OpenStax-CNX module: m Solar Cells * Andrew R. Barron. Based on Solar Cells by Bill Wilson

Similar documents
Electrostatic Discharge and Latch-Up

Key Questions ECE 340 Lecture 28 : Photodiodes

What is the highest efficiency Solar Cell?

Problem 4 Consider a GaAs p-n + junction LED with the following parameters at 300 K: Electron diusion coecient, D n = 25 cm 2 =s Hole diusion coecient

EE Solar Cell Opreation. Y. Baghzouz Professor of Electrical Engineering

Lecture 7:PN Junction. Structure, Depletion region, Different bias Conditions, IV characteristics, Examples

Physics 15b, Lab 3: The Capacitor... and a glimpse of Diodes

The Discussion of this exercise covers the following points:

Wallace Hall Academy. CfE Higher Physics. Unit 3 - Electricity Notes Name

Voltage, Current, and Resistance. Objectives

Laboratory No. 01: Small & Large Signal Diode Circuits. Electrical Enginnering Departement. By: Dr. Awad Al-Zaben. Instructor: Eng.

Farr High School HIGHER PHYSICS. Unit 3 Electricity. Exam Question Booklet

Electro - Principles I

Chapter 1: Semiconductor Diodes

CHAPTER SEMI-CONDUCTING DEVICES QUESTION & PROBLEM SOLUTIONS

Rectifying diodes. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Rectifying diodes. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A.

Introduction to Photovoltaics

10/27/2009 Reading: Chapter 10 of Hambley Basic Device Physics Handout (optional)

Lab VIII Photodetectors ECE 476

EXPERIMENTS USING SEMICONDUCTOR DIODES

Handouts for Mulanax Solar Panel Project

Diode conducts when V anode > V cathode. Positive current flow. Diodes (and transistors) are non-linear device: V IR!

Made of semiconducting materials: silicon, gallium arsenide, indium phosphide, gallium nitride, etc. (EE 332 stuff.)

Figure 2.1: Energy Band gap Block Diagram

THERMIONIC AND GASEOUS STATE DIODES

Modelling and simulation of PV module for different irradiation levels Balachander. K Department of EEE, Karpagam University, Coimbatore.

Silicon sensors for radiant signals. D.Sc. Mikko A. Juntunen

OFCS OPTICAL DETECTORS 11/9/2014 LECTURES 1

(B) The simplest way to measure the light intensity is using a photodiode in the photoconductive mode:

CHAPTER 3 PHOTOVOLTAIC SYSTEM MODEL WITH CHARGE CONTROLLERS

Unit 2 Semiconductor Devices. Lecture_2.5 Opto-Electronic Devices

Analog Electronic Circuits

Electron Devices and Circuits (EC 8353)

CHAPTER 8 The PN Junction Diode

Diode Bridges. Book page

Chapter 4. Impact of Dust on Solar PV Module: Experimental Analysis

10/14/2009. Semiconductor basics pn junction Solar cell operation Design of silicon solar cell

LAB IV. SILICON DIODE CHARACTERISTICS

Circuits. What is Ohm s law? Section 1: Ohm s Law. Suggested Film. Extension Questions. Q1. What is current? Q2. What is voltage?

The preferred Exercise is shown in Exercises 5B or 5C.

HOW DIODES WORK CONTENTS. Solder plated Part No. Lot No Cathode mark. Solder plated 0.

2nd Asian Physics Olympiad

Maximum Power Point (Student Handout) (The Principles of Optimizing Photovoltaic Cell Power Output)

Design and Simulation of a Silicon Photomultiplier Array for Space Experiments

Figure 1: Diode Measuring Circuit

CHAPTER-2 Photo Voltaic System - An Overview

Lecture 2 p-n junction Diode characteristics. By Asst. Prof Dr. Jassim K. Hmood

Light Emitting Diodes

(Refer Slide Time: 02:05)

Chapter 3 OPTICAL SOURCES AND DETECTORS

I D = I so e I. where: = constant T = junction temperature [K] I so = inverse saturating current I = photovoltaic current

Unless otherwise specified, assume room temperature (T = 300 K).

