GaN based Power Devices. Michael A. Briere. RPI CFES Conference

Similar documents
GaN Based Power Conversion: Moving On! Tim McDonald APEC Key Component Technologies for Power Electronics in Electric Drive Vehicles

High Frequency GaN-Based Power Conversion Stages

SiC Cascodes and its advantages in power electronic applications

High-Voltage (600 V) GaN Power Devices: Status and Benefits Power Electronics Conference 2017 Munich Airport Hilton, December 05, 2017

High voltage GaN cascode switches shift power supply design trends. Eric Persson Executive Director, GaN Applications and Marketing

Monolithic integration of GaN power transistors integrated with gate drivers

Power Semiconductor Devices - Silicon vs. New Materials. Si Power Devices The Dominant Solution Today

Customized probe card for on-wafer testing of AlGaN/GaN power transistors

Customized probe card for on wafer testing of AlGaN/GaN power transistors

VDS (V) min 650 VTDS (V) max 800 RDS(on) (mω) max* 130. Qrr (nc) typ 54. * Dynamic R(on)

TPH3205WSB. 650V Cascode GaN FET in TO-247 (source tab)

VDSS (V) 650 V(TR)DSS (V) 800. RDS(on)eff (mω) max* 85. QRR (nc) typ 90. QG (nc) typ 10

VDS (V) min 600 VTDS (V) max 750 RDS(on) (mω) max* 180. Qrr (nc) typ 54. * Dynamic R(on)

VDS (V) min 600 VTDS (V) max 750 RDS(on) (mω) max* 63. Qrr (nc) typ 136. * Dynamic R(on)

VDS (V) min 650 VTDS (V) max 800 RDS(on) (mω) max* 60. Qrr (nc) typ 136. Qg (nc) typ 28. * Dynamic RDS(on)

TPH3212PS. 650V Cascode GaN FET in TO-220 (source tab)

SGP100N09T. Symbol Parameter SGP100N09T Unit. 70* -Continuous (TA = 100 )

PERSPECTIVES FOR DISRUPTIVE 200MM/8-INCH GAN POWER DEVICE AND GAN-IC TECHNOLOGY DR. DENIS MARCON SR. BUSINESS DEVELOPMENT MANAGER

High Voltage Normally-off GaN MOSC- HEMTs on Silicon Substrates for Power Switching Applications

VDSS (V) 650. V(TR)DSS (V) 800 RDS(on)eff (mω) max* 180. QRR (nc) typ 52. QG (nc) typ 6.2

Design considerations for chargecompensated. medium-voltage range. Ralf Siemieniec, Cesar Braz, Oliver Blank Infineon Technologies Austria AG

Practical Design Considerations for a 3.3kW Bridgeless Totem-pole PFC Using GaN FETs. Jim Honea Transphorm Inc

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 180. QRR (nc) typ 47. QG (nc) typ 10

Fundamental Failure Mechanisms Limiting Maximum Voltage Operation in AlGaN/GaN HEMTs. Michael D. Hodge, Ramakrishna Vetury, and Jeffrey B.

Power Matters Microsemi SiC Products

USCi MOSFET progress (ARL HVPT program)

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 180. QRR (nc) typ 52. QG (nc) typ 6.2 VIN=230VAC; VOUT=390VDC VIN=380VDC; VOUT=240VAC

2SK2483 MOS FIELD EFFECT TRANSISTOR DATA SHEET SWITCHING N-CHANNEL POWER MOS FET INDUSTRIAL USE DESCRIPTION FEATURES

2SK2141 MOS FIELD EFFECT TRANSISTOR DATA SHEET SWITCHING N-CHANNEL POWER MOS FET INDUSTRIAL USE DESCRIPTION PACKAGE DIMENSIONS FEATURES

PRELIMINARY. VDSS (V) 600 V(TR)DSS (V) 750 RDS(on)eff (mω) max* 60. QRR (nc) typ 120. QG (nc) typ 22 PRELIMINARY

Features. Description. Table 1: Device summary. Order code Marking Package Packaging SCT30N120 SCT30N120 HiP247 Tube

GaN power electronics

VDSS (V) 900. V(TR)DSS (V) 1000 RDS(on)eff (mω) max* 205. QRR (nc) typ 49. QG (nc) typ 10

Wide Band-Gap Power Device

Progress Energy Distinguished University Professor Jay Baliga. April 11, Acknowledgements

MOS FIELD EFFECT TRANSISTOR

Semiconductor Materials for Power Electronics (SEMPEL) GaN power electronics materials

Advanced Silicon Devices Applications and Technology Trends

UF3C120080K4S. 1200V-80mW SiC Cascode DATASHEET. Description. Features. Typical applications CASE D (1) CASE G (4) KS (3) S (2) Rev.

