W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 5.3

Similar documents
T J = 25 C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V (BR)DSS DraintoSource Breakdown Voltage 24 V V (BR)DSS / T J

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 27

1412 P C = 25 C Maximum Power Dissipation 300 Linear Derating Factor. V/ns T J. Thermal Resistance Symbol Parameter Typ. Max.

IRFS3004-7PPbF HEXFET Power MOSFET

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 13

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 26

V DSS. W/ C V GS Gate-to-Source Voltage ±30 E AS (Thermally limited) mj T J Operating Junction and -55 to + 175

W/ C V GS Gate-to-Source Voltage ±20 dv/dt Peak Diode Recovery f 4.6. V/ns T J. mj I AR. Avalanche Current d A See Fig. 14, 15, 22a, 22b, E AR

W/ C V GS Gate-to-Source Voltage ±16 dv/dt Peak Diode Recovery f 8.0. V/ns T J. mj I AR. Avalanche Current d A See Fig. 14, 15, 22a, 22b E AR

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 2.5

W/ C V GS Gate-to-Source Voltage ± 30 dv/dt Peak Diode Recovery e 57

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 11. V/ns T J. mj I AR

IRFR3806PbF IRFU3806PbF

TO-220AB IRFB4410. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 19

IRFB3507PbF IRFS3507PbF IRFSL3507PbF

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 14. V/ns T J. mj I AR. Thermal Resistance Symbol Parameter Typ. Max.

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 57

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 2.0

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 32

IRFR1018EPbF IRFU1018EPbF

IRLS3034PbF IRLSL3034PbF

IRFS4127PbF IRFSL4127PbF

IRFP4410ZPbF HEXFET Power MOSFET

TO-220AB IRFB3307. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 11. V/ns T J Operating Junction and -55 to

IRLS3036PbF IRLSL3036PbF HEXFET Power MOSFET

TO-220AB IRFB4310. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 14

A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) 560 P C = 25 C Power Dissipation 330 Linear Derating Factor

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 23. V/ns T J. mj I AR

Standard Pack. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 6.7. V/ns Operating Junction and. mj I AR

TO-220AB IRFB4610. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 7.6

40V V DSS. R DS(on) typ. I D (Silicon Limited) I D (Package Limited) 409Ac 195A. HEXFET Power MOSFET

Absolute Maximum Ratings Max. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

AUTOMOTIVE MOSFET TO-220AB IRL3705Z. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) W/ C V GS Gate-to-Source Voltage ± 16

V DSS R DS(on) max Qg (typ.) 30V GS = 10V 57nC

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

Approved (Not Released) V DSS R DS(on) max Qg. 30V 3.5mΩ 36nC

40V D V DSS. R DS(on) typ. 317Ac 195A. I D (Silicon Limited) I D (Package Limited) HEXFET Power MOSFET. Ordering Information. Applications.

IRFZ46ZPbF IRFZ46ZSPbF IRFZ46ZLPbF

AUTOMOTIVE MOSFET TO-220AB IRL1404Z. Absolute Maximum Ratings Max. I T C = 25 C Continuous Drain Current, V 10V (Silicon Limited)

IRFB4020PbF. Key Parameters V DS 200 V R DS(ON) 10V 80 m: Q g typ. 18 nc Q sw typ. 6.7 nc R G(int) typ. 3.2 Ω T J max 175 C

V DSS R DS(on) max Qg. 30V 4.8m: 15nC

C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting Torque, 6-32 or M3 screw 1.1 (10) N m (lbf in)

G D S. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 6.7

IRFR540ZPbF IRFU540ZPbF

IRFR4105ZPbF IRFU4105ZPbF

TO-220AB. IRF3205ZPbF. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

SMPS MOSFET. V DSS R DS(on) max I D

IRFS3107PbF IRFSL3107PbF HEXFET Power MOSFET

IRFR3710ZPbF IRFU3710ZPbF HEXFET Power MOSFET

-280 P C = 25 C Power Dissipation 170 Linear Derating Factor. W/ C V GS Gate-to-Source Voltage ± 20

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

TO-220AB. IRF540ZPbF A I DM. 140 P C = 25 C Power Dissipation 92 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

Ordering Information Base Part Number Package Type Standard Pack Complete Part Number 500 I D = 100A T J = 125 C 200 I D,

