WIDE-BAND HIGH ISOLATION SUBHARMONICALLY PUMPED RESISTIVE MIXER WITH ACTIVE QUASI- CIRCULATOR

Similar documents
A COMPACT DOUBLE-BALANCED STAR MIXER WITH NOVEL DUAL 180 HYBRID. National Cheng-Kung University, No. 1 University Road, Tainan 70101, Taiwan

HIGHLY INTEGRATED MINIATURE-SIZED SINGLE SIDEBAND SUBHARMONIC KA-BAND UP-CONVERTER

A 9 21 GHz MINIATURE MONOLITHIC IMAGE REJECT MIXER IN 0.18-µM CMOS TECHNOLOGY

A GHz HIGH IMAGE REJECTION RATIO SUB- HARMONIC MIXER. National Cheng-Kung University, Tainan 701, Taiwan

BALANCED MIXERS USING WIDEBAND SYMMETRIC OFFSET STACK BALUN IN 0.18 µm CMOS

INTEGRATED COMPACT BROAD KA-BAND SUB-HA- RMONIC SINGLE SIDEBAND UP-CONVERTER MMIC

A COMPACT WIDEBAND MATCHING 0.18-µM CMOS UWB LOW-NOISE AMPLIFIER USING ACTIVE FEED- BACK TECHNIQUE

H.-W. Wu Department of Computer and Communication Kun Shan University No. 949, Dawan Road, Yongkang City, Tainan County 710, Taiwan

A 6 : 1 UNEQUAL WILKINSON POWER DIVIDER WITH EBG CPW

LINEARITY IMPROVEMENT OF CASCODE CMOS LNA USING A DIODE CONNECTED NMOS TRANSISTOR WITH A PARALLEL RC CIRCUIT

PARALLEL coupled-line filters are widely used in microwave

Exact Synthesis of Broadband Three-Line Baluns Hong-Ming Lee, Member, IEEE, and Chih-Ming Tsai, Member, IEEE

A 38 TO 44 GHz SUB-HARMONIC BALANCED HBT MIXER WITH INTEGRATED MINIATURE SPIRAL TYPE MARCHAND BALUN

An Area efficient structure for a Dual band Wilkinson power divider with flexible frequency ratios

A Volterra Series Approach for the Design of Low-Voltage CG-CS Active Baluns

Design of 340 GHz 2 and 4 Sub-Harmonic Mixers Using Schottky Barrier Diodes in Silicon-Based Technology

Progress In Electromagnetics Research C, Vol. 32, 43 52, 2012

MODERN microwave communication systems require

A 10:1 UNEQUAL GYSEL POWER DIVIDER USING A CAPACITIVE LOADED TRANSMISSION LINE

Highly linear common-gate mixer employing intrinsic second and third order distortion cancellation

4-Bit Ka Band SiGe BiCMOS Digital Step Attenuator

Compact Dual-Band Microstrip BPF with Multiple Transmission Zeros for Wideband and WLAN Applications

New Design Formulas for Impedance-Transforming 3-dB Marchand Baluns Hee-Ran Ahn, Senior Member, IEEE, and Sangwook Nam, Senior Member, IEEE

PRODUCT APPLICATION NOTES

Design of a Compact and High Selectivity Tri-Band Bandpass Filter Using Asymmetric Stepped-impedance Resonators (SIRs)