2SK2369/2SK2370 MOS FIELD EFFECT TRANSISTORS DATA SHEET SWITCHING N-CHANNEL POWER MOS FET INDUSTRIAL USE 查询 K2370 供应商 DESCRIPTION FEATURES

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 60. QRR (nc) typ 136. QG (nc) typ 28 VIN=230VAC; VOUT=390VDC VIN=380VDC; VOUT=240VAC

Features. Description. Table 1: Device summary Order code Marking Package Packaging SCT50N120 SCT50N120 HiP247 Tube

GaN in Practical Applications

SUPER-SEMI SUPER-MOSFET. Super Junction Metal Oxide Semiconductor Field Effect Transistor. 800V Super Junction Power Transistor SS*80R380S

Switch mode power supplies Low gate charge. Power factor correction modules Low intrinsic capacitance

Power Semiconductors technologies trends for E-Mobility

Switch mode power supplies Low gate charge. Power factor correction modules Low intrinsic capacitance

COLLECTOR DRAIN BASE GATE EMITTER. Applying a voltage to the Gate connection allows current to flow between the Drain and Source connections.

State of Demonstrated HV GaN Reliability and Further Requirements

VDSS (V) 650 V(TR)DSS (V) 800. RDS(on)eff (mω) max* 130. QRR (nc) typ 54. QG (nc) typ 10

CREE POWER PRODUCTS 2012 REVOLUTIONIZING POWER ELECTRONICS WITH SILICON CARBIDE

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 130. QRR (nc) typ 54. QG (nc) typ 14 VIN=230VAC; VOUT=390VDC VIN=380VDC; VOUT=240VAC

MOS FIELD EFFECT POWER TRANSISTORS

HCA80R250T 800V N-Channel Super Junction MOSFET

MOS FIELD EFFECT TRANSISTOR 2SK2415, 2SK2415-Z

DATA SHEET SWITCHING P-CHANNEL POWER MOS FET

Dual N - Channel Enhancement Mode Power MOSFET 4502

Ultra-Low Loss 600V 1200V GaN Power Transistors for

IRHNJ67234 SURFACE MOUNT (SMD-0.5) PD-97197C REF: MIL-PRF-19500/746. Absolute Maximum Ratings. Product Summary

PKP3105. P-Ch 30V Fast Switching MOSFETs

GaN MMIC PAs for MMW Applicaitons

IRHNJ67130 SURFACE MOUNT (SMD-0.5) REF: MIL-PRF-19500/746. Absolute Maximum Ratings PD-95816D. Features: n Low RDS(on) n Fast Switching

DATA SHEET SWITCHING N-CHANNEL POWER MOS FET INDUSTRIAL USE

Gallium nitride (GaN)

Si, SiC and GaN Power Devices: An Unbiased View on Key Performance Indicators

27mW - 650V SiC Cascode UJ3C065030K3S Datasheet. Description. Typical Applications. Maximum Ratings

80mW - 650V SiC Cascode UJ3C065080K3S Datasheet. Description. Typical Applications. Maximum Ratings

35mW V SiC Cascode UJ3C120040K3S Datasheet. Description. Typical Applications. Maximum Ratings

IRHF7230 JANSR2N V, N-CHANNEL REF: MIL-PRF-19500/601 RAD-Hard HEXFET TECHNOLOGY RADIATION HARDENED POWER MOSFET THRU-HOLE (TO-39)

Symbol Parameter Typical

GaN is Crushing Silicon. EPC - The Leader in GaN Technology IEEE PELS

MOS FIELD EFFECT POWER TRANSISTORS 2SJ495

IRHNM SURFACE MOUNT (SMD-0.2) REF: MIL-PRF-19500/749. Product Summary. Absolute Maximum Ratings

ALL Switch GaN Power Switch - DAS V22N65A

SSP20N60S / SSF20N60S 600V N-Channel MOSFET

POWER MOSFET SURFACE MOUNT (SMD-1) 200V, N-CHANNEL. Absolute Maximum Ratings PD-94236C

Features. Symbol Parameter Typ. Max. Unit RθJA Thermal Resistance Junction to ambient /W RθJC Thermal Resistance Junction to Case

