera information

Rock Art Research 2009 - Volume 26, Number 2, pp. 000-000. R. G. Gunn, C. L. Ogleby, D. Lee and R. L. Whear Figure 6. Traced interpretations of the A3 pigment sequence. A: full composite B: white C: yellow D: red. in the EXIF header of a JPG image), but the image is effectively scale free. This mosaic was then opened in Photoshop and saved in the software s native format and the first layer added. The upper white figures were then drawn in a dark blue although, as some of these white paintings had fine red linear infill, this was delineated in red on this layer. The successive white layers (Fig. 5B) were distinguished by progressively lighter tones of blue (Fig. 6B). (Blue is used for white as white does not reproduce on white paper, and blue motifs are particularly rare in Australian rock art). The interpretation of the white motifs was checked against a D-Stretch lab image. This showed that the white of the central and most recent emu motif was a different pigment from the earlier white motifs; it was slightly pink (Fig. 5B). Beneath the white, there was a layer of yellow paintings. As the fragments were not readily apparent, the mosaic was run through D-Stretch, using the ybk colour-space transformation and enhancement to emphasise the yellow (Figs 5C and 6C). As this is the same size as the original mosaic, the more extensive yellow pigment areas were traced from the D-Stretch image onto a Photoshop layer, and then the layer copied back

Rock Art Research 2010 - Volume 27, Number 2, pp. 000-000. R. G. Gunn, C. L. Ogleby, D. Lee and R. L. Whear Conclusion The combined use of three different graphics programs and image processing approaches has been shown to provide a useful method for the rationalisation of complex superimposition. The technique can also be used to isolate any single motif or any particular group of motifs (such as all beeswax pellets on a panel to look at both overall and temporal distributions). Despite these more recent techniques and the advances in digital imaging, it is acknowledged that they are not the best or most suitable in all cases as, relying on photographs, they have the problems of all photographic records (note Clegg 1991). Consequently, we continue to concur with Chippindale and Taçon (1993) in quoting Begouën and Clottes (1987: 180) that no cave with wall art can ever be considered as entirely known and with Figure 7. Harris matrix of the A3 panel of the motif sequence. Rosenfeld (1977: 10) that no record, however carefully or imaginatively made can guarantee to fulfil future requirements. Finally, we onto the master drawing as a separate yellow layer. At completion of the tracing of the yellow pigment areas, reiterate that any recording should not be confined by turning off the white and background layers, the to a single technique, but must utilise at least three form of the original yellow motifs became clearer and, different techniques, as all techniques uniquely capture distinct facets of our perception of the artwork where possible, the missing parts of the motif were completed and filled with a lighter yellow. (Gunn 1995). A similar procedure was adopted for the red paintings (Figs 5D and 6D). Acknowledgments When completed, by turning off unwanted layers, each layer could be saved individually. This is The recording of the Nawarla Gabarnmung shelter was undertaken with the permission of the Jawoyn Association, Katherine, and funded by the Museums and Art Galleries particularly useful when numbering the motifs for of the Northern Territory through its George Chaloupka classification as it reduces the number and complexity Fellowship. We also thank Chris Morgan for flying us of motifs on any one sheet. to the site and Leigh Douglas for her support in the field By turning on all traced layers (white, yellow and and in making comments on the draft paper. Finally we red) and turning off the background photomosaic, the acknowledge the positive comments and additional references by the RAR referees Liam Brady, Jannie Loubser, Ian image was flattened and a composite image achieved (Fig. 6a). The original Photoshop format file, with all McNiven and Bob Mark. of the drawn layers and background mosaic, can be R. G. Gunn saved for reference and checking by other researchers. 329 Mt Dryden Road From these layers it is a small step to then produce a Lake Lonsdale, VIC 3381 Harris matrix of the motif succession on the panel by Australia listing the sequence of any clear overlaps (Fig. 7; cf. gunnb@activ8.net.au Loubser 1997) in the hope of, with further sequences from other panels and sites, achieving a broader site C. L. Ogleby and regional pattern of any changes within the art Department of Geomatics University of Melbourne corpus (cf. McCarthy 1974). Parkville, VIC 3052 It is noted that with very large and complex panels, Australia the time required to undertake this process can be clogleby@unimelb.edu.au considerable (2 3 days per panel). While this level of detail may not be required in many instances, for more D. Lee detailed recording it has proved an extremely valuable tool. Also, in many instances, the identification Western Rock Art Research P.O. Box 1111 Bishop, CA, 93515 of superimposition sequences is not as clear as was U.S.A. presented in this example and may require the use of granitree@yahoo.com additional techniques such as microscopic examination or reflectance transformation imaging (RTI) to R. L. Whear resolve the sequence (cf. http://www.c-h-i.org/). Jawoyn Association

