CA3096, CA3096A, CA3096C

Similar documents
CA3096, CA3096A, CA3096C

DATASHEET CA3096, CA3096A, CA3096C. Description. Applications. CA3096, CA3096A, CA3096C Essential Differences. Part Number Information.

CA3102. Dual High Frequency Differential Amplifier For Low Power Applications Up to 500MHz. Features. Applications. Ordering Information.

DATASHEET CA Applications. Pinout. Ordering Information. General Purpose NPN Transistor Array. FN483 Rev.6.00 Page 1 of 7.

CA3045, CA3046. General Purpose NPN Transistor Arrays. Features. Description. Ordering Information. Applications. Pinout.

CA3046. General Purpose NPN Transistor Array. Features. Applications. Ordering Information. Pinout. Data Sheet May 2001 File Number 341.

OBSOLETE PRODUCT RECOMMENDED REPLACEMENT PART

CA124, CA224, CA324, LM324, LM2902

DATASHEET CA3127. Features. Applications. Ordering Information. Pinout. High Frequency NPN Transistor Array. FN662 Rev.5.00 Page 1 of 9.

CA3018, CA3018A. General Purpose Transistor Arrays. Features. Applications. Part Number Information. Pinout. [ /Title () /Autho.

Features TEMP. RANGE ( C)

CA5260, CA5260A. 3MHz, BiMOS Microprocessor Operational Amplifiers with MOSFET Input/CMOS Output. Features. Description.

HA Features. 12MHz, High Input Impedance, Operational Amplifier. Applications. Pinout. Part Number Information. Data Sheet May 2003 FN2893.

HA MHz Video Buffer. Features. Applications. Ordering Information. Pinouts. Data Sheet February 6, 2006 FN2924.8

DATASHEET CA3054. Features. Applications. Ordering Information. Pinout. Dual Independent Differential Amp for Low Power Applications from DC to 120MHz

HA Features. Quad, 3.5MHz, Operational Amplifier. Applications. Pinout. Ordering Information. Data Sheet July 2004 FN2922.5

LM3046 Transistor Array

LM3046 Transistor Array

CA741, CA741C, CA1458, CA1558, LM741, LM741C, LM1458

DATASHEET HA Features. Applications. Pinout. Part Number Information. 12MHz, High Input Impedance, Operational Amplifier

HA MHz Video Buffer. Description. Features. Applications. Ordering Information. Pinouts. April 1997

HA4600. Features. 480MHz, SOT-23, Video Buffer with Output Disable. Applications. Pinouts. Ordering Information. Truth Table

CA3262A, CA3262. Quad-Gated, Inverting Power Drivers. Features. Description. Ordering Information. Pinouts. August 1997

LM3046 Transistor Array

DATASHEET HA Features. Applications. Ordering Information. Pinouts. 250MHz Video Buffer. FN2924 Rev 8.00 Page 1 of 12.

CA3290, CA3290A. BiMOS Dual Voltage Comparators with MOSFET Input, Bipolar Output. Features. Applications. Pinout. Ordering Information

DATASHEET HA Features. Applications. Pinout. Ordering Information. Quad, 3.5MHz, Operational Amplifier. FN2922 Rev 5.00 Page 1 of 8.

DATASHEET HFA3102. Features. Ordering Information. Applications. Pinout/Functional Diagram. Dual Long-Tailed Pair Transistor Array

DATASHEET ICL8069. Features. Pinouts. Ordering Information. Low Voltage Reference. FN3172 Rev.3.00 Page 1 of 6. Jan FN3172 Rev.3.00.

HA-2520, HA-2522, HA-2525

CA3080, CA3080A. 2MHz, Operational Transconductance Amplifier (OTA) Features. Applications. Pinouts. Ordering Information

SP720. Electronic Protection Array for ESD and Over-Voltage Protection. Features. [ /Title (SP720 ) /Subject. (Electronic.

LM3146 High Voltage Transistor Array

HA Features. 400MHz, Fast Settling Operational Amplifier. Applications. Ordering Information. Pinout. Data Sheet August 2002 FN2897.