Drive and Layout Requirements for Fast Switching High Voltage MOSFETs

MACOM GaN Reliability Presentation GaN on Silicon Processes and Products

235 W Maximum Power Dissipation (whole module) 470 T J Junction Operating Temperature -40 to 150. Torque strength

Lecture 19 Real Semiconductor Switches and the Evolution of Power MOSFETS A.. Real Switches: I(D) through the switch and V(D) across the switch

Complementary Trench MOSFET AO4629 (KO4629) SOP P-channel

Silicon Carbide N-Channel Power MOSFET

VGS = 4.5V, TC = 25 C Continuous Drain Current 2.6 A

IRF9230 JANTXV2N6806

IRHF57034 THRU-HOLE (TO-39) REF: MIL-PRF-19500/701. Absolute Maximum Ratings PD-93791D

Power. GaN. Rdyn in hard and soft-switching applications. P. Gassot, P. Moens, M. Tack, Corporate R&D Bodo Power Conference Munich, Dec.

HCD80R600R 800V N-Channel Super Junction MOSFET

HEXFET MOSFET TECHNOLOGY

IRHNJ57133SE SURFACE MOUNT (SMD-0.5) REF: MIL-PRF-19500/704 TECHNOLOGY. Absolute Maximum Ratings

DATA SHEET SWITCHING N-CHANNEL POWER MOS FET INDUSTRIAL USE

Prerelease Product(s) - Prerelease Product(s)

600V GaN Power Transistor

MOS FIELD EFFECT TRANSISTOR 2SK3304

Designing Reliable and High-Density Power Solutions with GaN

IRHNJ V, N-CHANNEL POWER MOSFET SURFACE MOUNT (SMD-0.5) REF: MIL-PRF-19500/703. Absolute Maximum Ratings. Product Summary

Bias Stress Testing of SiC MOSFETs

DATA SHEET SWITCHING N-CHANNEL POWER MOS FET

SI-TECH SEMICONDUCTOR CO.,LTD S85N10R/S

EPC2014 Enhancement Mode Power Transistor

Transcription:

GaN based Power Devices Michael A. Briere ACOO Enterprises LLC Under contract to International Rectifier RPI CFES Conference January 25, 2013 1

Motivation : Potential Energy Savings Worldwide M.A. Briere S2K 2005 1 Quad BTU = 168 Million Barrels of crude oil Point of Load (20-1200 V power devices) Possible with 100 % adoption of (Point of Load): efficient lighting (20% electricity, 8% energy), IT PS (15% electricity, 6% energy), inverterized motors (50% electricity, 20% energy) and hybrid vehicles (20% energy). Energy Information Administration / International Energy Outlook 2004; Assumes Transportation energy savings of 60% and 25% electricity savings Savings at $ 40/barrel 2

What limits adoption rate of new power devices? First: If quality, reliability and robustness is not provided : THERE IS NO PRODUCT only a Science project NO MARKET SHARE The governing metric for market adoption is : performance / cost (P/C) For power electronic systems : P/C = efficiency*density/cost This translates for power semiconductor devices as: P/C = Conduction loss* Switching Loss / cost If P/C ratio to incumbant 1, NICHE MARKET, SAM < 2-5 % of TAM IF P/C ratio to incumbant > 2-3 x, widespread adoption, SAM > 80 % of TAM About $ 4 B between 20 and 40 V ( mostly electronic dc-dc power supply ) About $ 6 B between 400 and 900 V ( mostly inverters and motor drives) 3

Material Based Device Limitations Ron = Ldrift / (q*μdrift*ndrift) (+ Lch/(q*μch*Nch) +2 * ρcontact ) SJ limit Unipolar Si IGBT limit Si IGBT limit GaN HEMT μ > 2000 cm 2 /Vs Inversion MISFET μ <200 Bulk (vertical) μ < 500 4

Be careful of device leakage / BV criteria! Normally-off 5A/1100 V GaN on Silicon Device for High Voltage Application K.S. Boutros et.al. (HRL Labs) IEDM 2009 paper 7.5 5

Measured R onaa for Si, SiC, and GaN HEMTs Large ( Wg > 100 mm) power devices Measured data Ecrit : Si = 20 V/μm, GaN = 300 V/ μm Ref: N. Ikeda et.al. ISPSD 2008 p.289 6

Difference between GaN HEMTs and Si FETs Hetero-epitaxy (lower cost) : strain engineering No p-n junctions No intentional doping - 2D Electron gas spontaneously forms No native Insulated Gate buried channel not surface inversion Lateral device - Highest Fields in Passivating Insulating Layers Native device is Depletion Mode (normally on) S G Gate Dielectric D b 2D Electron Gas AlGaN Gate Metal GaN AlGaN GaN Transition Layers Silicon Substrate 2 DEG 7

