Fig. 1 - Enhancement mode GaN has a circuiut schematic similar to silicon MOSFETs with Gate (G), Drain (D), and Source (S).

Similar documents
Driving egan TM Transistors for Maximum Performance

SiC Transistor Basics: FAQs

GaN Transistors for Efficient Power Conversion

Recommended External Circuitry for Transphorm GaN FETs. Zan Huang Jason Cuadra

Wide Band-Gap (SiC and GaN) Devices Characteristics and Applications. Richard McMahon University of Cambridge

PCB layout guidelines. From the IGBT team at IR September 2012

GaN is Crushing Silicon. EPC - The Leader in GaN Technology IEEE PELS

Unlocking the Power of GaN PSMA Semiconductor Committee Industry Session

The egan FET Journey Continues

235 W Maximum Power Dissipation (whole module) 470 T J Junction Operating Temperature -40 to 150. Torque strength

Gate Drive Optimisation

Utilizing GaN transistors in 48V communications DC-DC converter design

EPC2107 Enhancement-Mode GaN Power Transistor Half-Bridge with Integrated Synchronous Bootstrap

An introduction to Depletion-mode MOSFETs By Linden Harrison

Gallium Nitride (GaN) Technology Overview

User s Manual ISL70040SEHEV3Z. User s Manual: Evaluation Board. High Reliability

ELEC-E8421 Components of Power Electronics

User s Manual ISL70040SEHEV2Z. User s Manual: Evaluation Board. High Reliability

Fundamentals of Power Semiconductor Devices

Understanding MOSFET Data. Type of Channel N-Channel, or P-Channel. Design Supertex Family Number TO-243AA (SOT-89) Die

Unleash SiC MOSFETs Extract the Best Performance

VDSS (V) 650 V(TR)DSS (V) 800. RDS(on)eff (mω) max* 130. QRR (nc) typ 54. QG (nc) typ 10

Designing reliable and high density power solutions with GaN. Created by: Masoud Beheshti Presented by: Paul L Brohlin

DOWNLOAD PDF POWER ELECTRONICS DEVICES DRIVERS AND APPLICATIONS

Advantages of Using Gallium Nitride FETs in Satellite Applications

PRELIMINARY. VDSS (V) 600 V(TR)DSS (V) 750 RDS(on)eff (mω) max* 60. QRR (nc) typ 120. QG (nc) typ 22 PRELIMINARY

Power MOSFET Zheng Yang (ERF 3017,

Evaluation and Applications of 600V/650V Enhancement-Mode GaN Devices

VDSS (V) 900. V(TR)DSS (V) 1000 RDS(on)eff (mω) max* 205. QRR (nc) typ 49. QG (nc) typ 10

CHAPTER I INTRODUCTION

AN Analog Power USA Applications Department

Application Note 0006

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

VDSS (V) 650. V(TR)DSS (V) 800 RDS(on)eff (mω) max* 180. QRR (nc) typ 52. QG (nc) typ 6.2

Designing High density Power Solutions with GaN Created by: Masoud Beheshti Presented by: Xaver Arbinger

SURFACE MOUNT (SMD-1) 100V, P-CHANNEL. Absolute Maximum Ratings. Product Summary

SELF-OSCILLATING HALF BRIDGE

DESIGN TIP DT Variable Frequency Drive using IR215x Self-Oscillating IC s. By John Parry

VDS (V) min 650 VTDS (V) max 800 RDS(on) (mω) max* 130. Qrr (nc) typ 54. * Dynamic R(on)

Si, SiC and GaN Power Devices: An Unbiased View on Key Performance Indicators

Features. Description. Table 1: Device summary Order code Marking Package Packing STF140N6F7 140N6F7 TO-220FP Tube

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

VDSS (V) 650 V(TR)DSS (V) 800. RDS(on)eff (mω) max* 85. QRR (nc) typ 90. QG (nc) typ 10

SiC-JFET in half-bridge configuration parasitic turn-on at

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 180. QRR (nc) typ 47. QG (nc) typ 10

GaN Power ICs: Integration Drives Performance

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 60. QRR (nc) typ 136. QG (nc) typ 28 VIN=230VAC; VOUT=390VDC VIN=380VDC; VOUT=240VAC

Power MOSFET Basics: Understanding Superjunction Technology

TPH3207WS TPH3207WS. GaN Power Low-loss Switch PRODUCT SUMMARY (TYPICAL) Absolute Maximum Ratings (T C =25 C unless otherwise stated)