AUTOMOTIVE MOSFET TO-220AB IRFZ44VZ A I DM. 230 P C = 25 C Power Dissipation 92 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

SMPS MOSFET. V DSS R DS(on) max I D

AUTOMOTIVE MOSFET IRLZ44Z A I DM. 204 P C = 25 C Power Dissipation 80 Linear Derating Factor V GS Gate-to-Source Voltage ± 16

IRLB8721PbF. V DSS R DS(on) max Qg (typ.) 30V GS = 10V 7.6nC. HEXFET Power MOSFET. Applications. Benefits. Absolute Maximum Ratings

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

Ordering Information Base part number Package Type Standard Pack Complete Part Form Quantity Number IRFB7437PbF TO-220 Tube 50 IRFB7437PbF

AUTOMOTIVE MOSFET TO-220AB IRF I DM. 890 P C = 25 C Power Dissipation 330 Linear Derating Factor. 2.2 V GS Gate-to-Source Voltage ± 20

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

IRF2804PbF IRF2804SPbF IRF2804LPbF HEXFET Power MOSFET

SMPS MOSFET. V DSS R DS(on) typ. Trr typ. I D. 600V 385mΩ 130ns 15A

TO-220AB. IRF4104PbF. A I T C = 25 C Continuous Drain Current, V 10V (Package limited)

IRFR3710ZPbF IRFU3710ZPbF IRFU3710Z-701PbF HEXFET Power MOSFET

SMPS MOSFET. V DSS R DS(on) typ. I D

SMPS MOSFET. V DSS R DS(on) typ. I D

SMPS MOSFET. V DSS R DS(on) max I D

AUTOMOTIVE MOSFET. 240 P C = 25 C Power Dissipation 110 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

IRFP2907PbF. HEXFET Power MOSFET V DSS = 75V. R DS(on) = 4.5mΩ I D = 209A. Typical Applications. Benefits

AUTOMOTIVE MOSFET. I D = 140A Fast Switching

TO-220AB. IRF2807ZPbF. 350 P C = 25 C Maximum Power Dissipation 170 Linear Derating Factor

AUTOMOTIVE MOSFET. 30 Pulsed Drain Current c. I DM P C = 25 C Maximum Power Dissipation 120 Linear Derating Factor

IRLR3110ZPbF IRLU3110ZPbF

V DSS. 40V 1.5mΩ 2.0mΩ 250Ac 195A. R DS(on) typ. max. I D (Silicon Limited) I D (Package Limited) HEXFET Power MOSFET

IRFP054V. HEXFET Power MOSFET V DSS = 60V. R DS(on) = 9.0mΩ I D = 93Aˆ. Absolute Maximum Ratings. Thermal Resistance PD

SMPS MOSFET HEXFET Power MOSFET. V DSS R DS(on) max I D. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor.

IRLR3915PbF IRLU3915PbF

AUTOMOTIVE MOSFET. HEXFET Power MOSFET Wiper Control

Orderable Part Number IRFP4768PbF TO-247AC Tube 25 IRFP4768PbF

Base part number Package Type Standard Pack Orderable Part Number. IRFP7530PbF TO-247 Tube 25 IRFP7530PbF I D, T J = 25 C 50

IRF1704 Benefits AUTOMOTIVE MOSFET

AUTOMOTIVE MOSFET. C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

IRLR8721PbF IRLU8721PbF

IRFB3607PbF IRFS3607PbF IRFSL3607PbF

StrongIRFET IRFB7546PbF

TO-220AB. IRF3710ZPbF. 240 P C = 25 C Maximum Power Dissipation 160 Linear Derating Factor

IRF3808S IRF3808L HEXFET Power MOSFET

IRFR3709ZPbF IRFU3709ZPbF

IRF2204SPbF IRF2204LPbF HEXFET Power MOSFET

Base Part Number Package Type Standard Pack Orderable Part Number. IRFP3006PbF TO-247 Tube 25 IRFP3006PbF

IRLR8729PbF IRLU8729PbF HEXFET Power MOSFET

StrongIRFET IRL40B215

TO-220AB IRF1404Z. Max. I T C = 25 C Continuous Drain Current, V 10V (Silicon Limited)

IRLR8726PbF IRLU8726PbF

IRLR3717 IRLU3717 HEXFET Power MOSFET

SMPS MOSFET. V DS 200 V V DS (Avalanche) min. 260 V R DS(ON) 10V 54 m: T J max 175 C TO-220AB. IRFB38N20DPbF

SMPS MOSFET. V DSS R DS(on) max I D A I DM. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor. V/ns T J

IRFI4212H-117P. Description. Key Parameters g V DS 100 V R DS(ON) 10V 58 m: Q g typ. 12 nc Q sw typ. 6.9 nc R G(int) typ. 3.

