GaAs MMIC devices are susceptible to Electrostatic Discharge. Use proper ESD precautions when handling these items.

Similar documents
GaAs MMIC devices are susceptible to Electrostatic Discharge. Use proper ESD precautions when handling these items.

GaAs MMIC devices are susceptible to Electrostatic Discharge. Use proper ESD precautions when handling these items.

GaAs MMIC devices are susceptible to Electrostatic Discharge. Use proper ESD precautions when handling these items.

BROADBAND DISTRIBUTED AMPLIFIER

BROADBAND DISTRIBUTED AMPLIFIER

Parameter Frequency Typ Min (GHz)

Parameter Frequency Typ (GHz) See page 7 for minimum performance specs of AMM7602UC connectorized modules. Description Green Status

GaAs MMIC Double Balanced Mixer. Description Package Green Status

Low Power GaAs MMIC Double Balanced Mixer. Refer to our website for a list of definitions for terminology presented in this table.

CMD158C GHz Driver Amplifier. Features. Functional Block Diagram. Description. Electrical Performance - V dd = 5.0 V, T A = 25 o C, F = 11 GHz

HMC997LC4. Variable Gain Amplifier - SMT. VARIABLE GAIN AMPLIFIER GHz. Typical Applications. General Description. Functional Diagram

GaAs MMIC Non-Linear Transmission Line. Packag e. Refer to our website for a list of definitions for terminology presented in this table.

Features. = +25 C, Vdd1 = Vdd2 = +3.5V, Idd = 70 ma

Features. = +25 C, Vdd1 = Vdd2 = +3.5V, Idd = 45 ma

Features = +5V. = +25 C, Vdd 1. = Vdd 2

CMD187C GHz Driver Amplifier. Features. Functional Block Diagram. Description

1. Device Overview. 1.2 Electrical Summary. 1.3 Applications. 1.4 Functional Block Diagram. 1.5 Part Ordering Options 1 QFN

1-24 GHz Distributed Driver Amplifier

CMD283C GHz Ultra Low Noise Amplifier. Features. Functional Block Diagram. Description

2-20 GHz Driver Amplifier

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Description Package Green Status. Refer to our website for a list of definitions for terminology presented in this table.

Low LO Drive Surface Mount MMIC IQ Mixer. Refer to our website for a list of definitions for terminology presented in this table.

Features. = +25 C, Vdd= 8V, Idd= 75 ma*

Features. Gain: 14.5 db. Electrical Specifications [1] [2] = +25 C, Rbias = 825 Ohms for Vdd = 5V, Rbias = 5.76k Ohms for Vdd = 3V

CMD233C GHz Distributed Low Noise Amplifier. Features. Functional Block Diagram. Description

CMD132P GHz Low Noise Amplifier. Features. Functional Block Diagram. Description. Electrical Performance - V dd = 3.

6-18 GHz Low Phase Noise Amplifier

Features. = +25 C, Vdd1 = Vdd2 = +3.5V, Idd = 80 ma [2]

AMPLIFIER/DOUBLER/AMPLIFIER

Features. = +25 C, Vdd1, 2, 3 = 5V, Idd = 250 ma*

Features. = +25 C, Vdd = +4V, Idd = 90 ma [2]

Features. = +25 C, Vdd= +12V, Vgg2= +5V, Idd= 400 ma*

Features. = +25 C, Vdd 1, 2, 3 = +3V

CMD158P GHz Driver Amplifier. Features. Functional Block Diagram. Description. Electrical Performance - V dd = 5.

Features. Output Power for 1 db Compression (P1dB) dbm Saturated Output Power (Psat) dbm

CMD167P GHz Low Noise Amplifier. Features. Functional Block Diagram. Description. Electrical Performance - V dd = 3.0 V, T A = 25 o C, F=12 GHz

Features. Gain: 17 db. OIP3: 25 dbm. = +25 C, Vdd 1, 2 = +3V

CMD119P GHz Low Noise Amplifier. Features. Functional Block Diagram. Description. Electrical Performance - V dd = 3.6 V, T A = 25 o C, F=8GHz

Features = +5V. = +25 C, Vdd 1. = Vdd 2

Features. Parameter Min Typ. Max Min Typ. Max Min Typ Max Units Frequency Range GHz Gain

CMD157P GHz Low Noise Amplifier. Features. Functional Block Diagram. Description. Electrical Performance - V dd = 3.