/$ IEEE

37-40GHz MMIC Sub-Harmonically Pumped Image Rejection Diode Mixer

A Folded SIR Cross Coupled WLAN Dual-Band Filter

DUAL-WIDEBAND BANDPASS FILTERS WITH EX- TENDED STOPBAND BASED ON COUPLED-LINE AND COUPLED THREE-LINE RESONATORS

Broadband analog phase shifter based on multi-stage all-pass networks

MINIATURIZED MICROSTRIP DUAL-BAND BANDS- STOP FILTERS USING TRI-SECTION STEPPED- IMPEDANCE RESONATORS

WIDE-BAND circuits are now in demand as wide-band

Design technique of broadband CMOS LNA for DC 11 GHz SDR

RECENTLY, the fast growing wireless local area network

A GHz MONOLITHIC GILBERT CELL MIXER. Andrew Dearn and Liam Devlin* Introduction

A COMPACT DUAL-BAND POWER DIVIDER USING PLANAR ARTIFICIAL TRANSMISSION LINES FOR GSM/DCS APPLICATIONS

X. Wu Department of Information and Electronic Engineering Zhejiang University Hangzhou , China

Progress In Electromagnetics Research C, Vol. 12, , 2010

MULTIFUNCTIONAL circuits configured to realize

High-Selectivity UWB Filters with Adjustable Transmission Zeros

Compact Microstrip UWB Power Divider with Dual Notched Bands Using Dual-Mode Resonator

A Passive X-Band Double Balanced Mixer Utilizing Diode Connected SiGe HBTs

CHAPTER 4. Practical Design

Compact Planar Quad-Band Bandpass Filter for Application in GPS, WLAN, WiMAX and 5G WiFi

CMOS 120 GHz Phase-Locked Loops Based on Two Different VCO Topologies

K-BAND HARMONIC DIELECTRIC RESONATOR OS- CILLATOR USING PARALLEL FEEDBACK STRUC- TURE

A Triple-Band Voltage-Controlled Oscillator Using Two Shunt Right-Handed 4 th -Order Resonators

Design of low-loss 60 GHz integrated antenna switch in 65 nm CMOS

Compact Microstrip Dual-Band Quadrature Hybrid Coupler for Mobile Bands

Design approach for I-Q Modulators using Millimeter-Wave Monolithic Doubly Balanced V-Band Star Mixers

SIZE REDUCTION AND HARMONIC SUPPRESSION OF RAT-RACE HYBRID COUPLER USING DEFECTED MICROSTRIP STRUCTURE

Miniaturized Wilkinson Power Divider with nth Harmonic Suppression using Front Coupled Tapered CMRC

DISTRIBUTED amplification is a popular technique for

Design and Simulation of 5GHz Down-Conversion Self-Oscillating Mixer

/$ IEEE

THE DESIGN AND FABRICATION OF A HIGHLY COM- PACT MICROSTRIP DUAL-BAND BANDPASS FILTER

Analysis and design of lumped element Marchand baluns

A CPW-fed Microstrip Fork-shaped Antenna with Dual-band Circular Polarization

A High Gain and Improved Linearity 5.7GHz CMOS LNA with Inductive Source Degeneration Topology

CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN

A 3 8 GHz Broadband Low Power Mixer

White Paper. A High Performance, GHz MMIC Frequency Multiplier with Low Input Drive Power and High Output Power. I.

Frequency Multipliers Design Techniques and Applications

Compact Wideband Quadrature Hybrid based on Microstrip Technique

Progress In Electromagnetics Research Letters, Vol. 23, , 2011

DESIGN OF A TRIPLE-PASSBAND MICROSTRIP BAND- PASS FILTER WITH COMPACT SIZE

1-13GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS

A Compact GHz Ultra-Wideband Low-Noise Amplifier in 0.13-m CMOS Po-Yu Chang and Shawn S. H. Hsu, Member, IEEE

Chapter 6. Case Study: 2.4-GHz Direct Conversion Receiver. 6.1 Receiver Front-End Design

In modern wireless. A High-Efficiency Transmission-Line GaN HEMT Class E Power Amplifier CLASS E AMPLIFIER. design of a Class E wireless

Progress In Electromagnetics Research, Vol. 107, , 2010

Voltage-variable attenuator MMIC using phase cancellation

Complex Impedance-Transformation Out-of-Phase Power Divider with High Power-Handling Capability

A MINIATURIZED OPEN-LOOP RESONATOR FILTER CONSTRUCTED WITH FLOATING PLATE OVERLAYS

Dual band planar hybrid coupler with enhanced bandwidth using particle swarm optimization technique

Aspemyr, Lars; Jacobsson, Harald; Bao, Mingquan; Sjöland, Henrik; Ferndal, Mattias; Carchon, G

