Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember

Similar documents
Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline

Waves & Oscillations


Lenses Design Basics. Introduction. RONAR-SMITH Laser Optics. Optics for Medical. System. Laser. Semiconductor Spectroscopy.

Applied Optics. , Physics Department (Room #36-401) , ,

Astronomy 80 B: Light. Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson

Optical design of a high resolution vision lens

Fiber Optic Communications

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Optical System Design

Converging and Diverging Surfaces. Lenses. Converging Surface

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name:

Heisenberg) relation applied to space and transverse wavevector

ECEG105/ECEU646 Optics for Engineers Course Notes Part 4: Apertures, Aberrations Prof. Charles A. DiMarzio Northeastern University Fall 2008

Collimation Tester Instructions

Optical Systems: Pinhole Camera Pinhole camera: simple hole in a box: Called Camera Obscura Aristotle discussed, Al-Hazen analyzed in Book of Optics

OPTICAL SYSTEMS OBJECTIVES

Applications of Optics

Lens Design I Seminar 5

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term

Ch 24. Geometric Optics

Phys214 Fall 2004 Midterm Form A

Mirrors and Lenses. Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses.

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Chapter 25 Optical Instruments

Performance Factors. Technical Assistance. Fundamental Optics

COURSE NAME: PHOTOGRAPHY AND AUDIO VISUAL PRODUCTION (VOCATIONAL) FOR UNDER GRADUATE (FIRST YEAR)

Lecture PowerPoint. Chapter 25 Physics: Principles with Applications, 6 th edition Giancoli

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge).

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36

EE119 Introduction to Optical Engineering Spring 2002 Final Exam. Name:

25 cm. 60 cm. 50 cm. 40 cm.

CREATING ROUND AND SQUARE FLATTOP LASER SPOTS IN MICROPROCESSING SYSTEMS WITH SCANNING OPTICS Paper M305

Laboratory experiment aberrations

Chapter Ray and Wave Optics

Solution of Exercises Lecture Optical design with Zemax Part 6

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name:

Using Stock Optics. ECE 5616 Curtis

Lecture 3: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature:

Final Reg Optics Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

IMAGE SENSOR SOLUTIONS. KAC-96-1/5" Lens Kit. KODAK KAC-96-1/5" Lens Kit. for use with the KODAK CMOS Image Sensors. November 2004 Revision 2

Optical Design with Zemax

Lens Design II Seminar 6 (Solutions)

Introduction to Optical Modeling. Friedrich-Schiller-University Jena Institute of Applied Physics. Lecturer: Prof. U.D. Zeitner

AST Lab exercise: aberrations

1.1 Singlet. Solution. a) Starting setup: The two radii and the image distance is chosen as variable.

Aberrations of a lens

Exam 4. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Long Wave Infrared Scan Lens Design And Distortion Correction

Explanation of Aberration and Wavefront

Better Imaging with a Schmidt-Czerny-Turner Spectrograph

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS

Photolithography II ( Part 2 )

Beam expansion standard concepts re-interpreted

Cameras, lenses and sensors

Design of Large Working Area F-Theta Lens. Gong Chen

Tutorial Zemax Introduction 1

ME 297 L4-2 Optical design flow Analysis

Chapter 18 Optical Elements

CCAM Microscope Objectives

Introduction to Light Microscopy. (Image: T. Wittman, Scripps)

General Physics II. Ray Optics

Lens Design I Seminar 1

Optical Engineering 421/521 Sample Questions for Midterm 1

Optical Components - Scanning Lenses

CHAPTER TWO METALLOGRAPHY & MICROSCOPY

Section A Conceptual and application type questions. 1 Which is more observable diffraction of light or sound? Justify. (1)

Multi-Element Overview

Cardinal Points of an Optical System--and Other Basic Facts

PHYSICS FOR THE IB DIPLOMA CAMBRIDGE UNIVERSITY PRESS

BEAM HALO OBSERVATION BY CORONAGRAPH

Study on Imaging Quality of Water Ball Lens

Microscope anatomy, image formation and resolution

DPMPHOTONICS. Precision Optics Catalog. P.O. Box 3002 Vernon, CT Tel: (860) Fax: (860)

Chapter 23. Mirrors and Lenses

Big League Cryogenics and Vacuum The LHC at CERN

ADVANCED OPTICS LAB -ECEN Basic Skills Lab

Criteria for Optical Systems: Optical Path Difference How do we determine the quality of a lens system? Several criteria used in optical design

MicroSpot FOCUSING OBJECTIVES

Waves & Oscillations

UNIVERSITY OF NAIROBI COLLEGE OF EDUCATION AND EXTERNAL STUDIES

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad.