Features. = +25 C, Vdd = +10 V, Idd = 350 ma

Features. = +25 C, Vdd = 5V

Gain Control Range db

MMA C3 6-22GHz, 0.1W Gain Block Data Sheet

Features. = +25 C, Vdd= 8V, Vgg2= 3V, Idd= 290 ma [1]

TGA2521-SM GHz Linear Driver Amplifier Key Features Measured Performance

SURFACE MOUNT PHEMT 2 WATT POWER AMPLIFIER,

CMD158P GHz Driver Amplifier. Features. Functional Block Diagram. Description. Electrical Performance - V dd = 5.

OBSOLETE HMC5846LS6 AMPLIFIERS - LINEAR & POWER - SMT. Electrical Specifications, T A. Features. Typical Applications. General Description

Features. = +25 C, Vdd = +5V, Idd = 400mA [1]

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Features. = +25 C, Vdd= 5V. Parameter Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Units. Frequency Range GHz

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

CMD170P GHz Driver Amplifier. Features. Functional Block Diagram. Description

TGA2521-SM GHz Linear Driver Amplifier. Key Features. Measured Performance

1.0 6 GHz Ultra Low Noise Amplifier

Features. = +25 C, Vdd = +7V, Idd = 1340 ma [1]

Features. = +25 C, Vdd = +15V, Vgg2 = +9.5V [1], Idq = 500 ma [2]

HMC618ALP3E AMPLIFIERS - LOW NOISE - SMT. GaAs SMT phemt LOW NOISE AMPLIFIER, GHz. Typical Applications. Features. Functional Diagram

HMC1040LP3CE. Amplifiers - Low Noise - smt. GaAs phemt MMIC LOW NOISE AMPLIFIER, GHz. Features. Typical Applications. General Description

Features. Parameter Min Typ. Max Min Typ. Max Min Typ Max Units Frequency Range GHz Gain

4-8 GHz Low Noise Amplifier

NLB-310. Cascadable Broadband GaAs MMIC Amplifier DC to 10GHz

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

HMC659LC5 LINEAR & POWER AMPLIFIERS - SMT. GaAs PHEMT MMIC POWER AMPLIFIER, DC - 15 GHz. Features. Typical Applications. General Description

Parameter Min. Typ. Max. Units Frequency Range GHz

17-24 GHz Linear Driver Amplifier. S11 and S22 (db) -15

Features. = +25 C, Vdd= 5V, Vgg2= Open, Idd= 60 ma*

MMA GHz 4W MMIC Power Amplifier Data Sheet

HMC694LP4 / 694LP4E. Variable gain amplifiers - ANALOG - smt. GaAs MMIC ANALOG VARIABLE GAIN AMPLIFIER, 6-17 GHz. Typical Applications

Features. = +25 C, Vdc = +7V

CMD275P4 DC-26.5 GHz Low Phase Noise Amplifier

Features. = +25 C, +Vdc = +6V, -Vdc = -5V

5 6.4 GHz 2 Watt Power Amplifier

HMC5805ALS6 AMPLIFIERS - LINEAR & POWER - SMT. Typical Applications. Features. Functional Diagram

TGA2602-SM MHz High IP3 Dual phemt. Key Features and Performance. Measured Performance. Primary Applications. Product Description

TGA2521-SM GHz Linear Driver Amplifier. Key Features. Measured Performance

MMA GHz, 0.1W Gain Block Data Sheet

GHz Low Noise Amplifier

16-32GHz Low Noise Amplifier. GaAs Monolithic Microwave IC in SMD package

GaAs, phemt, MMIC, Low Noise Amplifier, 0.3 GHz to 20 GHz HMC1049LP5E

Data Sheet. AMMP GHz High Gain Amplifier in SMT Package. Description. Features. Applications. Package Diagram. Functional Block Diagram

Features. = +25 C, Vs = +5V, Vpd = +5V, Vbias=+5V

Features. = +25 C, Vcc =5V, Vpd = 5V. Parameter Min. Typ. Max. Min. Typ. Max. Min. Typ. Max Units

TGA2601-SM MHz High IP3 Dual phemt. Key Features and Performance. Measured Performance. Primary Applications. Product Description

GaAs phemt MMIC Low Noise Amplifier, 0.3 GHz to 20 GHz HMC1049

Features. = +25 C, VDD = +5 V, 0 dbm Drive Level [1]

Features. Parameter Frequency Min. Typ. Max. Units. Return Loss Off State DC - 20 GHz 19 db

Features. The HMC-C072 is ideal for: Microwave Radio Military & Space Test Instrumentation VSAT. = +25 C, Vdc = +7V

HMC486LP5 / 486LP5E LINEAR & POWER AMPLIFIERS - SMT. SURFACE MOUNT PHEMT 2 WATT POWER AMPLIFIER, 7-9 GHz. Typical Applications.