DESIGN OF 3 TO 5 GHz CMOS LOW NOISE AMPLIFIER FOR ULTRA-WIDEBAND (UWB) SYSTEM

A Miniaturized 70-GHz Broadband Amplifier in 0.13-m CMOS Technology Jun-De Jin and Shawn S. H. Hsu, Member, IEEE

A 600 GHz Varactor Doubler using CMOS 65nm process

Progress In Electromagnetics Research Letters, Vol. 9, 59 66, 2009

IN RECENT years, wireless communication systems have

Design of High Gain and Low Noise CMOS Gilbert Cell Mixer for Receiver Front End Design

ANALYSIS AND DESIGN OF TWO LAYERED ULTRA WIDE BAND PASS FILTER WITH WIDE STOP BAND. D. Packiaraj

RFIC DESIGN EXAMPLE: MIXER

Design of a Broadband HEMT Mixer for UWB Applications

Broadband Rectangular Waveguide to GCPW Transition

Design of a CMOS Distributed Power Amplifier with Gradual Changed Gain Cells

PSEUDO-INTERDIGITAL BANDPASS FILTER WITH TRANSMISSION ZEROS

The Design of E-band MMIC Amplifiers

Quiz2: Mixer and VCO Design

Dual-band LNA Design for Wireless LAN Applications. 2.4 GHz LNA 5 GHz LNA Min Typ Max Min Typ Max

ALTHOUGH zero-if and low-if architectures have been

A low noise amplifier with improved linearity and high gain

Broadband Substrate to Substrate Interconnection

A NOVEL COUPLING METHOD TO DESIGN A MI- CROSTRIP BANDPASS FILER WITH A WIDE REJEC- TION BAND

REFERENCES. [1] P. J. van Wijnen, H. R. Claessen, and E. A. Wolsheimer, A new straightforward

A FIXED-TUNED 400 GHz SUBHARIVIONIC MIXER

A 7-GHz 1.8-dB NF CMOS Low-Noise Amplifier

Design of Asymmetric Dual-Band Microwave Filters

ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8

Transcription:

Progress In Electromagnetics Research Letters, Vol. 18, 135 143, 2010 WIDE-BAND HIGH ISOLATION SUBHARMONICALLY PUMPED RESISTIVE MIXER WITH ACTIVE QUASI- CIRCULATOR W. C. Chien, C.-M. Lin, C.-H. Liu, S.-H. Hung and Y.-H. Wang Institute of Microelectronics, Department of Electrical Engineering National Cheng-Kung University No. 1 University Road, Tainan City 701, Taiwan, R.O.C. Abstract A novel subharmonically pumped resistive mixer (SH- PRM) with a core chip dimension of 0.64 0.65 mm 2 is fabricated through a standard 0.18 µm CMOS process. An impedancetransforming active quasi-circulator is monolithically integrated with an nmos field-effect transistor (FET) to perform up-converter mixing while simultaneously enhancing all port isolation through a broadband operation. The design analysis of impedance-transforming active quasi-circulator is also presented for matching between circulator and resistive transistor. As shown in the measured results, the mixer exhibits a 9 14.5 db conversion loss. All port-to-port isolations better than 16.5 db over a radio frequency (RF) of 10 20 GHz can be achieved. 1. INTRODUCTION With the substantial interest in the emerging millimeter-wave CMOS communication systems, more and more attention is being given to complete systems-on-a-chip. There is a significant potential to integrate whole devices into a portable system for global positioning system, wireless local area network, and wireless personal area network applications. Consequently, the essential issue for millimeterwave designers is to investigate the compact, low-cost, low-power, broadband, and high-performance CMOS transceivers in the modern millimeter-wave realm. In general, the mixing mechanism of most mixers employs the fundamental local oscillation (LO) signal to perform frequency Received 13 September 2010, Accepted 20 October 2010, Scheduled 2 November 2010 Corresponding author: Yeong-Her Wang (YHW@eembox.ncku.edu.tw).