CA3140, CA3140A. 4.5MHz, BiMOS Operational Amplifier with MOSFET Input/Bipolar Output. Description. Features. Applications. Ordering Information

CA3012. FM IF Wideband Amplifier. Description. Features. Applications. Ordering Information. Schematic Diagram. Pinout.

HIP V, 300mA Three Phase High Side Driver. Features. Applications. Ordering Information. Pinout. July 2004

Electronics II (02 SE048) Lab Experiment 1 (option A): BJT Differential Amplifiers

NOT RECOMMENDED FOR NEW DESIGNS

SP723 Lead-Free/Green

HA, HA Absolute Maximum Ratings Supply Voltage Between V+ and V Terminals V Differential Input Voltage V

CA3028A, CA3028B, CA3053 Differential/Cascode Amplifiers for Commercial and Industrial Equipment from DC to 120MHz

DATASHEET HA-2520, HA-2522, HA Features. Applications. Ordering Information

HP4410DY. Features. 10A, 30V, Ohm, Single N-Channel, Logic Level Power MOSFET. Symbol. Ordering Information. Packaging

LM3045 LM3046 LM3086 Transistor Arrays

DATASHEET ISL6208. Features. Applications. Related Literature. Ordering Information. Pinout. High Voltage Synchronous Rectified Buck MOSFET Driver

HA-2640, HA Features. 4MHz, High Supply Voltage Operational Amplifiers. Applications. Ordering Information. Pinouts

DATASHEET HFA1112. Features. Applications. Related Literature. Pin Descriptions. Ordering Information

HA-2520, HA-2522, HA-2525

AD7520, AD Bit, 12-Bit, Multiplying D/A Converters. Features. Ordering Information. Pinouts. Data Sheet August 2002 FN3104.

DatasheetArchive.com. Request For Quotation

HA5023. Dual 125MHz Video Current Feedback Amplifier. Features. Applications. Ordering Information. Pinout. Data Sheet September 30, 2015 FN3393.

DATASHEET CD22M3494. Features. Applications. Block Diagram. 16 x 8 x 1 BiMOS-E Crosspoint Switch. FN2793 Rev 8.00 Page 1 of 10.

HA-2600, HA Features. 12MHz, High Input Impedance Operational Amplifiers. Applications. Pinouts. Ordering Information

TEMP. PKG. -IN 1 16 S/H CONTROL PART NUMBER RANGE

DATASHEET HA4314B. Features. Ordering Information. Applications. Truth Table. 400MHz, 4x1 Video Crosspoint Switch. FN3679 Rev 12.

C 2 B 1 E 1 E 2 B 2 C 1. Top View

ISL6536A. Four Channel Supervisory IC. Features. Applications. Typical Application Schematic. Ordering Information. Data Sheet May 2004 FN9136.

Data Sheet June Features. Pinout

HA-2520, HA MHz, High Slew Rate, Uncompensated, High Input Impedance, Operational Amplifiers. Features. Applications. Ordering Information

Dual General Purpose Transistors

DATASHEET ISL6700. Features. Ordering Information. Applications. Pinouts. 80V/1.25A Peak, Medium Frequency, Low Cost, Half-Bridge Driver

HI-201HS. Features. High Speed, Quad SPST, CMOS Analog Switch. Applications. Ordering Information. Pinout (Switches Shown For Logic 1 Input) FN3123.

CD Features. 5V Low Power Subscriber DTMF Receiver. Pinouts. Ordering Information. Functional Diagram

DATASHEET X Features. Pinout. Ordering Information. Dual Digitally Controlled Potentiometers (XDCPs ) FN8187 Rev 1.

HA Features. 650ns Precision Sample and Hold Amplifier. Applications. Functional Diagram. Ordering Information. Pinout

DATASHEET HA-5102, HA Pinouts. Ordering Information. Features. Applications. Dual and Quad, 8MHz, Low Noise Operational Amplifiers

HA MHz, PRAM Four Channel Programmable Amplifiers. Features. Applications. Pinout. Ordering Information

MARKING RANGE ( C) PACKAGE DWG. # HA-2600 (METAL CAN)

NPN Silicon SEMICONDUCTOR TECHNICAL DATA MAXIMUM RATINGS THERMAL CHARACTERISTICS. ELECTRICAL CHARACTERISTICS (TA = 25 C unless otherwise noted)

CD4585BMS. CMOS 4-Bit Magnitude Comparator. Features. Pinout. Functional Diagram. Applications. Description. December 1992

HGTP7N60C3D, HGT1S7N60C3D, HGT1S7N60C3DS

DATASHEET HA Features. Applications. Ordering Information. 110MHz, High Slew Rate, High Output Current Buffer. FN2921 Rev 12.