IRHNJ67130 SURFACE MOUNT (SMD-0.5) REF: MIL-PRF-19500/746. Absolute Maximum Ratings PD-95816D. Features: n Low RDS(on) n Fast Switching

ESD-Transient Detection Circuit with Equivalent Capacitance-Coupling Detection Mechanism and High Efficiency of Layout Area in a 65nm CMOS Technology

Cree SiC Power White Paper: The Characterization of dv/dt Capabilities of Cree SiC Schottky diodes using an Avalanche Transistor Pulser

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 180. QRR (nc) typ 52. QG (nc) typ 6.2 VIN=230VAC; VOUT=390VDC VIN=380VDC; VOUT=240VAC

Power semiconductors. José M. Cámara V 1.0

GS61008T Top-side cooled 100 V E-mode GaN transistor Preliminary Datasheet

IR3101 Series 1.6A, 500V

N-channel 30 V, 2.15 mω typ., 120 A Power MOSFET in a TO-220 package. Features. Order code. Description. AM01475v1_Tab

IRFP054V. HEXFET Power MOSFET V DSS = 60V. R DS(on) = 9.0mΩ I D = 93Aˆ. Absolute Maximum Ratings. Thermal Resistance PD

Class D Audio Amplifier Design

An Experimental Comparison of GaN E- HEMTs versus SiC MOSFETs over Different Operating Temperatures

Driving of a GaN Enhancement Mode HEMT Transistor with Zener Diode Protection for High Efficiency and Low EMI

IRFE230 JANTXV2N6798U SURFACE MOUNT (LCC-18) 200V, N-CHANNEL REF:MIL-PRF-19500/557. Absolute Maximum Ratings PD-91715C.

TO-220AB low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

Appendix: Power Loss Calculation

VDS (V) min 600 VTDS (V) max 750 RDS(on) (mω) max* 63. Qrr (nc) typ 136. * Dynamic R(on)

How GaN-on-Si can help deliver higher efficiencies in power conversion and power management

TPH3212PS. 650V Cascode GaN FET in TO-220 (source tab)

VDS (V) min 650 VTDS (V) max 800 RDS(on) (mω) max* 60. Qrr (nc) typ 136. Qg (nc) typ 28. * Dynamic RDS(on)

GaN Power Switch & ALL-Switch TM Platform. Application Notes AN01V650

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 130. QRR (nc) typ 54. QG (nc) typ 14 VIN=230VAC; VOUT=390VDC VIN=380VDC; VOUT=240VAC

Next Generation Curve Tracing & Measurement Tips for Power Device. Kim Jeong Tae RF/uW Application Engineer Keysight Technologies

TC = 25 C unless otherwise noted. Maximum lead temperature for soldering purposes, 300 1/8" from case for 5 seconds

TPH3205WSB. 650V Cascode GaN FET in TO-247 (source tab)

Breaking Speed Limits with GaN Power ICs March 21 st 2016 Dan Kinzer, COO/CTO

TO-220 G D S. T C = 25 C unless otherwise noted

Three Terminal Devices

SSP20N60S / SSF20N60S 600V N-Channel MOSFET

Design And Application Guide for High Speed MOSFET Gate Drive Circuits By Laszlo Balogh

SMPS MOSFET. V DSS Rds(on) max I D

GS61008T Top-side cooled 100 V E-mode GaN transistor Preliminary Datasheet

Design and Applications of HCPL-3020 and HCPL-0302 Gate Drive Optocouplers

GS66516B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications

GS66506T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

INTRODUCTION: Basic operating principle of a MOSFET:

High voltage GaN cascode switches shift power supply design trends. Eric Persson Executive Director, GaN Applications and Marketing

IRHF57034 THRU-HOLE (TO-39) REF: MIL-PRF-19500/701. Absolute Maximum Ratings PD-93791D

Background (What Do Line and Load Transients Tell Us about a Power Supply?)

GS61008P Bottom-side cooled 100 V E-mode GaN transistor Preliminary Datasheet

N-channel 600 V, 0.55 Ω typ., 7.5 A MDmesh M2 Power MOSFET in a TO-220FP wide creepage package. Features. Description.