P.O. Box 371 Katherine, NT 0851 Australia ray.whear@jawoyn.org Final MS received 31 March 2010. References Rock Art Research 2009 - Volume 26, Number 2, pp. 000-000. R. G. Gunn, C. L. Ogleby, D. Lee and R. L. Whear Abramoff, M. D., P. J. Magelhaes and S. J. Ram 2004. Image processing with ImageJ. Biophotonics International 11(7): 36 42. Alley, R. E. 1996. Algorithm theoretical basis document for decorrelation stretch version 2.2. On line http://trs-new. jpl.nasa.gov/dspace/bitstream/2014/18630/1/99-2010.pdf, accessed January 2010. Begouën, R. and J. Clottes 1987. Les Trio-Freres after Breuil. Antiquity 60: 180 187. Chaloupka, G. 1977. Aspects of the chronology and schematisation of two prehistoric sites on the Arnhem Land plateau. In P. J. Ucko (ed.), Form in indigenous art, pp. 243 259. Australian Institute of Aboriginal Studies, Canberra. Chippindale, C. and P. S. C. Taçon 1993. Two old painted panels from Kakadu: variation and sequencein Arnhem Land rock art. In J. Steinberg, A. Watchman, P. Faulstich and P. S. C. Taçon (eds), Time and space: dating and spatial considerations in rock-art research, pp. 32 56. Occasional AURA Publication 8, Australian Rock Art Research Association, Melbourne. Clegg, J. 1980. Rock art how to appreciate it. In C. Haigh and W. Goldstein (eds), The Aborigines of New South Wales, pp. 115 122. National Parks and Wildlife Service, Sydney. Clegg, J. 1983. Recording prehistoric art. In G. Connah (ed.), Australian field archaeology: a guide to techniques, pp. 87 108. Australian Institute of Aboriginal Studies, Canberra. Clegg, J. 1991. Cleggnotes on recording prehistoric pictures. In C. Pearson and B. K. Swartz (eds), Rock art and posterity: conserving, managing and recording rock art, pp. 113 114. Occasional AURA Publication 4, Australian Rock Art Research Association, Melbourne. Coutts, P. J. F. and M. Lorblanchet 1982. Aborigines and rock art in the Grampians. Records of the Victoria Archaeological Survey 12, Ministry for Conservation, Melbourne. David, B., J. Brayer, I. J. McNiven and A. Watchman 2001. Why digital enhancement of rock paintings works: rescaling and saturating colours. Antiquity 75: 781 792. Gillespie, A. R., A. B. Kahle and R. E. Walker 2006. Color enhancement of highly correlated images: I Decorrelation and HSI contrast stretches. Remote Sensing of Environment 20(3): 209 235. Gunn, R. G. 1995. Guidelines for recording Australian Aboriginal rock imagery. In G. K. Ward and L. A. Ward (eds), Management of rock imagery, pp. 124 127. Occasional AURA Publication 9, Australian Rock Art Research Association, Melbourne. Harman, J. 2008. Using decorrelation stretch to enhance rock art images. Online paper at (http://www.dstretch. com/algorithmdescription.html). Updated paper originally presented at American Rock Art Research Association Annual Meeting 2005, accessed January 2010. Keyser, J. D. 2001. Relative dating methods. In D. S. Whitley (ed.), Handbook of rock art research, pp. 116 138. Altamira Press, Walnut Creek. Leroi-Gourhan, A. 1967. Treasures of prehistoric art. Abrams, New York. Loubser, J. H. N. 1997. The use of Harris diagrams in recording, conservation and interpreting rock paintings. International Newsletter on Rock Art 18: 14 21. McCarthy, F. D. 1974. Space and superimpositions in Australian Aboriginal art. In A. K. Ghosh (ed.), Perspectives in palaeoanthropology, pp. 113 128. Firma K. L. Mukhopadhyay, Calcutta. McCarthy, F. D. 1976. Rock art of the Cobar pediplain in central western New South Wales. Australian Institute of Aboriginal Studies, Canberra. McNiven, I., B. David and L. Brady 2002. Torres Strait rock art: an enhanced perspective. Australian Aboriginal Studies 2002/2: 69 74. Mark, R., and E. Billo 2006. Computer-assisted documentation of rock art. Coalition (electronic newsletter at http:// www.rtphc.csic.es/pdf/nl11.pdf) 11: 10 14. Morwood, M. J. 1976. Three rock art sites in central Queensland. Occasional Papers of the Queensland University Anthropology Museum 6: 84 96. Ogleby, C. 1995. Digital technology in the documentation and management of rock art. In A. Thorn and J. Brunet (eds), Preservation of rock art, pp. 80 87. Occasional AURA Publication 9, Australian Rock Art Research Association, Melbourne. Rosenfeld, A. 1977. Recording rock art: a conflict of purpose? In C. Pearson (ed.), Conservation of rock art, pp. 9 14. ICCM, Perth. Szeliski, R. 2004. Image alignment and stitching: a tutorial http://research.microsoft.com/apps/pubs/default. aspx?id=70092, accessed January 2010. Trezise, P. 1971. Rock art of south-east Cape York. Australian Institute of Aboriginal Studies, Canberra. RAR 27-000