HA Quad, 3.5MHz, Operational Amplifier. Description. Features. Applications. Ordering Information. Pinouts. November 1996

DATASHEET HC5503T. Features. Applications. Ordering Information. Block Diagram. Balanced PBX/Key System SLIC, Subscriber Line Interface Circuit

MMBT3906TT1G. General Purpose Transistors. PNP Silicon GENERAL PURPOSE AMPLIFIER TRANSISTORS SURFACE MOUNT

ISL21009MEP. Features. High Voltage Input Precision, Low Noise FGA Voltage References. Device Information. Available Options. Applications.

HI-200, HI-201. Dual/Quad SPST, CMOS Analog Switches. Features. Applications. Ordering Information. Functional Diagram FN3121.8

Features. NOTE: Non-designated pins are no connects and are not electrically connected internally.

DATASHEET X Features. Pinout. Ordering Information. Dual Digitally Controlled Potentiometers (XDCPs ) FN8186 Rev 1.

Audio, Dual-Matched NPN Transistor MAT12

DATASHEET ICL7611, ICL7612. Features. Applications. Pinouts. 1.4MHz, Low Power CMOS Operational Amplifiers. FN2919 Rev 9.

HA MHz, Fast Settling Operational Amplifier. Features. Applications. Pinout. Part Number Information. Data Sheet November 19, 2004 FN2914.

BC846BM3T5G. General Purpose Transistor. NPN Silicon

MMBT3906LT3G. PNP Silicon. Pb-Free Packages are Available. Features. MAXIMUM RATINGS THERMAL CHARACTERISTICS MARKING DIAGRAM

CA3338, CA3338A. CMOS Video Speed, 8-Bit, 50 MSPS, R2R D/A Converters. Features. Applications. Ordering Information. Pinout FN1850.

EMF5XV6T5G. Power Management, Dual Transistors. NPN Silicon Surface Mount Transistors with Monolithic Bias Resistor Network

DATASHEET HA Features. Applications. Ordering Information. Pinout. 400MHz, Fast Settling Operational Amplifier. FN2897 Rev.5.

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820

MJD44H11 (NPN) MJD45H11 (PNP) Complementary Power Transistors. DPAK For Surface Mount Applications

NSS40301MDR2G. 40 VOLTS 6.0 AMPS NPN LOW V CE(sat) TRANSISTOR EQUIVALENT R DS(on) 44 m

DATASHEET CA3080, CA3080A. Features. Applications. Pinouts. Part Number Information. 2MHz, Operational Transconductance Amplifier (OTA)

BASE 2N2906A 2N2907,A N2904A 2N2905,A P D P D mw mw/ C Watts mw/ C T J, T stg 65 to +200 C

MMBT2222L, MMBT2222AL, SMMBT2222AL. General Purpose Transistors. NPN Silicon

Matched Monolithic Quad Transistor MAT04

TVS Diode Arrays (SPA Diodes) SP723 Series 5pF 8kV Diode Array. General Purpose ESD Protection - SP723 Series. RoHS Pb GREEN.

NSTB1002DXV5T1G, NSTB1002DXV5T5G

Improved Second Source to the EL2020 ADEL2020

HA7210. Features. 10kHz to 10MHz, Low Power Crystal Oscillator. Applications. Ordering Information. Typical Application Circuit.