Gold Free Contact Resistance- lower cost 8

Scalable III-N on Si Technology IR s GaNpowIR : Lower Cost Compositionally Graded III-N Transition Layer(s), eg. X > Y > Z IR s III-N epi IP portfolio (as of March 2012) 17 issued US patents (2000-2010) 10 issued outside US patents 8 published pending US patents 19 Unpublished US Apps 5 Licensed Patents/Pend. III-N Device Layers III-N Buffer Layer.. Al z Ga (1-z) N Al y Ga (1-y) N Al x Ga (1-x) N Nucleation and Intermediate layer(s) Silicon Based Substrate Copyright 2013. 2012. International Rectifier. All Rights Reserved. 9

Wafer Distortion maps 2 um epi - Reactor 4 6 (625 um) Warp < 20 um, Bow -7 +/- 10 um 8 (725 um) Warp < 40 um, Bow 12 +/- 10 um Copyright 2013. 2012. International Rectifier. All Rights Reserved. 10

HV Cascoded GaN switch: A powerful Circuit D Depletion mode GaN G S Enhancement mode Si Cascoded Switch Leverages > 30 years of reliable drive experience Normally Off operation Gate drive compatible with existing Silicon solutions: +/-10V, +/- 15V, etc. Vgs(th) set by low voltage Si FET: Select Vt (3 V vs SJ, 5 V vs. IGBT), high enough to avoid C*dV/dt induced turn on Anti-parallel diode included: much lower reverse recovery than Si switches Minimal compromise in GaN HEMT performance 11

600 V Switch Performance vs. Current Density Performance FOM (V-uJ, 25C) 1000 900 800 700 600 500 400 300 200 100 0 Best in class IGBT 0 0.5 1 1.5 2 2.5 Current Density (A/mm^2) Performance FOM: Vds(on) * (Eon + Eoff) IR GaN Prototypes 12 12

600 V Device Trr Performance Comparison GaN based device has 20x Lower Qrr compared to IGBT Copak and more than 200x less than Super Junction body diode GaN Qrr independent of temperature and current 13

600 V rated device R-Q comparison table (RT) Device type R*Qoss (Ω-nC) R*Qg(Ω-nC) R*Qrr(Ω-nC) Si SJ FET 4x 9x 224x GaN cascode switch 1x 1x 1x 14

600 V GaN vs Si SJ Switch in PFC Boost Vin = 150 V, Vout= 400 V, Iav = 1 A, Freq= 100kHz, 25 C 10 ns / div, 100 V/ div Turn on Switching Transient 160 mohmgan 199 mohm Si About 100 V/ns 15

GaN vs Superjunction in Resonant DC:DC 16

Class-D Audio THD comparison Si vs GaN Audio Precision A-A THD+N vs POWER 08/29/12 18:59:26 10 % 5 2 1 0.5 0.2 0.1 0.05 THD for GaN Devices is 10x better than for Si Silicon FET: IRF6645 0.02 0.01 0.005 0.002 GaN 0.001 10m 20m 50m 100m 200m 500m 1 2 5 10 20 50 100 200 W Sweep Trace Color Line Style Thick Data Axis Comment 1 1 Red Solid 3 Anlr.THD+N Ratio Left IRF6645 2 1 Green Solid 3 Anlr.THD+N Ratio Left 1921#2 THD, Liz 720kHz, Vbus=+/-35V 1921 vs IRF6645-THDvsPower_DBver2_, 08-29-2012.at2 17

Transfer Curve for large device (Wg=850mm, Lg=0.3µm) Ion/Ioff > 10 12 Gmax > 300 S Ig < 100 na Higher Gm and comparable Ion/Ioff to Silicon devices 18

Forward Biased SOA (Width=960mm) ( 30 V devices) Id(A) 400 350 300 250 200 150 100 50 0 0 10 20 30 40 50 Vds(V) Vg= 3V Vg= 2V Vg= 1V Vg=0V Vg=1V 40 us pulse SOA of the device is wide compared to application requirements and is virtually independent of temperature from 25 to 125 0 C 19

Large area ( AA =8 mm 2 ) 600 V rated cascoded device Current Capability Output, 25C 900 A/cm 2 90 80 70 15V 60 8V ID (A) 50 40 7.5V 30 7V 20 6.5V 10 0 0 2 4 6 8 10 12 V DS (V) 20