Features. = +25 C, Vdd = 7V, Vctl = 1V, Idd = 165mA*

CHX2090-QDG RoHS COMPLIANT

Features. = +25 C, Vdd = 5V, Vgg1 = Vgg2 = Open

2 3 ACG1 ACG2 RFIN. Parameter Min Typ Max Units Frequency Range

CMD GHz Low Noise Amplifier

Features. = +25 C, Vdd = 5V, Idd = 85 ma*

8 11 GHz 1 Watt Power Amplifier

Transcription:

The is a broadband, power efficient GaAs PHEMT distributed amplifier in a 4mm QFN surface mount package. The is designed to provide optimal LO drive for T3 mixers. Typically, ADM-26-2931SM provides. db gain and +16 dbm saturated output power while requiring only 7 ma of current.. T3 linearity is enhanced by ADM-26-931 s extended high frequency gain and lower harmonic generation when compared to other distributed amplifiers in our catalog. The amplifier can be biased with internal circuitry, or with an external bias network for lower voltage and single supply operation. Additional applications include amplification of clock signals and general purpose driver requirements in electronic warfare and test and measurement. Features Optimized for use as a T3 LO buffer amplifier Suitable for driving L, M, and I diode mixers Optional Positive Only Bias or Internal Bias Operation +16 dbm typical saturated output power Broadband Ω Matching Unconditionally Stable Electrical Specifications - Specifications measured in a -Ohm system. Parameter Frequency Min Typ Max (GHz) Input for Saturated Output (dbm) + + +12 Output 1 db Compression (dbm) +14 Saturated Output Power with negative bias (dbm) +16 Small Signal Gain with negative bias (db) DC to 26.. Input Return Loss (db) 13 Output Return Loss (db) 16 Noise Figure (db). Third Order Output Intercept Point (dbm) 2 Bias Requirements, Internal (ma) Vd: +. to +12. / Vg:-.2 Volts 8 Bias Requirements, External (ma) Vd: +. to +7. / Vg: -.2 Volts 7 Vd: +. to +7. / Vg: Volts NOTE: This product is obsolete. Please see this letter for more information. Part Number Options Model Number 1 (OBS) Description Surface Mount 4mm QFN EVAL4-ADM-931 (OBS) Connectorized Evaluation Fixture 1 Note: For port locations and I/O designations, refer to the drawings on pages 2, 8,11, and 12 of this document. GaAs MMIC devices are susceptible to Electrostatic Discharge. Use proper ESD precautions when handling these items.

Page 2 Functional Diagram and Application Circuit External Positive Bias (Pin 16 Output with Bias Tee) Ohms.1 uf 24 23 22 21 19 Vd 1 18 2 pf 17 3 16 RF Out RF In 4 Bias Tee pf 14 6 13 7 8 9 11 12.1 uf Ohms Vg Biasing and Operation RF In / RF Out Input and output signals should be connected by ohm microstrip or coplanar traces to well matched ohm sources and loads. DC blocking capacitors or bias tees are required. Vg Negative gate voltage is optional to improve lifetime of the amplifier and reduce current consumption. Harmonic generation is also significantly affected by the negative gate voltage level. The amplifier is designed for optimal performance when the negative gate voltage is tuned such that the positive bias supply is 7 ma. It may be supplied through pin 11 or through the RF input on pin 4. Vd- Bias supply supplied to Vd through pin 16 should be voltage limited below 9 V and current limited below ma at all times. The operational bias voltage should be between V and 7 V for full gain, efficiency, and linearity. In general gain, linearity, and output power will increase marginally with increased voltage from to 7 V. Optional Bias Circuitry The resistor and capacitor on the Vd and Vg lines (pads 21, 23, and 11) prevent low frequency oscillation. These components are not required in bias circuits with sufficient low frequency loss. Designers should experiment to determine if they are necessary. DC/RF Ground The ground paddle of the QFN should be connected to a low noise RF and DC ground with very low electrical and thermal resistance for high frequency operation and thermal heat sinking.