DATASHEET HA-5137A. Features. Applications. Ordering Information. Pinout. 63MHz, Ultra-Low Noise Precision Operational Amplifier

Transcription:

December 99 Applications Five-Independent Transistors - Three NPN and - Two PNP Differential Amplifiers DC Amplifiers Sense Amplifiers Level Shifters Timers Lamp and Relay Drivers Thyristor Firing Circuits Temperature Compensated Amplifiers Operational Amplifiers Ordering Information PART NUMBER (BRAND) TEMP. RANGE ( o C) PACKAGE PKG. NO. CA9AE - to Ld PDIP E. CA9AM (9A) - to Ld SOIC M. CA9AM9 (9A) Pinout - to Ld SOIC Tape and Reel (PDIP, SOIC) TOP VIEW M. CA9CE - to Ld PDIP E. CA9E - to Ld PDIP E. CA9M (9) - to Ld SOIC M. CA9M9 (9) - to Ld SOIC Tape and Reel Q Q Q Q Q 9 SUBSTRATE M. CA9, CA9A, CA9C Description NPN/PNP Transistor Arrays The CA9C, CA9, and CA9A are general purpose high voltage silicon transistor arrays. Each array consists of five independent transistors (two PNP and three NPN types) on a common substrate, which has a separate connection. Independent connections for each transistor permit maximum flexibility in circuit design. Types CA9A, CA9, and CA9C are identical, except that the CA9A specifications include parameter matching and greater stringency in I CBO, I CEO, and V CE (SAT). The CA9C is a relaxed version of the CA9. Essential Differences CHARACTERISTIC CA9A CA9 CA9C V (BR)CEO (V) (Min) NPN PNP - - - V (BR)CBO (V) (Min) NPN PNP - - - h FE at ma NPN - - - PNP - - - h FE at µa PNP - - - I CBO (na) (Max) NPN PNP - - - I CEO (na) (Max) NPN PNP - - - V CE SAT (V) (Max) NPN... V IO (mv) (Max) NPN - - PNP - - I IO (µa) (Max) NPN. - - PNP. - - CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. --INTERSIL or -- Copyright Intersil Corporation 999 File Number 9.

Absolute Maximum Ratings NPN PNP Collector-to-Emitter Voltage, V CEO CA9, CA9A..................... V -V CA9C............................ V -V Collector-to-Base Voltage, V CBO CA9, CA9A..................... V -V CA9C............................ V -V Collector-to-Substrate Voltage, V CIO (Note ) CA9, CA9A..................... V - CA9C............................ V - Emitter-to-Substrate Voltage, V EIO CA9, CA9A...................... - -V CA9C............................. - -V Emitter-to-Base Voltage, V EBO CA9, CA9A...................... V -V CA9C............................. V -V Collector Current, I C (All Types)............ ma -ma Operating Conditions Temperature Range.........................- o C to o C Thermal Information Thermal Resistance (Typical, Note ) θ JA ( o C/W) PDIP Package............................. 9 SOIC Package............................. Maximum Power Dissipation (Each Transistor, Note )..... mw Maximum Junction Temperature (Plastic Package)........ o C Maximum Storage Temperature Range..........- o C to o C Maximum Lead Temperature (Soldering s)............. o C (SOIC - Lead Tips Only) CAUTION: Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTES:. The collector of each transistor of the CA9 is isolated from the substrate by an integral diode. The substrate (Terminal ) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.. θ JA is measured with the component mounted on an evaluation PC board in free air.. Care must be taken to avoid exceeding the maximum junction temperature. Use the total power dissipation (all transistors) and thermal resistances to calculate the junction temperature. Electrical Specifications For Equipment Design, At T A = o C TEST CA9 CA9A CA9C PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS DC CHARACTERISTICS FOR EACH NPN TRANSISTOR I CBO V CB = V, I E = -. -. -. na I CEO V CE = V, I B = -. -. -. na V (BR)CEO I C = ma, I B = - - - V V (BR)CBO I C = µa, - - - V I E = V (BR)CIO V (BR)EBO I CI = µa, I B = I E = I E = µa, I C = - - - V - - - V V Z I Z = µa.9 9..9 9..9 9. V V CE SAT l C = ma, -.. -.. -.. V I B = ma V BE (Note ) I C = ma,..9...9...9. V h FE (Note ) V CE = V 9 9 9 V BE / T (Note ) I C = ma, V CE = V -.9 - -.9 - -.9 - mv/ o C DC CHARACTERISTICS FOR EACH PNP TRANSISTOR I CBO V CB = -V, I E = - -. - - -. - - -. - na