Power Semiconductor Devices

GS61004B 100V enhancement mode GaN transistor Preliminary Datasheet

Wide Band-Gap Power Device

VDS (V) min 600 VTDS (V) max 750 RDS(on) (mω) max* 180. Qrr (nc) typ 54. * Dynamic R(on)

GS66516B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

L MOSFETS, IDENTIFICATION, CURVES. PAGE 1. I. Review of JFET (DRAW symbol for n-channel type, with grounded source)

Analog and Telecommunication Electronics

Power Electronics. P. T. Krein

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s.

IRHG V, Quad N-CHANNEL RADIATION HARDENED POWER MOSFET THRU-HOLE (MO-036) PD-94432C. 1 TECHNOLOGY. Product Summary MO-036AB

Transcription:

GaN Basics: FAQs Sam Davis; Power Electronics Wed, 2013-10-02 Gallium nitride transistors have emerged as a high-performance alternative to silicon-based transistors, thanks to the technology's ability to be made allow smaller device sizes for a given on-resistance and breakdown voltage than silicon. Why Gallium Nitride? The power semiconductor evolution started with germanium and selenium devices that succumbed to silicon types around the 1950s. Broader silicon usage stemmed from its improved physical properties combined with a large investment in manufacturing infrastructure and engineering. However, silicon power MOSFETs have not kept pace with evolutionary changes in the power electronics systems industry. The power electronics industry reached the theoretical limit of silicon MOSFETs and now must go to another semiconductor material whose perfromance matches today s newer systems. The new material is gallium nitride (GaN) a high electron mobility (HEMT) semiconductor, whaich is poised to usher in new power devices that are superior to the present state of the art. Although GaN is young in its life cycle, it will certainly see significant improvements in the years to come. What nomenclature do GaN devices employ? GaN transistors borrowed the same nomenclature as their silicon brethren: gate, drain and source, as shown Fig. 1. In addition, on-resistance and breakdown voltage of a GaN device have a similar meaning as their silicon counterparts. On-resistance (RDS(ON)) vs. gate-source voltage curves are similar to silicon MOSFETs. The temperature coefficient of GaN FETs onresistance is similar o the silicon MOSFET as it is positive, but the magnitude is significantly less. Fig. 1 - Enhancement mode GaN has a circuiut schematic similar to silicon MOSFETs with Gate (G), Drain (D), and Source (S). What is the primary advantage of GaN over silicon power transistors?

GaN has a higher critical electric field strength than silicon. Its higher electron mobility enables a GaN device to have a smaller size for a given on-resistance and breakdown voltage than a silicon semiconductor. Compared to silicon devices, this also allows devices to be physically smaller and their electrical terminals closer together for a given breakdown voltage requirement. What are the two types of GaN power semiconductors? The two types are the depletion mode and enhancement mode. The depletion mode transistor is normally on and is turned off with a negative voltage relative to the drain and source electrodes. In contrast, the enhancement mode transistor is normally off and is turned on by positive voltage applied to the gate. Depletion mode transistors are inconvenient because at start-up of a power converter, a negative bias must first be applied to the power devices or a short circuit will result. Enhancement mode devices do not have this problem: with zero bias on the gate, an enhancement mode device is off and will not conduct current. To allow normally off operation of a depletion mode GaN HEMT, it is often packaged in cascode with a low voltage silicon MOSFET to allow normally off operation. The cascode configuration provides the ruggedness of a silicon gate, coupled with the improved voltage blocking characteristics of a high voltage GaN HEMT (Fig. 2). Fig. 2 - EPC GaN transistors employ the Texas Instruments LM5113 half-bridge gate driver IC. How does a GaN s Gate threshold voltage function? The threshold of enhancement mode GaN FETs is lower than that of silicon MOSFETs. This is made possible by the almost flat relationship between threshold and temperature along with the very low gate-to-drain capacitance (CGD). The device starts to conduct significant current