Page 3 Typical Performance Positive Only (+3 to +7V) External Bias (Pin 16 Output), Grounded Gate (Pin 11) Small Signal Gain (db) 2 Saturated Output Power (dbm) - - +7 Volt/- Volt Bias +3 Volt/- Volt Bias 2 3 - +7 Volt/- Volt Bias +3 Volt/- Volt Bias 2 3 - - -3-4 Reverse Isolation (db) +7 Volt/- Volt Bias +3 Volt/- Volt Bias - - - Small Signal Return Loss (db) Input, +7 Volt/- Volt Bias Input, +3 Volt/- Volt Bias Output, +7 Volt/- Volt Bias Output, +3 Volt/- Volt Bias - - -6 2 3-2 2 3 3 Input IP3 (dbm) 3 Output IP3 (dbm) 2 2 +7 Volt/- Volt Bias +3 Volt/- Volt Bias 2 3 +7 Volt/- Volt Bias +3 Volt/- Volt Bias 2 3

Page 4 Typical Performance Positive Only (+3 to +7V) External Bias (Pin 16 Output), Grounded Gate (Pin 11), continued 4 3 Even Harmonic Generation (dbm) + dbm Input +7 Volt/- Volt Bias, Second Harmonic +3 Volt/- Volt Bias, Second Harmonic +7 Volt/- Volt Bias, Fourth Harmonic +3 Volt/- Volt Bias, Fourth Harmonic 4 3 Odd Harmonic Generation (dbm) + dbm Input +7 Volt/- Volt Bias, Third Harmonic +3 Volt/- Volt Bias, Third Harmonic +7 Volt/- Volt Bias, Fifth Harmonic +3 Volt/- Volt Bias, Fifth Harmonic - - - - -3-3 -4 2 3-4 2 3 Output Output Output P1dB (dbm) 12 Group Delay (ps) 7 - - +7 Volt/- Volt Bias +3 Volt/- Volt Bias 2 3 2 +7 Volt/- Volt Bias +3 Volt/- Volt Bias 2 3 Noise Figure(dB) +7 Volt/- Volt Bias +3 Volt/- Volt Bias 12 Current Consumption (ma) with GHz Input Vg= -V, Pin= - dbm Vg= -V, Pin= + dbm 7 2 3 2 2 3 4 6 7 8 Vd (V)

Page Typical Performance +3 to +7V External Bias (Pin 16 Output), -.2 Negative Bias (Pin11) Small Signal Gain (db) Small Signal Gain (db) over Temperature - - +7 Volt/-.2 Volt Bias +3 Volt/-.2 Volt Bias 2 3 - - - C, +7 Volt/-.2 Volt Bias +2 C, +7 Volt/-.2 Volt Bias +8 C, +7 Volt/-.2 Volt Bias 2 3 2 Saturated Output Power (dbm) Reverse Isolation (db) - +7 Volt/-.2 Volt Bias - -3 +7 Volt/-.2 Volt Bias +3 Volt/-.2 Volt Bias -4 - - 2 3-6 2 3 3 Input IP3 (dbm) 3 Output IP3 (dbm) 2 2 +7 Volt/-.2 Volt Bias +3 Volt/-.2 Volt Bias 2 3 +7 Volt/-.2 Volt Bias +3 Volt/-.2 Volt Bias 2 3

Page 6 Typical Performance +3 to +7V External Bias (Pin 16 Output), -.2 Negative Bias (Pin11) continued - Input Small Signal Return Loss (db) Input, +7 Volt/-.2 Volt Bias Input, +3 Volt/-.2 Volt Bias - Input Small Signal Return Loss (db) over Temperature - C, +7 Volt/-.2 Volt Bias +2 C, +7 Volt/-.2 Volt Bias +8 C, +7 Volt/-.2 Volt Bias - - - - - - -2 2 3-2 2 3 - Output Small Signal Return Loss (db) Output, +7 Volt/-.2 Volt Bias Output, +3 Volt/-.2 Volt Bias - Output Small Signal Return Loss (db) over Temperature - C, +7 Volt/-.2 Volt Bias +2 C, +7 Volt/-.2 Volt Bias +8 C, +7 Volt/-.2 Volt Bias - - - - - - -2 2 3-2 2 3 4 3 Even Harmonic Generation (dbm) + dbm Input +7 Volt/-.2 Volt Bias, Second Harmonic +3 Volt/-.2 Volt Bias, Second Harmonic +7 Volt/-.2 Volt Bias, Fourth Harmonic +3 Volt/-.2 Volt Bias, Fourth Harmonic 4 3 Odd Harmonic Generation (dbm) + dbm Input +7 Volt/-.2 Volt Bias, Third Harmonic +3 Volt/-.2 Volt Bias, Third Harmonic +7 Volt/-.2 Volt Bias, Fifth Harmonic +3 Volt/-.2 Volt Bias, Fifth Harmonic - - - - -3-3 -4 2 3-4 2 3 Output Output