Electrical Specifications For Equipment Design, At T A = o C (Continued) I CEO PARAMETER V (BR)CEO V (BR)CBO V (BR)EBO V (BR)ElO V CE SAT V BE (Note ) h FE (Note ) V BE / T (Note ) TEST CONDITIONS V CE = -V, I B = I C = -µa, I B = I C = -µa, I E = I E = -µa, I C = I EI = µa, I B = I C = I C = -ma, I B = -µa I C = -µa, V CE = -V I C = -µa, V CE = -V I C = -ma, V CE = -V I C = -µa, V CE = -V - -. - - -. - - -. - na - - - - - - - - - V - - - - - - - - - V - - - - - - - - - V - - - V - -. -. - -. -. - -. -. V -. -. -. -. -. -. -. -. -. V -. - -. - -. - mv/ o C I CBO Collector-Cutoff Current V Z Emitter-to-Base Zener Voltage I CEO Collector-Cutoff Current V CE SAT Collector-to-Emitter Saturation Voltage V (BR)CEO Collector-to-Emitter Breakdown Voltage V BE Base-to-Emitter Voltage V (BR)CBO Collector-to-Base Breakdown Voltage h FE DC Forward-Current Transfer Ratio V (BR)CIO Collector-to-Substrate Breakdown Voltage V BE / T Magnitude of Temperature Coefficient: V (BR)EBO Emitter-to-Base Breakdown Voltage (for each transistor) NOTE:. Actual forcing current is via the emitter for this test. CA9 CA9A CA9C MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS Electrical Specifications For Equipment Design At T A = o C (CA9A Only) PARAMETER SYMBOL TEST CONDITIONS FOR TRANSISTORS Q AND Q (AS A DIFFERENTIAL AMPLIFIER) CA9A MIN TYP MAX UNITS Absolute Input Offset Voltage V IO V CE = V, I C = ma -. mv Absolute Input Offset Current I IO -.. µa Absolute Input Offset Voltage Temperature Coefficient V IO ----------------- T -. - µv/ o C FOR TRANSISTORS Q AND Q (AS A DIFFERENTIAL AMPLIFIER) Absolute Input Offset Voltage V IO V CE = -V, I C = -µa -. mv R S = Absolute Input Offset Current I IO - na Absolute Input Offset Voltage Temperature Coefficient V IO ----------------- T -. - µv/ o C

Electrical Specifications Typical Values Intended Only for Design Guidance At T A = o C PARAMETER SYMBOL TEST CONDITIONS DYNAMIC CHARACTERISTICS FOR EACH NPN TRANSISTOR TYPICAL VALUES UNITS Noise Figure (Low Frequency) NF f = khz, V CE = V, I C = ma, R S = kω. db Low-Frequency, Input Resistance R I f =.khz, V CE = V I C = ma kω Low-Frequency Output Resistance R O f =.khz, V CE = V I C = ma kω Admittance Characteristics Forward Transfer Admittance Input Admittance Output Admittance y g FE f = MHz, V CE = V, I C = ma. ms FE b FE f = MHz, V CE = V, I C = ma -j ms y g IE f = MHz, V CE = V, I C = ma. ms IE b IE f = MHz, V CE = V, I C = ma j. ms y g OE f = MHz, V CE = V, I C = ma. ms OE b OE f = MHz, V CE = V, I C = ma j. ms Gain-Bandwidth Product f T V CE = V, I C =.ma MHz V CE = V, I C = ma MHz Emitter-To-Base Capacitance C EB V EB = V. pf Collector-To-Base Capacitance C CB V CB = V. pf Collector-To-Substrate Capacitance C CI V CI = V. pf DYNAMIC CHARACTERISTICS FOR EACH PNP TRANSISTOR Noise Figure (Low Frequency) NF f = khz, I C = µa, R S = kω db Low-Frequency Input Resistance R I f = khz, V CE = V, I C = µa kω Low-Frequency Output Resistance R O f = khz, V CE = V, I C = µa kω Gain-Bandwidth Product f T V CE = V, I C = µa. MHz Emitter-To-Base Capacitance C EB V EB = -V. pf Collector-To-Base Capacitance C CB V CB = -V. pf Base-To-Substrate Capacitance C BI V BI = V. pf Typical Applications (SUBSTRATE) f Ω kω µf.µf Q kω Q V+ = V kω kω.µf 9 OUTPUT f Ω Q NOTE: F OR F < khz FIGURE. FREQUENCY COMPARATOR USING CA9 OUTPUT VOLTAGE (V) 9 CENTER FREQUENCY: khz - - f - f > f = f f - f > FREQUENCY DEVIATION (khz) FIGURE. FREQUENCY COMPARATOR CHARACTERISTICS