Transcription:

PD 9638 Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits l LeadFree Benefits l Improved Gate, Avalanche and Dynamic dv/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dv/dt and di/dt Capability l 75 C Operating Temperature l Automotive [Q] Qualified G V DSS R DS(on) typ. max I D HEXFET Power MOSFET D S V 3.7m: 4.5m: 8A D TO22AB S D G G D S Gate Drain Source Absolute Maximum Ratings Symbol Parameter Max. Units I D @ T C = 25 C Continuous Drain Current, V GS @ V 8c A I D @ T C = C Continuous Drain Current, V GS @ V 3c I DM Pulsed Drain Current d 67 P D @T C = 25 C Maximum Power Dissipation 37 W Linear Derating Factor 2.5 W/ C V GS GatetoSource Voltage ± 2 V dv/dt Peak Diode Recovery f 5.3 V/ns T J Operating Junction and 55 to 75 C T STG Storage Temperature Range Soldering Temperature, for seconds (.6mm from case) Mounting torque, 632 or M3 screw 3 lbxin (.Nxm) Avalanche Characteristics E AS (Thermally limited) Single Pulse Avalanche Energy e 2 mj I AR Avalanche Currentc 75 A E AR Repetitive Avalanche Energy g 37 mj Thermal Resistance Symbol Parameter Typ. Max. Units R θjc JunctiontoCase k.42 R θcs CasetoSink, Flat Greased Surface.5 C/W R θja JunctiontoAmbient j 62 www.irf.com 2//8

Static @ (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V (BR)DSS DraintoSource Breakdown Voltage V V (BR)DSS / T J Breakdown Voltage Temp. Coefficient.8 V/ C R DS(on) Static DraintoSource OnResistance 3.7 4.5 mω V GS(th) Gate Threshold Voltage 2. 4. V I DSS DraintoSource Leakage Current 2 µa 25 I GSS GatetoSource Forward Leakage na GatetoSource Reverse Leakage Dynamic @ (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units gfs Forward Transconductance 6 S Q g Total Gate Charge 5 2 nc Q gs GatetoSource Charge 35 Q gd GatetoDrain ("Miller") Charge 43 R G Gate Resistance.3 Ω t d(on) TurnOn Delay Time 25 ns t r Rise Time 67 t d(off) TurnOff Delay Time 78 t f Fall Time 88 C iss Input Capacitance 962 pf C oss Output Capacitance 67 C rss Reverse Transfer Capacitance 25 C oss eff. (ER) Effective Output Capacitance (Energy Related)i 82 C oss eff. (TR) Effective Output Capacitance (Time Related)h 95 Diode Characteristics Symbol Parameter Min. Typ. Max. Units I S Continuous Source Current 7c A Conditions V GS = V, I D = 25µA Reference to 25 C, I D = 5mAd V GS = V, g V DS = V GS, I D = 25µA V DS = V, V GS = V V DS = V, V GS = V, T J = 25 C V GS = 2V V GS = 2V Conditions V DS = 5V, V DS = 5V V GS = V g V DD = 65V R G = 2.6Ω V GS = V g V GS = V V DS = 5V ƒ =.MHz V GS = V, V DS = V to 8V j V GS = V, V DS = V to 8V h Conditions MOSFET symbol (Body Diode) showing the I SM Pulsed Source Current 67 integral reverse G (Body Diode)di pn junction diode. V SD Diode Forward Voltage.3 V, I S = 75A, V GS = V g t rr Reverse Recovery Time 5 75 ns V R = 85V, 6 9 T J = 25 C I F = 75A Q rr Reverse Recovery Charge 94 4 nc di/dt = A/µs g 4 2 T J = 25 C I RRM Reverse Recovery Current 3.5 A t on Forward TurnOn Time Intrinsic turnon time is negligible (turnon is dominated by LSLD) D S Notes: Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A. Repetitive rating; pulse width limited by max. junction temperature. ƒ Limited by T Jmax, starting, L =.74mH R G = 25Ω, I AS = 75A, V GS =V. Part not recommended for use above this value. I SD 75A, di/dt 63A/µs, V DD V (BR)DSS, T J 75 C. Pulse width 4µs; duty cycle 2%. C oss eff. (TR) is a fixed capacitance that gives the same charging time as C oss while V DS is rising from to 8% V DSS. C oss eff. (ER) is a fixed capacitance that gives the same energy as C oss while V DS is rising from to 8% V DSS. ˆ When mounted on " square PCB (FR4 or G Material). For recom mended footprint and soldering techniques refer to application note #AN994. R θ is measured at T J approximately 9 C. 2 www.irf.com