OPAL. SpotOptics. AUTOMATED WAVEFRONT SENSOR Single and double pass O P A L

Image Formation Fundamentals

Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Aberrations and adaptive optics for biomedical microscopes

The Brownie Camera. Lens Design OPTI 517. Prof. Jose Sasian

Modulation Transfer Function

Tutorial Zemax 8: Correction II

The Importance of Wavelengths on Optical Designs

Point Spread Function. Confocal Laser Scanning Microscopy. Confocal Aperture. Optical aberrations. Alternative Scanning Microscopy

Average: Standard Deviation: Max: 99 Min: 40

AP Physics Problems -- Waves and Light

Diffractive Axicon application note

PHY 431 Homework Set #5 Due Nov. 20 at the start of class

Light sources can be natural or artificial (man-made)

Reflectors vs. Refractors

Transcription:

Günter Toesko - Laserseminar BLZ im Dezember 2009 1

Aberrations An optical aberration is a distortion in the image formed by an optical system compared to the original. It can arise for a number of reasons due to the limitations of optical components such as lenses and mirrors. Günter Toesko - Laserseminar BLZ im Dezember 2009 2

Spherical aberration occurs in a spherical lens or mirror because these do not focus parallel rays to a point, but instead along a line. Therefore, off-axis rays are brought to a focus closer to the lens or mirror than are on-axis rays. Günter Toesko - Laserseminar BLZ im Dezember 2009 3

Spherical aberration Günter Toesko - Laserseminar BLZ im Dezember 2009 4

Astigmatism occurs in lenses because a lens has different focal lengths for rays of different orientations, resulting in a distortion of the image. In particular, rays of light from horizontal and vertical lines in a plane on the object are not focused to the same plane on the edges of the image. Günter Toesko - Laserseminar BLZ im Dezember 2009 5

Astigmatism Günter Toesko - Laserseminar BLZ im Dezember 2009 6

Astigmatism Günter Toesko - Laserseminar BLZ im Dezember 2009 7

Distortion is caused because the transverse magnification may be a function of the off-axis image distance. Distortion is classified as positive (so-called pincushion distortion), or negative (socalled barrel distortion Günter Toesko - Laserseminar BLZ im Dezember 2009 8

Field curvature results because the focal plane is actually not planar, but spherical. Günter Toesko - Laserseminar BLZ im Dezember 2009 9

Field curvature Günter Toesko - Laserseminar BLZ im Dezember 2009 10

Astigmatism, Distortion, Field curvature Günter Toesko - Laserseminar BLZ im Dezember 2009 11

Chromatic aberration occurs in lenses because lenses bring different colors of light to a focus at different points as the refractive index changes with the wavelength. V = Abbe number = measure of a material s dispersion f1 * V1 + f2 * V2 = 0 1/f = 1/f1 + 1/f2 Günter Toesko - Laserseminar BLZ im Dezember 2009 12

Chromatic aberration single lens Günter Toesko - Laserseminar BLZ im Dezember 2009 13

Chromatic aberration - achromat Günter Toesko - Laserseminar BLZ im Dezember 2009 14

Coma occurs because off-axis rays no not quite converge at the focal plane. Günter Toesko - Laserseminar BLZ im Dezember 2009 15

Coma Günter Toesko - Laserseminar BLZ im Dezember 2009 16

Fiber collimator to be used with an optical fiber to provide a collimated beam focal length depending on the NA and the required collimated beam diameter single or multi-element system depending on fiber core diameter Günter Toesko - Laserseminar BLZ im Dezember 2009 17

Collimator - Basics focal length f θ D NA = 1 2 F # = sin( Θ) f F # = D = 2 f NA D Günter Toesko - Laserseminar BLZ im Dezember 2009 18

Collimator - single lens or multi element NA=0,14, f=80 mm D=? Günter Toesko - Laserseminar BLZ im Dezember 2009 19

Collimator - single lens or multi element Günter Toesko - Laserseminar BLZ im Dezember 2009 20

Afocal telescopes to provide a collimated beam with a certain diameter (magnified or de-magnified) at least 2 lens elements Galilei > no internal focus Kepler > spacial filter possible beam waist radius scales invers to divergence angle wavefront maintanance lens material depending on the wavelength adjustable divergence Günter Toesko - Laserseminar BLZ im Dezember 2009 21

Afocal Telescopes wavelength 355 nm input aperture 10 mm magnification 3.0 fully diffraction limited adjustable divergence Günter Toesko - Laserseminar BLZ im Dezember 2009 22

Afocal Zoom Telescopes to provide a collimated beam with a certain diameter achieved by a variable (de-)magnification factor at least 3 lens elements depending on requirements Galilei > no internal focus Kepler > spacial filter possible beam waist radius scales invers to divergence angle wavefront maintanance lens material depending on the wavelength adjustable divergence Günter Toesko - Laserseminar BLZ im Dezember 2009 23

Zoom Beam Expander input aperture 18 mm magnification 1.5 2.5 fully diffraction limited total length remains constant Günter Toesko - Laserseminar BLZ im Dezember 2009 24

F-theta scan lens y = f * theta [rad] flat field at the image plane while standard focusing lenses deliver a focused spot to only one point, scan lenses deliver a focused spot to many points on a scan field or workpiece. typical applications: laser materials Processing, e.g. marking, plastics welding, trimming, structuring of thin film solar cells rapid manufacturing, e.g. laser sintering, rapid tooling... Günter Toesko - Laserseminar BLZ im Dezember 2009 25