Typical Applications (Continued) V AC Q µf V + - NTC SENSOR Q Q kω kω.kω kω G MT TB MT.kΩ W Q 9 R P.kΩ kω Q LOAD FIGURE. LINE-OPERATED LEVEL SWITCH USING CA9A OR CA9 +V MOSFET Q kω kω kω Q kω Q Q kω 9 Q OUTPUT MΩ µf kω.9kω kω TIME DELAY CHANGES ±% FOR SUPPLY VOLTAGE CHANGE OF ±% FIGURE. ONE-MINUTE TIMER USING CA9A AND A MOSFET V+ V T = ± -------------- I O R L IF I O = ma AND R L = kω V T = ± mv V IN Ω kω Q Q R L kω Q Q kω Ω EO +V T V IN -V T E O t kω 9 I O Q kω V- t FIGURE. CA9A SMALL-SIGNAL ZERO VOLTAGE DETECTOR HAVING NOISE IMMUNITY

Typical Applications (Continued).V LAMP GE D OR EQUIVALENT Q Q kω kω 9 Q.MΩ Q Q kω µf kω kω (SUBSTRATE) FIGURE. TEN-SECOND TIMER OPERATED FROM.V SUPPLY USING CA9 +V kω %.kω %.kω % OUTPUT INPUT kω % Q Q Q Q kω % Q 9 NOTES:. Can be operated with either dual supply or single supply.. Wide-input common mode range +V to -V.. Low bias current: <µa. kω % kω % kω % Ω % kω % -V FIGURE. CASCADE OF DIFFERENTIAL AMPLIFIERS USING CA9A VOLTAGE GAIN (db) FIGURE. FREQUENCY RESPONSE

Typical Performance Curves ZENER CURRENT (ma) V Z - -.. 9 ZENER VOLTAGE (V) FIGURE 9. BASE-TO-EMITTER ZENER CHARACTERISTIC (NPN) COLLECTOR CUT-OFF CURRENT (pa) V CE = V - - - - - TEMPERATURE ( o C) V CE = V FIGURE. COLLECTOR CUT-OFF CURRENT (I CEO ) vs TEMPERATURE (NPN) COLLECTOR CUT-OFF CURRENT (pa) V CB = V V CB = V V CB = V - - - - - TEMPERATURE ( o C) DC FORWARD CURRENT TRANSFER RATIO T A = o C T A = o C T A = - o C.. FIGURE. COLLECTOR CUT-OFF CURRENT (I CBO ) vs TEMPERATURE (NPN) FIGURE. TRANSISTOR (NPN) h FE vs COLLECTOR CURRENT.9 V CE = V BASE TO EMITTER VOLTAGE (V).... BASE TO EMITTER VOLTAGE (V).9.... I C = ma,.mv/ o C I C = ma,.mv/ o C I C = ma,.9mv/ o C I C = µa,.mv/ o C.... - - TEMPERATURE ( o C) FIGURE. V BE (NPN) vs COLLECTOR CURRENT FIGURE. V BE (NPN) vs TEMPERATURE