at 1.6 V, so care must be taken to ensure a low impedance path from gate-to-source when the device needs to be held off during high speed switching in a rectifier function. The threshold of depletion mode GaN HEMTs ranges from -5 V to -20 V. What are the important capacitances in a GaN FET? Besides its low RDS(ON), the lateral structure of the enhanced GaN FET also makes it a very low capacitance device. It can switch hundreds of volts in nanoseconds, giving it multimegahertz capability. With a lateral structure, CGD comes only from a small corner of the gate and is much lower than the same capacitance in a vertical MOSFET. Gate-to-source capacitance (CGS) consists of the junction from the gate in channel, and the capacitance of the dielectric between the gate and the field plate. CGS is large compared with CGD, giving GaN FETs good dv/dt immunity, but still small compared with silicon MOSFETs. The drain-to-source capacitance (CDS) is also small, being limited to the capacitance across the dielectric from the field plate to the drain. Capacitance vs. voltage curves for GaN FETs are similar to those for silicon, except that fir a similar resistance, its capacitance is significantly lower. Does the GaN FET have a body diode? The GaN transistor structure is a purely lateral device, without the parasitic bipolar junction common to silcon MOSFETs. Therefore, the enhancement GaN reverse bias or diode operation has a different mechanism, but a similar function. With zero bias gate-to-source there is an absence of electrons under the gate region. As the drain voltage decreases, a positive bias on the gate is created relative to the drift region, injecting electrons under the gate. Thus, there are no minority carriers involved in conduction, and thefore no reverse recovery losses. Although QRR is zero, output capacitance (COSS) has to be charged and discharged with every switching cycle. For devices of similar RDS(ON), enhancement GaN FETs have significantly lower COSS than silicon MOSFETs. It takes a bias on the gate greater than the threshold voltage to turn on the enhancement FET in th reverse direction, the forward voltage of the diode is higher than silicon transistors. In the cascode configuration for depletion mode devices, the low voltage silicon MOSFET has very low QRR due to its body diode, which is orders of magnitude lower than a high voltage silicon device with similar ratings to the high voltage HEMT. What are the important enhanced GaN FET driving Requirements? The three most important parameters are: Maximum allowable gate voltage Gate threshold voltage Body diode voltage drop

The maximum allowable gate-source voltage for an enhanced GaN FET of 6 V is low compared with traditional silicon. The gate voltage is also low compared to most power MOSFETs, but does not suffer from as strong a negative temperature coefficient. And, the body diode forward drop can be a volt higher than comparable silicon MOSFETs. Because the total Miller charge (QGD) is much lower for an egan FET than for a similar onresistance power MOSFET, it is possible to turn on the device much faster. Too high a dv/dt can reduce efficiency by creating shoot-through during the hard switching transition. It would therefore be an advantage to adjust the gate drive pull-up resistance to minimize transition time without inducing other unwanted loss mechanisms. This also allows adjustment of the switch node voltage overshoot and ringing for improved EMI. For egan FETs, where the threshold voltage is low, the simplest general solution is to split the gate pull-up and pulldown connections in the driver and allow the insertion of a discrete resistor as needed. The LM5113, from Texas Instruments, is an example of an egan FET optimized half bridge driver that implements bootstrap regulation. Integrated in the undervoltage lockout is an overvoltage clamp that limits bootstrap voltage to 5.2 V ensuring sufficient reliable operation under all circuit conditions. In addition to the clamp, there are separate source and sink pins, >50 V/ns dv/dt capability, matched propagation time, 0.5 Ω pull down, and separate high side and low side inputs to unlock the efficiencies the egan FETs enable. Fig. 3 shows the cascode configuration with a depletion mode HEMT, there are no special requirements for the gate driver since the gate is connected to a standard silicon gate rated at ±20V with threshold around 2V. Fig. 3 - Transphorm employs a cascode circuit to drive the GaN device. Drain, Gate and Source are similar to a silicon MOSFET s D, G, and S and K is the Kelvin contact for the gate return. For the cascode configuration with a depletion mode HEMT, there are no special requirements for the gate driver since the gate is connected to a standard silicon gate rated at +/- 20 volts with threshold around 2 volts. What is most critical about using GaN devices?

The layout is most critical regardless if the device is e-mode, d-mode or cascode configuration. All of these devices switch extremely fast and therefore the parasitic inductance of the layout must be as small as possible, in the range of 0.4 nh to 2.0 nh is desirable. What are the projections for future GaN products? Fig. 4 is EPC s projection of the future of GaN devices. When originally introduced in 2010, devices were rated at 40 to 200 V and 500 Mhz switching speed. Recent introductions by EPC raised the speed up to 3 GHz for devices rated at 40 V, 65 V and 100 V and on-resistance ranging from 125 mω to 530 mω. The company also expects GaN transistors to eventually operate at 600 V and it expects more functions per chip. Fig. 4 - The future of GaN transistors indicates the development of faster and higher voltage devices. Source URL: http://powerelectronics.com/gan-transistors/gan-basics-faqs