F-theta scan lens single element XY Scanner Günter Toesko - Laserseminar BLZ im Dezember 2009 26

F-theta scan lens single element Günter Toesko - Laserseminar BLZ im Dezember 2009 27

F-theta scan lens multi element for fixed focus Günter Toesko - Laserseminar BLZ im Dezember 2009 28

F-theta scan lens multi element for fixed focus Günter Toesko - Laserseminar BLZ im Dezember 2009 29

F-theta scan lens a real one cover glass lens elements X mirror Y mirror Günter Toesko - Laserseminar BLZ im Dezember 2009 30

F-theta scan lens a real one Günter Toesko - Laserseminar BLZ im Dezember 2009 31

Telecentric F-theta lens round spot shape typical deviation from telecentricity in a XY scan system: <1 smallest spot size variation in the image field large fields > large lens diameters > costs Günter Toesko - Laserseminar BLZ im Dezember 2009 32

focal diameter (1/e²) = Focal diameter - Basics 2 λ f k M D D = 1/e² diameter prior focussing k = scale factor 4/π = 1.27 for an unclipped beam (k/d 0.25) clear aperture diameter 2 * 1/e² beam diameter truncation loss approx. 0.03% 1.41 (k/d 0.21) clear aperture diameter 1.5 * 1/e² beam diameter truncation loss approx. 1% 1.83 (k/d 0.18) 1/e² beam diameter = clear aperture diameter, truncation loss approx. 13.5% Günter Toesko - Laserseminar BLZ im Dezember 2009 33

Focal diameter - Basics 2 fiber: NA = 0.14, f = 80 mm D = 22.4 mm BPP = M²*Lambda/Pi = NA * fiber core radius e.g. fiber core radius 100 µm M² 41 (1.064nm) M² = beam quality factor = 1 for a perfect Gaussian beam > 1 for real lasers Günter Toesko - Laserseminar BLZ im Dezember 2009 34

Focal diameter (1/e²) - Example fiber: NA = 0.14, f = 80 mm D = 22.4 mm fiber core diameter 200 µm f-theta scan lens with f = 160 mm spot size: using M²=41 (1.064nm) 400 µm ratio of focal lengths 160/80 = 2 X fibre core diameter 400 µm Günter Toesko - Laserseminar BLZ im Dezember 2009 35

Focal diameter (1/e²) - Example Günter Toesko - Laserseminar BLZ im Dezember 2009 36

Focal diameter - Example image width 500 µm image width 200 µm for M²=1 (single mode fiber) aberration free spot 30 µm Günter Toesko - Laserseminar BLZ im Dezember 2009 37

Ghosts! unwanted back-reflections can destroy scan mirrors or lens elements low M² values can result in diffraction limited ghosts Günter Toesko - Laserseminar BLZ im Dezember 2009 38

Color corrected lens systems online inspection different wavelengths in one system Günter Toesko - Laserseminar BLZ im Dezember 2009 39

Color corrected lens systems Beamexpander Günter Toesko - Laserseminar BLZ im Dezember 2009 40

Color corrected lens systems Fused silica focussing lens spot @ 1,064 nm Günter Toesko - Laserseminar BLZ im Dezember 2009 41

Color corrected lens systems fused silica focussing lens CCD ideal lens, i.e. no aberrations fused silica focussing lens f=120mm CCD lens with f=120 mm diffracton limited @ 1,064 nm CCD 6.4 mm x 4.8 mm (½ ) visible range magnification 1, i.e. FOV ½ Günter Toesko - Laserseminar BLZ im Dezember 2009 42

Color corrected lens systems fused silica focussing lens original ups... Günter Toesko - Laserseminar BLZ im Dezember 2009 43

Color corrected lens systems the solution! spot @ 1,064 nm Günter Toesko - Laserseminar BLZ im Dezember 2009 44

Color corrected lens systems the solution! lens system with a mix of lens materials diffraction limited focus for 1,064 nm very good image quality even for small CCD pixels (here 10 µm) Günter Toesko - Laserseminar BLZ im Dezember 2009 45

Color corrected lens systems f-theta lens F-Theta objective CCD objective Günter Toesko - Laserseminar BLZ im Dezember 2009 46

Color corrected lens systems f-theta lens color corrected for 532/1,064nm focal length 254 mm dual AR coating beam diameter 15 mm Günter Toesko - Laserseminar BLZ im Dezember 2009 47

Color corrected lens systems f-theta lens original center of scan field LED illumination 532 nm +/- 10 nm Günter Toesko - Laserseminar BLZ im Dezember 2009 48

Color corrected lens systems f-theta lens corner of scan field > small lateral color error Günter Toesko - Laserseminar BLZ im Dezember 2009 49

Color corrected lens systems f-theta lens lens system with a mix of lens materials diffraction limited focus for 1,064 nm and 532 nm LED bandwidth of 20 nm at 532 nm acceptable very good image quality even for small CCD pixels (here 10 µm) color correction pays off! Günter Toesko - Laserseminar BLZ im Dezember 2009 50

It is over now... Günter Toesko - Laserseminar BLZ im Dezember 2009 51