Typical Performance Curves (Continued) COLLECTOR TO EMITTER SATURATION VOLTAGE (V)..... T A = o C T A = o C β = T A = - o C... COLLECTOR CUT-OFF CURRENT (pa) V CE = -V V CE = -V V CE = -V - - TEMPERATURE ( o C) FIGURE. V CE SAT (NPN) vs COLLECTOR CURRENT FIGURE. COLLECTOR CUT-OFF CURRENT (I CEO ) vs TEMPERATURE (PNP) COLLECTOR CUT-OFF CURRENT (pa) V CB = -V V CB = -V V CB = -V - - TEMPERATURE ( o C) DC FORWARD CURRENT TRANSFER RATIO V CE = V 9 V CE = V V CE = V... FIGURE. COLLECTOR CUT-OFF CURRENT (I CBO ) vs TEMPERATURE (PNP) FIGURE. TRANSISTOR (PNP) h FE vs COLLECTOR CURRENT DC FORWARD CURRENT TRANSFER RATIO V CE = V I C = µa I C = µa I C = ma I C = ma - - TEMPERATURE ( o C) BASE TO EMITTER VOLTAGE (V)..9........ V CE = V... FIGURE 9. TRANSISTOR (PNP) h FE vs TEMPERATURE FIGURE. V BE (PNP) vs COLLECTOR CURRENT

Typical Performance Curves (Continued) BASE TO EMITTER VOLTAGE (V).9 I C = ma, V BE / T -.9mV/ o C.. I C = ma, -.mv/ o C. I C = µa, -.mv/ o C.. - - TEMPERATURE ( o C) MAGNITUDE OF INPUT OFFSET VOLTAGE (mv).9........... FIGURE. V BE (PNP) vs TEMPERATURE FIGURE. MAGNITUDE OF INPUT OFFSET VOLTAGE V IO vs COLLECTOR CURRENT FOR NPN TRANSISTOR Q - Q MAGNITUDE OF INPUT OFFSET VOLTAGE (mv)....... NOISE FIGURE (db) R SOURCE = Ω I C = ma ma µa µa... FIGURE. MAGNITUDE OF INPUT OFFSET VOLTAGE V IO vs COLLECTOR CURRENT FOR PNP TRANSISTOR Q - Q FIGURE. NOISE FIGURE vs FREQUENCY FOR NPN TRANSISTORS NOISE FIGURE (db) I C = ma ma µa R SOURCE = kω NOISE FIGURE (db) R SOURCE = kω I C = ma µa ma µa µa.. FIGURE. NOISE FIGURE vs FREQUENCY FOR NPN TRANSISTORS... FIGURE. NOISE FIGURE vs FREQUENCY FOR NPN TRANSISTORS 9

Typical Performance Curves (Continued) NOISE FIGURE (db) µa µa I C = ma R SOURCE = kω R SOURCE = MΩ µa GAIN-BANDWIDTH PRODUCT (MHz) V CE = V µa.... FIGURE. NOISE FIGURE vs FREQUENCY FOR NPN TRANSISTORS FIGURE. GAIN-BANDWIDTH PRODUCT vs COLLECTOR CURRENT (NPN).. f = khz CAPACITANCE (pf)..... C EB C CI INPUT RESISTANCE (kω) PNP NPN. C CB 9 BIAS VOLTAGE (V) FIGURE 9. CAPACITANCE vs BIAS VOLTAGE (NPN).. FIGURE. INPUT RESISTANCE vs COLLECTOR CURRENT OUTPUT RESISTANCE (kω) f = khz NPN PNP... FORWARD TRANSFER CONDUCTANCE (g FE ) OR FORWARD TRANSFER SUSCEPTANCE (b FE ) (ms) - - g FE b FE I C = ma ma g FE µa b FE µa FREQUENCY (MHz) FIGURE. OUTPUT RESISTANCE vs COLLECTOR CURRENT FIGURE. FORWARD TRANSCONDUCTANCE vs FREQUENCY