136 Chien et al. conversion. Although realizing a voltage-controlled oscillator (VCO) directly at the desired high frequency band in CMOS technology is possible, the resulting VCO would suffer from the increase of phase noise and degradation of the output power due to the degradation of the resonator quality used for the oscillator. Compared with the fundamental mixer, the subharmonic mixer (SHM) requires only a fraction of the LO frequency. This outcome makes the local oscillator sources more reliable and less expensive. Moreover, the doubler chain with amplifier buffer can be eliminated completely to economize the use of chip area and reduce power consumption further. Previously, several SHMs constructed from open/short stubs in the III-V process have been demonstrated in the literature [1 3]. Owing mainly to the structure of the open/short stubs, the operational bandwidth is narrow. Moreover, the required LO frequency is only one half of the RF frequency, causing the quarter-wavelength open/short stubs at the LO frequency to occupy a large chip size. To extend the operational bandwidth efficiently, two new configurations of the SHMs have been proposed [4, 5]. Otherwise, the quarter-wavelength microstrip structures [1 5] are difficult to implement at a low frequency for compact requirement. Accordingly, the compactness of SHMs is highly prioritized in MMIC design. A miniature quadruple SHM with lumped frequency diplexer can be found in [6]. However, the operation with overlapping frequency bands of RF and LO signals is constrained by the frequency diplexer. Consequently, a design concept of the subharmonically pumped resistive mixer (SHPRM) composed of an active quasi-circulator fabricated in a 0.18 µm CMOS process is proposed to fulfill the requirements of broadband operation, compactness, superior port-toport isolation, and low-cost. Furthermore, analyses of the impedancetransforming active quasi-circulator are presented for matching between quasi-circulator and resistive transistor. 2. CIRCUIT DESIGN AND IMPLEMENTATION The schematic diagram of the proposed CMOS SHPRM, consisting of an active quasi-circulator and a resistive transistor for subharmonic mixing, is illustrated in Fig. 1(a). Among various SHMs, the singleend SHMs with an anti-parallel diode pair (APDP) or pumped resistive transistor topologies are the most common prototype because the single-end architecture often employs the frequency diplexers constructed from high- and low-pass filters or quarterwave resonators to separate simply the RF and LO/IF signals. However, due to the intrinsic restriction of the frequency diplexer, the single-end SHM

Progress In Electromagnetics Research Letters, Vol. 18, 2010 137 (a) (b) Figure 1. (a) Schematic diagram and (b) detailed circuitconfiguration of the proposed CMOS SHPRM. cannot allow the operation with overlapping RF and LO/IF frequency bands subsequent to the limited expansion of the operating bandwidth. In our case, the frequency diplexer is replaced by the three-port nonreciprocal active quasi-circulator to improve the SHM performance appropriately. A number of active quasi-circulator configurations have been introduced [7 9]. The major difference between the circulator and the quasi-circulator in practice is that there is no power transfer from port 3 to port 1 in the case of the quasi-circulator. The detailed structure of the proposed active quasi-circulator, as shown in Fig. 1(b), can be referred to [7], and the scattering matrix of full port matching is given by [ b1 b 2 b 3 ] = 1 0 0 2g m1 g m1 +g m2 Y 0 Y 0 +g m1 g m1 +g m2 +Y 0 0 2Y 2g m2 Y 0 Y 0 +g m2 1 [ a1 where g m1 and g m2 are the transconductance of common-drain transistor M1 and common-gate transistor M2, respectively. Y 0 = 1/Z 0 denotes the characteristic admittance and is usually set to 1/50 Ω typically. The scattering parameter of S 31 dominates the isolation performance between port 3 and port 1; hence, Y = g m3 [g m1 g m2 /(g m1 + g m2 + Y 0 )] should be set to zero to satisfy the operation of active quasi-circulator, which can be computed from the a 2 a 3 ] (1)