Large area ( AA =8 mm 2 ) 600 V rated cascoded device Current Capability Output, 150C 60 50 8V 40 7V ID (A) 30 6.5V 20 6V 10 5.5V 0 0 2 4 6 8 10 12 V DS (V) 21

Large area ( AA =8 mm 2 ) 600 V rated cascoded device Current Capability Transfer 100 ID (A) 10 1 150C 25C 0.1 0.01 0 1 2 3 4 5 6 7 8 9 10 V GS (V) 22

GaN cascode switch Blocking voltage 1E-5 Blocking V GS = 0V 8E-6 I drain I D /W G A (A/mm)/ mm 6E-6 4E-6 2E-6 25 C 150 C 0E+0 0 200 400 600 800 1000 V DS (V) GaN device shows leakage determined breakdown (not an avalanche breakdown) At V DS = 600V, the typical drain leakages of HV GaN cascodes at 25 o C: < 50 na/mm 150 o C: < 400 na/mm 23

Temperature Dependence of Rdson, GaN HEMT and Si SJ Normalized value vs temperature 3.5 Rdson / 25 o C Rdson 3.0 2.5 2.0 1.5 1.0 Si SJ GaN 0.5 0.0 0 50 100 150 200 Temperature ( o C) GaN cascode switch has about 33% lower increase in Rds(on) from room to hot (150 o C), when compared to Si SJ FET. 24

Dielectric Breakdown of 600 V rated device > 1000 V. Wg > 100 mm 25

Lack of charge screening dynamic Rdson S G Gate Dielectric D AlGaN GaN Transition Layers Silicon Substrate 2 DEG 26

600V GaN Device Stability - Improvements Ratio of Rds(on) post/rds(on) pre stress 2.5 2.0 1.5 1.0 2007 0 100 200 300 350 400 500 550 Voltage May 2010 August 2010 Nov 2010 27

No Evidence of Inverse Piezo-Electric Effect in GaNpowIR TM devices TEM Image ( No physical damage) from stress : HTRB ( Vd=26 V, Vg=-14 V at 150 C ) > 3000 Hours. HTRB ( Vd=26 V, Vg=-7V at 175 C) > 3000 hrs HTRB (Vd = 34 V, Vg=-22V at 150 C) > 600 hrs HTGB of -50 V for > 3000 hrs Foward conduction (I=200 ma/mm, Vd= 25 V) 28

> 9000 hrs/device on HTRB : 30 V discrete HEMTs 11814-1-HTRB IGSS @ -7.5V VGSS 80.0E-9 70.0E-9 IGSS in Amps 60.0E-9 50.0E-9 40.0E-9 30.0E-9 20.0E-9 Test Hours 29

IR 600 V GaNpowIR Gate Dielectric Reliability MTTF at 150 C and Vg = - 20 V : > 10 8 hours Vg = -50 V 30

600 V Cascode device room temperature reverse bias stability Vd= +480 V, Vg = -20 V 31

Early 600 V device long term stability not TD limited 1 na /mm Idrain in A/mm Vd Stress = 480 V, 150 C Stress Time in hours at 150 C Copyright 2013. 2012. International Rectifier. All Rights Reserved. 32

600 V Cascode device step stress at 650 V for > 72 hours 650 V stress >72 hours Wg > 100 mm Id-s < 10 na/mm 33

The Next Revolution in Power Electronics : Integration 34

Data Processing Vintage 1950-1960 s 8 bit relay from Univac How today s power electronics will look to future engineers in 15-20 years 35

Summary GaN Based Power Devices have the Potential to Provide 10-100 times Improvement in both conduction (Rdson) and switching (Qr) Performance compared to Si The lateral GaN based HEMT likely has a practical limit of about 1200 V. Significant effort will be required to bring this technology in line with the expectations for quality and reliability set by silicon incumbents The Inherent Integratability of Lateral GaN based Power Devices will Enable High Levels of Integration, Propelling Power Electronics Along a Revolutionary Tragectory akin to that in Data Processing in the 1970 s. As GaN based power devices are further developed a wide range of applications and markets will achieve significantly higher levels of density, efficiency and cost effectiveness It is essential to bring costs < 2x of silicon based alternatives to achieve wide-spread adoption of GaN based power device technology 36

Dedication I would like to dedicate this and all my work in the power semiconductor field to Eric Lidow Dec 1912 Jan 2013 Founder of International Rectifier And my Inspiration 37