Figure 1: Diode Measuring Circuit

Lesson 5. Electronics: Semiconductors Doping p-n Junction Diode Half Wave and Full Wave Rectification Introduction to Transistors-

Fall 2004 Dawn Hettelsater, Yan Zhang and Ali Shakouri, 05/09/2002

Module 04.(B1) Electronic Fundamentals

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 1 (CONT D) DIODES

Electronics The basics of semiconductor physics

CHAPTER 8 The PN Junction Diode

Ideal Diode Summary. p-n Junction. Consequently, characteristics curve of the ideal diode is given by. Ideal diode state = OF F, if V D < 0

CHAPTER 8 The pn Junction Diode

Class XII - Physics Semiconductor Electronics. Chapter-wise Problems

Solar Photovoltaic Cell Thermal Measurement Issues

Photons and solid state detection

Electronic devices-i. Difference between conductors, insulators and semiconductors

LEDs, Photodetectors and Solar Cells

APPENDIX V PRODUCT SHEETS

Diode Limiters or Clipper Circuits

18.9 Applications of Electrostatics *

Diodes. Analog Electronics Lesson 4. Objectives and Overview:

This tutorial will suit all beginners who want to learn the fundamental concepts of transistors and transistor amplifier circuits.

Investigation of Photovoltaic Properties of In:ZnO/SiO 2 /p- Si Thin Film Devices

Figure Responsivity (A/W) Figure E E-09.

NON-AMPLIFIED PHOTODETECTOR USER S GUIDE

Figure 1 Diode schematic symbol (left) and physical representation (right)

Laboratory 2: PV Module Current-Voltage Measurements

Electronic Circuits I. Instructor: Dr. Alaa Mahmoud

ENG2210 Electronic Circuits. Chapter 3 Diodes

Diodes Rectifiers, Zener diodes light emitting diodes, laser diodes photodiodes, optocouplers

Electronics I. Midterm #1

EE/COE 152: Basic Electronics. Lecture 3. A.S Agbemenu.

Unit 3: Introduction to Op- amps and Diodes

HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE

Electronics I. Midterm #1

Optical Communications

14.2 Photodiodes 411

A practical introduction to electronics for anyone in any field of practice Voltage, Current, Resistance, Power, & Diodes

Lecture 18: Photodetectors

STAND ALONE SOLAR TRACKING SYSTEM

Figure Figure E E-09. Dark Current (A) 1.

1) A silicon diode measures a low value of resistance with the meter leads in both positions. The trouble, if any, is

CHAPTER 9 CURRENT VOLTAGE CHARACTERISTICS

Class #9: Experiment Diodes Part II: LEDs

Electronic Circuits I - Tutorial 03 Diode Applications I

Applications Overview

LABORATORY INSTRUCTION NO. 8-OS a CHARACTERISTIC OF SOLAR CELLS

NON-AMPLIFIED HIGH SPEED PHOTODETECTOR USER S GUIDE

1- Light Emitting Diode (LED)

Transcription:

OpenStax-CNX module: m33803 1 Solar Cells * Andrew R. Barron Based on Solar Cells by Bill Wilson This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 note: This module is adapted from the Connexions module entitled Solar Cells by Bill Wilson. Now let us look at the opposite process of light generation for a moment. Consider the following situation where we have just a plain old normal p-n junction, only now, instead of applying an external voltage, we imagine that the junction is being illuminated with light whose photon energy is greater than the band-gap (Figure 1a). In this situation, instead of recombination, we will get photo-generation of electron hole pairs. The photons simply excite electrons from the full states in the valence band, and "kick" them up into the conduction band, leaving a hole behind. This is similiar to the thermal excitation process. As can be seen from Figure 1b, this creates excess electrons in the conduction band in the p-side of the diode, and excess holes in the valence band of the n-side. These carriers can diuse over to the junction, where they will be swept across by the built-in electric eld in the depletion region. If we were to connect the two sides of the diode together with a wire, a current would ow through that wire as a result of the electrons and holes which move across the junction. * Version 1.4: Mar 7, 2010 4:16 pm -0600 http://cnx.org/content/m1013/2.13/ http://creativecommons.org/licenses/by/3.0/