138 Chien et al. Condition of Y = 0 as follows: g m3 = [g m1 g m2 /(g m1 + g m2 + Y 0 )] (2) where g m3 is transconductance of common-source transistor M3. However, port 2 of the active quasi-circulator is connected to the drain of resistive transistor, as shown in Fig. 1(a), to feed IF signal from port 1, simultaneously extracting RF signal from port 3. Subsequently, the impedance matching issue between port 2 and the drain of resistive transistor cannot be ignored in SHPRM design. The characteristic impedance of port 2 is denoted as Z L. After some algebraic manipulations, the impedance-transforming scattering matrix can be easily determined as follows: [ ] b1 b 2 = b 3 1 0 0 2(g m1 +g m2 ) Y0 2Z 1 0 L+g m1 +g m2 1 2 Z L Y 0 g m1 (Y 0 +g m1 +g m2 ) (Y 0 +g m1 )(Y0 2Z L+g m1 +g m2) 2Y Y 0 2g m1g m2 (Y 0 +g m1 +g m2 )(1 Y 0 Z L ) (Y 0 +g m1 )(Y 0 +g m2 )(Y0 2Z L+g m1 +g m2) [ ] a1 a 2 a 3 2 Z L Y 0 g m2 (Y 0 +g m1 +g m2 ) (Y 0 +g m2 )(Y 2 0 Z L+g m1 +g m2) The scattering parameters of S 21 and S 32 are typically characterized in terms of g m1, g m2 and Z L. Clearly, the transmissions of IF and RF signals are primarily affected by the different impedances Z L. From Equation (3), S 12 = S 13 = S 23 = 0 which denotes inherent LO-to-IF, RF-to-IF, and RF-to-LO isolations, respectively, can be achieved. To improve IF-to-RF isolation, the Condition of S 31 = 0 occurs when g m1 g m2 g m3 = (Y 0 + g m1 + g m2 ) Y 0g m1 g m2 (Y 0 + g m1 + g m2 ) (1 Y 0 Z L ) (Y 0 + g m1 ) (Y 0 + g m2 ) ( Y0 2Z ) L + g m1 + g m2 (4) With appropriate selection of the sizes of M1, M2, and M3, the superior IF-to-RF isolation can be accomplished readily. Equation (3) shows that the IF and RF signals can operate over the same frequency band to extend operational bandwidth more efficiently. The commongate transistor M5 is used for IF port matching. Consequently, this proposed design concept of SHPRM is adequate for the severe demand for wide-band, high-isolation, and compactness in modern SHM design. In this case, 8 nmosfets [10] with f T and f max better than 60 and 55 GHz, respectively, are used to realize the proposed SHPRM. To (3)

Progress In Electromagnetics Research Letters, Vol. 18, 2010 139 Figure 2. Microphotograph of the fabricated CMOS SHPRM. The overallchip dimension with and without the contact pads are 0.8 mm 0.81 mm and 0.64 mm 0.65 mm, respectively. achieve good impedance matching between the quasi-circulator and the resistive transistor, the 48-finger resistive nmosfet with a 96 µm gate width is optimized to ensure minimum conversion loss. The high frequency parasitic effect of metal trace is evaluated by iterative EM simulation to ensure the circuit feasibility. A microphotograph of the fabricated CMOS SHPRM is presented in Fig. 2. The chip dimension is reduced to 0.8 0.81 mm 2. The core chip dimension, excluding the contact GSG testing pads, is only 0.64 0.65 mm 2. 3. EXPERIMENTAL RESULTS Figure 3 presents the measured and simulated conversion losses of the CMOS SHPRM as a function of RF frequency for the up-converter mode biased at different voltage settings. The SHPRM is driven by an LO power of 11 and 6 dbm under bias conditions 1 and 2, respectively, as depicted in Fig. 1(b). The choice of LO power level is based on the significant mixing effect observed under the bias conditions. Condition 1 is for simulation, whereas Condition 2 is for measurement. The measurements were performed with an IF power level of 16 dbm and a fixed IF frequency of 3.1 GHz. Based on the result of bias Condition 1, the conversion loss of 16.1 19.3 db at an RF frequency of 15 27 GHz shows a large variation compared with the simulated results of 7 11.5 db. Figure 4 shows the measured conversion loss as a function of IF bandwidth. The measured conversion loss is 13.9 16.9 db within an IF bandwidth from 2.25 4.75 GHz. Clearly, the measured conversion