Page 7 Typical Performance +3 to +7V External Bias (Pin 16 Output), -.2 Negative Bias (Pin11) continued Output P1dB (dbm) 12 Group Delay (ps) 7 - - +7 Volt/-.2 Volt Bias +3 Volt/-.2 Volt Bias 2 3 2 +7 Volt/-.2 Volt Bias +3 Volt/-.2 Volt Bias 2 3 Noise Figure(dB) +7 Volt/-.2 Volt Bias +3 Volt/-.2 Volt Bias 12 Current Consumption (ma) with GHz Input Vg= -.2V, Pin= - dbm Vg= -.2V, Pin= + dbm 7 2 3 2 2 3 4 6 7 8 Vd (V)

Page 8 Functional Diagram and Application Circuit Internal Positive Bias Tee (Pin 21).1 uf Ohms 24 23 22 21 19 Vd 1 18 2 pf 17 3 16 RF Out RF In 4 pf 14 6 13 7 8 9 11 12.1 uf Ohms Vg Biasing and Operation RF In / RF Out Input and output signals should be connected by ohm microstrip or coplanar traces to well matched ohm sources and loads. DC blocking capacitors are required. Vg Recommended bias on this pin is -.1 to -.3 Volts. Harmonic generation is significantly affected by the negative gate voltage level. The amplifier is designed for optimal performance when the negative gate voltage is tuned such that the positive bias supply is 112 ma. It may be supplied through pin 11 or through the RF input on pin 4. Vd- Bias supply on Vd should be voltage limited below 13 V and current limited below ma at all times. The operational bias voltage should be between V and 12 V for full gain, efficiency, and linearity. In general gain, linearity, and output power will increase marginally with increased voltage from V to12 V. When the internal positive bias tee is used, pin 23 is left DC and RF open. Optional Bias Circuitry The resistor and capacitor on the Vd and Vg lines (pads 21, 23, and 11) prevent low frequency oscillation. These components are not required in bias circuits with sufficient low frequency loss. Designers should experiment to determine if they are necessary. DC/RF Ground The ground paddle of the QFN should be connected to a low noise RF and DC ground with very low electrical and thermal resistance for high frequency operation and thermal heat sinking.

Page 9 Typical Performance +9 to +12V Internal Bias (Pin 21), -.2 Negative Bias (Pin11) Small Signal Gain (db) 2 Saturated Output Power (dbm) - - +12 Volt/-.2 Volt Bias +9 Volt/-.2 Volt Bias 2 3 - +12 Volt/-.2 Volt Bias +9 Volt/-.2 Volt Bias 2 3 - - -3-4 Reverse Isolation (db) +12 Volt/-.2 Volt Bias +9 Volt/-.2 Volt Bias - - - Small Signal Return Loss (db) Input, +12 Volt/-.2 Volt Bias Input, +9Volt/-.2 Volt Bias Output, +12 Volt/-.2 Volt Bias Output, +9 Volt/-.2 Volt Bias - - -6 2 3-2 2 3 3 Input IP3 (dbm) 3 Output IP3 (dbm) 2 2 +12 Volt/-.2 Volt Bias +9 Volt/-.2 Volt Bias 2 3 +12 Volt/-.2 Volt Bias +9 Volt/-.2 Volt Bias 2 3