OpenStax-CNX module: m33803 2 Figure 1: A schematic representation of a p-n diode under illlumination. Which way would the current ow? A quick look at Figure 1c shows that holes (positive charge carriers) generated on the n-side will oat up to the p-side as they go across the junction. Hence positive current must be coming out of the anode, or p-side of the junction. Likewise, electrons generated on the p-side will fall down the junction potential, and come out the n-side, but since they have negative charge, this ow represents current going into the cathode. We have constructed a photovoltaic diode, or solar cell. Figure 2 is a picture of what this would look like schematically. We might like to consider the possibility of using this device as a source of energy, but the way we have things set up now, since the voltage across the diode is zero, and since power equals current times voltage, we see that we are getting nada from the cell. What we need, obviously, is a load resistor, so let's put one in. It should be clear from Figure 3 that the photo current owing through the load resistor will develop a voltage which it biases the diode in the forward direction, which, of course will cause current to ow back into the anode. This complicates things, it seems we have current coming out of the diode and current going into the diode all at the same time! How are we going to gure out what is going on?

OpenStax-CNX module: m33803 3 Figure 2: Schematic representation of a photovoltaic cell. Figure 3: Photovoltaic cell with a load resistor. The answer is to make a model. The current which arises due to the photon ux can be conveniently represented as a current source. We can leave the diode as a diode, and we have the circuit shown in Figure 4. Even though we show I out coming out of the device, we know by the usual polarity convention that when we dene V out as being positive at the top, then we should show the current for the photovoltaic, I pv as current going into the top, which is what was done in Figure 4. Note that I pv = I diode - I photo, so all we need to do is to subtract the two currents; we do this graphically in Figure 5. Note that we have numbered the four quadrants in the I-V plot of the total PV current. In quadrant I and III, the product of I and V is a positive number, meaning that power is being dissipated in the cell. For quadrant II and IV, the product of I and V is negative, and so we are getting power from the device. Clearly we want to operate in quadrant IV. In fact, without the addition of an external battery or current source, the circuit, will only run in the IV'th quadrant. Consider adjusting R L, the load resistor from 0 (a short) to (an open). With R L, we would be at point A on Figure 5. As R L starts to increase from zero, the voltage across both the diode and the resistor will start to increase also, and we will move to point B, say. As R L gets bigger and bigger, we keep moving along the curve until, at point C, where R L is an open and we have the maximum voltage across the device, but, of course, no current coming out!

OpenStax-CNX module: m33803 4 Figure 4: A model of a PV cell. Figure 5: Combining the diode and the current source. Power is V I so at B for instance, the power coming out would be represented by the area enclosed by the two dotted lines and the coordinate axes. Someplace about where I have point B would be where we would be getting the most power out of out solar cell. Figure 6 shows you what a real solar cell would look like. They are usually made from a complete wafer of silicon, to maximize the usable area. A shallow (0.25 µm) junction is made on the top, and top contacts

OpenStax-CNX module: m33803 5 are applied as stripes of metal conductor as shown. An anti-reection (AR) coating is applied on top of that, which accounts for the bluish color which a typical solar cell has (Figure 7). Figure 6: A schematic diagram of a real solar cell. Figure 7: A solar cell showing the blue tint due to the AR coating. The solar power ux on the earth's surface is (conveniently) about 1 kw/m 2 or 100 mw/cm 2. So if we made a solar cell from a 4 inch diameter wafer (typical) it would have an area of about 81cm 2 and so would

OpenStax-CNX module: m33803 6 be receiving a ux of about 8.1 Watts. Typical cell eciencies run from about 10% to maybe 15% unless special (and costly) tricks are made. This means that we will get about 1.2 Watts out from a single wafer. Looking at B on 2.59 we could guess that V out will be about 0.5 to 0.6 volts, thus we could expect to get maybe around 2.5 amps from a 4 inch wafer at 0.5 volts with 15% eciency under the illumination of one sun.