140 Chien et al. Figure 3. Measured and simulated conversion loss of the CMOS SHPRM as a function of RF frequency under bias Conditions 1 and 2 with a fixed LO power level of 11 and 6 dbm, respectively. Figure 4. Measured conversion loss as a function of IF frequency of the CMOS SHPRM under bias Condition 1. Simulation for the process variations under typical and SS corners are given for comparison. loss fairly agrees with the simulated result of the process variations of slow nmosfet and slow pmosfet (SS) corner. The main reason may be partly attributed to the CMOS process variation, which allows the shift of the matching point. The other reason may be due to the accuracy of the transistor nonlinear large signal model that results in a large deviation in the higher order mixing, especially the third-order mixing in this work. The circulator provides good LO-to-IF, LO-to-RF, and IF-to- RF isolations exceeding 32, 22.5, and 1.6 db over the 15 27 GHz RF frequency range, whereas the 2LO-to-IF and 2LO-to-RF isolations are larger than 42 db and 32 db, respectively. All isolations larger than 21.6 db indicate that the use of the quasi-circulator can be a good approach to enhance the isolation. From the conversion loss versus IF input power, an input of 1 db compression with a power of 6.6 dbm can be achieved. As mentioned previously, the conversion loss is highly sensitive to the process variation and can be adjusted by bias conditions to achieve better performance. For Condition 2, V d1 = 2.4 V, V d2 = 6 V, V g1 = 0.5 V, and V g2 = 1.5 V. The measured conversion loss exhibits 9 14.5 db within an RF bandwidth from 10 20 GHz as shown in Fig. 3. The observed minimum conversion loss is 9 db when the RF frequency is 12 GHz. This reveals that the measured data can be improved substantially by adjusting the bias condition.

Progress In Electromagnetics Research Letters, Vol. 18, 2010 141 Figure 5. Measured and simulated IF-to-RF, LO-to-IF, and 2LO-to-IF isolations as a function of the RF frequency under bias Condition 2. Figure 6. Measured and simulated LO-to-RF and 2LO-to-RF isolations as a function of the RF frequency under bias Condition 2. The measured port-to-port isolations of CMOS SHPRM under the measured Condition 2 for the up-converter mode are plotted in Figs. 5 and 6. The IF-to-RF isolation is higher than 44 db from 8 22 GHz. This indicates again that the proposed active quasicirculator can provide superior isolation between the IF port and the RF port. The LO-to-IF isolation is higher than 16.5 db from 8 22 GHz, and the 2LO-to-IF isolations also exceed 32 db over the same RF frequency range. This outcome signifies that the quasi-circulator provides excellent isolation in the reverse direction. The LO-to-RF and 2LO-to-RF isolations exceed 18 and 16.5 db, respectively. A highpass filter is employed to enhance the LO-to-RF isolation further in this design. Due to shift matching point of quasi-circulator; however, large deviation between simulation and measurement in the LO-to- RF and 2LO-to-RF isolation can be seen (Fig. 6). Another improved approach is to reconstruct the SHPRM by a single balanced LO pumped structure while maintaining all the other circuits, resulting in broadband and inherence LO-to-RF isolation without any additional filters. The performance comparisons of the proposed CMOS SHPRM with other reported SHMs are summarized in Table 1. Note that this work presents some significant advantages such as operating bandwidth of 66.7%, inherent port-to-port isolations, and compactness in the chip area.