C, Capacitance (pf) V GS, GatetoSource Voltage (V) I D, DraintoSource Current (A) R DS(on), DraintoSource On Resistance (Normalized) I D, DraintoSource Current (A) I D, DraintoSource Current (A) VGS TOP 5V V 8.V 6.V 5.5V 5.V 4.8V BOTTOM 4.5V VGS TOP 5V V 8.V 6.V 5.5V 5.V 4.8V BOTTOM 4.5V 4.5V 4.5V 6µs PULSE WIDTH Tj = 25 C. V DS, DraintoSource Voltage (V) 6µs PULSE WIDTH Tj = 75 C. V DS, DraintoSource Voltage (V) Fig. Typical Output Characteristics Fig 2. Typical Output Characteristics 3. 2.5 V GS = V 2. T J = 75 C V DS = 25V 6µs PULSE WIDTH. 2 3 4 5 6 7 V GS, GatetoSource Voltage (V) Fig 3. Typical Transfer Characteristics.5..5 6 4 2 2 4 6 8 2468 T J, Junction Temperature ( C) Fig 4. Normalized OnResistance vs. Temperature V GS = V, f = MHZ C iss = C gs C gd, C ds SHORTED 2. C rss = C gd C oss = C ds C gd C iss. 8. V DS = 8V V DS = 5V C oss 6. 4. C rss 2.. 5 5 2 V DS, DraintoSource Voltage (V) Q G, Total Gate Charge (nc) Fig 5. Typical Capacitance vs. DraintoSource Voltage Fig 6. Typical Gate Charge vs. GatetoSource Voltage www.irf.com 3

Energy (µj) E AS, Single Pulse Avalanche Energy (mj) V (BR)DSS, I D, Drain Current (A) DraintoSource Breakdown Voltage (V) I SD, Reverse Drain Current (A) I D, DraintoSource Current (A) T J = 75 C OPERATION IN THIS AREA LIMITED BY R DS (on) µsec msec V GS = V...5..5 2. V SD, SourcetoDrain Voltage (V) Fig 7. Typical SourceDrain Diode Forward Voltage DC msec Tc = 25 C Tj = 75 C Single Pulse V DS, DraintoSource Voltage (V) Fig 8. Maximum Safe Operating Area 8 6 4 2 Limited By Package 25 2 5 Id = 5mA 8 5 6 4 2 95 25 5 75 25 5 75 9 6 4 2 2 4 6 8 2468 T C, Case Temperature ( C) T J, Temperature ( C ) Fig 9. Maximum Drain Current vs. Case Temperature Fig. DraintoSource Breakdown Voltage 5. 4.5 4. 3.5 3. 2.5 2..5 9 8 7 6 5 4 3 I D TOP 7A 26A BOTTOM 75A. 2.5. 2 4 6 8 2 25 5 75 25 5 75 V DS, DraintoSource Voltage (V) Starting T J, Junction Temperature ( C) Fig. Typical C OSS Stored Energy Fig 2. Maximum Avalanche Energy vs. DrainCurrent 4 www.irf.com