Typical Performance Curves (Continued) g IE INPUT CONDUCTANCE (g IE ) OR INPUT SUSCEPTANCE (b IE ) (ms) b IE µa µa ma I C = ma ma ma µa µa FREQUENCY (MHz) OUTPUT CONDUCTANCE (g OE ) OR OUTPUT SUSCEPTANCE (b OE ) (ms)..... µa b OE I C = ma b OE µa g OE ma g OE FREQUENCY (MHz) FIGURE. INPUT ADMITTANCE vs FREQUENCY FIGURE. OUTPUT ADMITTANCE vs FREQUENCY RSOURCE = Ω R SOURCE = kω NOISE FIGURE (db) µa µa I C = ma NOISE FIGURE (db) µa µa I C = ma... FIGURE. NOISE FIGURE vs FREQUENCY (PNP).. FIGURE. NOISE FIGURE vs FREQUENCY (PNP) R SOURCE = kω V CE = V NOISE FIGURE (db) µa µa I C = ma GAIN-BANDWIDTH PRODUCT (MHz)... FIGURE. NOISE FIGURE vs FREQUENCY (PNP).. FIGURE. GAIN-BANDWIDTH PRODUCT vs COLLECTOR CURRENT (PNP)

Typical Performance Curves (Continued) CAPACITANCE (pf) C BC C BI C BE 9 BIAS VOLTAGE (V) Metallization Mask Layout FIGURE 9. CAPACITANCE vs BIAS VOLTAGE (PNP) CA9H - (.9-.) - (.-.) - (.9-.) Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils ( - inch). The photographs and dimensions represent a chip when it is part of the wafer. When the wafer is cut into chips, the cleavage angles are degrees instead of 9 degrees with respect to the face of the chip. Therefore, the isolated chip is actually mils (.mm) larger in both dimensions.

Dual-In-Line Plastic Packages (PDIP) BASE PLANE SEATING PLANE D B B D e D -C- A. (.) M C A NOTES:. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.. Dimensioning and tolerancing per ANSI Y.M-9.. Symbols are defined in the MO Series Symbol List in Section. of Publication No. 9.. Dimensions A, A and L are measured with the package seated in JE- DEC seating plane gauge GS-.. D, D, and E dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed. inch (.mm).. E and e A are measured with the leads constrained to be perpendicular to datum -C-.. e B and e C are measured at the lead tips with the leads unconstrained. e C must be zero or greater.. B maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed. inch (.mm). 9. N is the maximum number of terminal positions.. Corner leads (, N, N/ and N/ + ) for E., E., E., E., E. will have a B dimension of. -. inch (. -.mm). A L B S A e C E C L e A e B C E. (JEDEC MS--BB ISSUE D) LEAD DUAL-IN-LINE PLASTIC PACKAGE INCHES MILLIMETERS SYMBOL MIN MAX MIN MAX NOTES A -. -. A. -.9 - A..9.9.9 - B.... - B...., C.... - D... 9. D. -. - E.... E.... e. BSC. BSC - e A. BSC. BSC e B -. -.9 L...9. N 9 Rev. /9

Small Outline Plastic Packages (SOIC) N INDEX AREA e D B.(.) M C A M E -B- -A- -C- SEATING PLANE A B S H.(.) M B A α.(.) L M h x o NOTES:. Symbols are defined in the MO Series Symbol List in Section. of Publication Number 9.. Dimensioning and tolerancing per ANSI Y.M-9.. Dimension D does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed.mm (. inch) per side.. Dimension E does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed.mm (. inch) per side.. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.. L is the length of terminal for soldering to a substrate.. N is the number of terminal positions.. Terminal numbers are shown for reference only. 9. The lead width B, as measured.mm (. inch) or greater above the seating plane, shall not exceed a maximum value of.mm (. inch).. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact. C M. (JEDEC MS--AC ISSUE C) LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE INCHES MILLIMETERS SYMBOL MIN MAX MIN MAX NOTES A.... - A..9.. - B.... 9 C..9.9. - D.9.9 9.. E.9... e. BSC. BSC - H.... - h.99.9.. L.... N α o o o o - Rev. /9 All Intersil semiconductor products are manufactured, assembled and tested under ISO9 quality systems certification. Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box, Mail Stop - Melbourne, FL 9 TEL: () - FAX: () - EUROPE Intersil SA Mercure Center, Rue de la Fusee Brussels, Belgium TEL: ().. FAX: ()... ASIA Intersil (Taiwan) Ltd. Taiwan Limited F-, No. Fu Hsing North Road Taipei, Taiwan Republic of China TEL: () 9 FAX: () 9