142 Chien et al. Table 1. Performance comparison of the reported SHMs. Ref. [3] [4] [5] [6] This Work Cond. 1 Cond. 2 Technology GaAs 0.18 µm 0.15 µm 0.15 µm CMOS GaAs GaAs 0.18 µm CMOS RF freq. (GHz) 58.5 60.5 10 40 54 66 16 31 15 27 10 20 BW (%) 3.4 120 20 63.8 57.1 66.7 LO harm. 4 2 2 4 2 2 CL (db) 11.3 13.3 15.6 17.6 15.2 18.3 12.5 16.5 16.3 19.3 9 14.5 LO-to-RF Iso. (db) 30 > 12 > 23.5 > 14 > 22.5 > 18 LO Power (dbm) 7 8 12 12 14 11 6 Die Size (mm 2 ) 7 0.74 1.5 0.35 0.42 0.42 4. CONCLUSION A 10 20 GHz monolithic SHPRM with a core chip dimension of 0.64 0.65 mm 2 has been implemented using the 0.18 µm CMOS technology. Given the active quasi-circulator, the proposed SHPRM not only achieves a wide-band performance but also obtains inherent isolations. Moreover, the entire active design is valuable at a lower frequency band where passive component is considerably large. Accordingly, the proposed design concept is relatively suitable for building SHM with wider bandwidth, superior isolations, and high level of integration. ACKNOWLEDGMENT This work was supported in part by the National Chip Implementation Center, the National Applied Research Laboratories, the National Science Council of Taiwan under Contracts NSC 95-2221-E-006-428- MY3 and 982C12. REFERENCES 1. Itoh, K., A. Iida, Y. Sasaki, and S. Urasaki, A 40 GHz band monolithic even harmonic mixer with an antiparallel diode pair, IEEE MTT-S Int. Microwave Symp. Dig., Vol. 2, 879 882, 1991.

Progress In Electromagnetics Research Letters, Vol. 18, 2010 143 2. Raman, S., F. Rucky, and G. M. Rebeiz, A high-performance W-Band uniplanar subharmonic mixer, IEEE Trans. Microwave Theory Tech., Vol. 45, No. 6, 955 962, Jun. 1997. 3. Chapman, M. W. and S. Raman, A 60-GHz uniplanar MMIC 4 subharmonic mixer, IEEE Trans. Microwave Theory Tech., Vol. 50, No. 11, 2580 2588, Nov. 2002. 4. Lin, C.-M., H.-K. Lin, Y.-A. Lai, C.-P. Chang, and Y.-H. Wang, A 10 40 GHz broadband subharmonic monolithic mixer in 0.18 µm CMOS technology, IEEE Microw. Wireless Compon. Lett., Vol. 19, 95 97, Feb. 2009. 5. Hung, S.-H., W.-C. Chien, C.-M. Lin, Y.-A. Lai, and Y.- H. Wang, V-band high isolation subharmonic monolithic mixer with hairpin diplexer, Progress In Electromagnetics Research Letters, Vol. 16, 161 169, 2010. 6. Lin, C.-M., J.-T. Chang, C.-C. Su, S.-H. Hung, and Y.-H. Wang, A 16 31 GHz miniature quadruple subharmonic monolithic mixer with lumped diplexer, Progress In Electromagnetics Research Letters, Vol. 11, 21 30, 2009. 7. Shin, S.-C., J.-Y. Huang, K.-Y. Lin, and H. Wang, A 1.5 9.6 GHz Monolithic active quasi-circulator in 0.18 µm CMOS technology, IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 12, 797 799, Dec. 2008. 8. Hara, S., T. Tokumitsu, and M. Aikawa, Novel unilateral circuits for MMIC circulators, IEEE Trans. Microwave Theory Tech., Vol. 38, No. 10, 1399 1406, Oct. 1990. 9. Zheng, Y. and C. E. Saavedra, Active quasi-circulator MMIC using OTA, IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 4, 218 220, Apr. 2009. 10. Hsu, H.-M., J.-Y. Chang, J.-G. Su, C.-C. Tsai, S.-C. Wong, C.- W. Chen, K.-R. Peng, S.-P. Ma, C.-H. Chen, T.-H. Yeh, C.-H. Lin, Y.-C. Sun, and C.-Y. Chang, A 0.18-µm foundry RF CMOS technology with 70-GHz f T for single chip system solutions, IEEE MTT-S Int. Microw. Symp. Dig., 1869 1872, 2001.