Page Typical Performance +9 to +12V Internal Bias (Pin 21), -.2 Negative Bias (Pin11), continued 4 3 Even Harmonic Generation (dbm) + dbm Input +12 Volt/-.2 Volt Bias, Second Harmonic +9 Volt/-.2 Volt Bias, Second Harmonic +12 Volt/-.2 Volt Bias, Fourth Harmonic +9 Volt/-.2 Volt Bias, Fourth Harmonic 4 3 Odd Harmonic Generation (dbm) + dbm Input +12 Volt/-.2 Volt Bias, Third Harmonic +9 Volt/-.2 Volt Bias, Third Harmonic +12 Volt/-.2 Volt Bias, Fifth Harmonic +9 Volt/-.2 Volt Bias, Fifth Harmonic - - - - -3-3 -4 2 3-4 2 3 Output Output Input P1dB (dbm) +12 Volt/-.2 Volt Bias +9 Volt/-.2 Volt Bias Output P1dB (dbm) - - 2 3 - - +12 Volt/-.2 Volt Bias +9 Volt/-.2 Volt Bias 2 3 12 Group Delay (ps) Noise Figure(dB) +12 Volt/-.2 Volt Bias +9 Volt/-.2 Volt Bias 7 2 +12 Volt/-.2 Volt Bias +9 Volt/-.2 Volt Bias 2 3 2 3 12 Current Consumption (ma) with GHz Input Vg= -.2V, Pin= - dbm Vg= -.2V, Pin= + dbm 7 2 8 9 11 12 13 Vd (V)

....31.27.41.37.4.4.61.7.6.81.77.96.8.1.96.4.4.116.114.121.131.124.134.142.1.161 Page 11 Outline Drawing.4 [3.9].4 [3.9] ADM 931 D/C XXX PROJECTION INCH [MM].3 [.9].28 Typ [.7].98 Sq. [2.].3 Typ [.8] Substrate material is Ceramic. I/O Leads and Ground Paddle are 1.4+.6 microns (+24 micro-inches) Au over 1.3 microns (1 micro-inches) Ni. All unconnected pads should be connected to PCB RF ground. 18 17 16 14 13 19 PCB Footprint Drawing 21 22 Ground Paddle 23 24 12 11 9 8 7 1 2 3 4 6. Typ [.].12 Typ [.3].13 Typ [.32] Pad # 1 2 3 4 6 7 8 9 11 12 13 14 16 17 18 19 21 22 23 24 Function RF In Vg RF Out Vd Vd2....3.47.61.67.77.8.96.4.114.121.134.1.161.27.4.7.6.77.81.8.9.1.1.131.142 Ø. Plated thru Via, 42 PL QFN-Package Surface-Mount Landing Pattern Click here for a DXF of the above layout. Click here for leaded solder reflow. Click here for lead-free solder reflow.

Page 12 Pin Descriptions Pin Number Function Description Interface Schematic 1-3, -, 12-,17-, 22, 24 NC These pins are not connected internally. Datasheet performance is tested with NC pins grounded. 4 RF in This pin is DC coupled and matched to Ω. RF in 11 Vg Gate control for the amplifier. External decoupling resistor/capacitor is required. Vg 16 RF out This pad is DC coupled and matched to Ω. RF out 21 Vd Power supply voltage for the amplifier. External decoupling resistor/capacitor is required. Vd 23 Vd2 Paddle GND This pin is left open for Internal Vd Bias. This pin is connected to Pin 21 (Vd) for external bias (pin 16 with bias tee). Ground pad should be connected to RF/DC ground with low electrical and thermal resistance. GND Absolute Maximum Ratings Parameter Maximum Rating Positive Bias Voltage External Bias Tee 9 V Positive Bias Bias Voltage Internal Bias Tee 13 V Positive Bias Current ma Negative Bias Voltage -2 V Negative Bias Current 2 ma RF Input Power +18 dbm Power Dissipation 87 mw Thermal Resistance, θ jc 1.462 C/W ESD (Human Body Model) Class Operating Temperature -ºC to +8ºC Storage Temperature -6ºC to +ºC

Page 13 Evaluation Board Solder ribbon/wire across gap for external (output port) bias In (+Vd) Out ADM 931 YYWW XXX SMA Female Connector, 2 PL -Vg (+Vd) The evaluation module follows Marki standard assembly and evaluation procedures to give optimal performance for datasheet characterization. Actual QFN performance will depend on substrate material, bypass capacitors, resistors, connectors, quality of bias current/voltage source, and assembly process. Evaluation Board Bill of Materials Item Description/Part Number Connectors Southwest 214-SF Bias Pins Kovar Housing Aluminum Circuit.8 Thick Rogers 43.1 uf Capacitor AVX 42YD4KAT2A Ω Resistor Venkel CR1-W-JT ADM 931 DATA SHEET NOTES: 1. Specifications are subject to change without notice. Contact Marki Microwave for the most recent specifications and data sheets. Marki Microwave reserves the right to make changes to the product(s) or information contained herein without notice. Marki Microwave makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Marki Microwave assume any liability whatsoever arising out of the use of or application of any product.