E AR, Avalanche Energy (mj) Avalanche Current (A) Thermal Response ( Z thjc ). D =.5.2..5 R R 2 R 3 R R 2 R 3..2 Ri ( C/W) τi (sec). τ J τ τ C J τ C.987625. τ τ τ 2 τ 3 τ 2 τ 3.266697.743 Ci= τi/ri.95464.2269 Ci= τi/ri. SINGLE PULSE ( THERMAL RESPONSE ) Notes:. Duty Factor D = t/t2 2. Peak Tj = P dm x Zthjc Tc. E6 E5.... t, Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, JunctiontoCase Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 5 C and Tstart =25 C (Single Pulse)..5. Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Τj = 25 C and Tstart = 5 C...E5.E4.E3.E2.E tav (sec) Fig 4. Typical Avalanche Current vs.pulsewidth 25 2 5 5 TOP Single Pulse BOTTOM.% Duty Cycle Notes on Repetitive Avalanche Curves, Figures 4, 5: (For further info, see AN5 at www.irf.com). Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long ast jmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 6a, 6b. 4. P D (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (.3 factor accounts for voltage increase during avalanche). 6. I av = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed T jmax (assumed as 25 C in Figure 4, 5). t av = Average time in avalanche. D = Duty cycle in avalanche = t av f Z thjc (D, t av ) = Transient thermal resistance, see Figures 3) 25 5 75 25 5 75 Starting T J, Junction Temperature ( C) Fig 5. Maximum Avalanche Energy vs. Temperature P D (ave) = /2 (.3 BV I av ) = DT/ Z thjc I av = 2DT/ [.3 BV Z th ] E AS (AR) = P D (ave) t av www.irf.com 5

Q RR (A) I RR (A) Q RR (A) V GS(th), Gate threshold Voltage (V) I RR (A) 4. 25 I F = 3A 3.5 3. 2 V R = 85V T J = 25 C 2.5 5 2..5. I D = 25µA I D =.ma I D =.A 5.5 75 5 25 25 5 75 25 5 75 2 T J, Temperature ( C ) Fig 6. Threshold Voltage vs. Temperature 2 4 6 8 di F /dt (A/µs) Fig. 7 Typical Recovery Current vs. di f /dt 25 2 I F = 45A V R = 85V 56 48 I F = 3A V R = 85V 5 T J = 25 C 4 T J = 25 C 32 24 5 6 2 4 6 8 8 2 4 6 8 di F /dt (A/µs) di F /dt (A/µs) Fig. 8 Typical Recovery Current vs. di f /dt Fig. 9 Typical Stored Charge vs. di f /dt 56 48 4 I F = 45A V R = 85V T J = 25 C 32 24 6 8 2 4 6 8 di F /dt (A/µs) Fig. 2 Typical Stored Charge vs. di f /dt 6 www.irf.com

D.U.T ƒ Circuit Layout Considerations Low Stray Inductance Ground Plane Low Leakage Inductance Current Transformer Reverse Recovery Current Driver Gate Drive Period P.W. D.U.T. I SD Waveform Body Diode Forward Current di/dt D.U.T. V DS Waveform Diode Recovery dv/dt D = P.W. Period V GS =V V DD * R G dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. Device Under Test V DD ReApplied Voltage Body Diode Inductor Curent Current Forward Drop Ripple 5% I SD * V GS = 5V for Logic Level Devices Fig 2. Peak Diode Recovery dv/dt Test Circuit for NChannel HEXFET Power MOSFETs 5V tp V (BR)DSS V DS L DRIVER R G 2V V GS tp D.U.T IAS.Ω V DD A I AS Fig 2a. Unclamped Inductive Test Circuit Fig 2b. Unclamped Inductive Waveforms L D V DS V DD V DS 9% D.U.T % V GS Pulse Width < µs Duty Factor <.% V GS t d(on) t r t d(off) t f Fig 22a. Switching Time Test Circuit Fig 22b. Switching Time Waveforms Vds Id Vgs K DUT L VCC Vgs(th) Qgs Qgs2 Qgd Qgodr Fig 23a. Gate Charge Test Circuit Fig 23b. Gate Charge Waveform www.irf.com 7

TO22AB Package Outline (Dimensions are shown in millimeters (inches)) TO22AB Part Marking Information (;$3/( 7,6,6$,5) /27&2'( $66(%/('2::,7($66(%/</,(& Note: "P" in assembly line position indicates "LeadFree", 7(5 $7,2$/ 5(&7,),(5 /2*2 $66(%/< /27&2'( 3$578%(5 '$7(&2'( <($5 :((. /,(& TO22AB packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q] market. Qualification Standards can be found on IR s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 9245, USA Tel: (3) 25275 TAC Fax: (3) 252793 Visit us at www.irf.com for sales contact information. 2/28 8 www.irf.com