ABOUT THE PLANING CROSS LAMINATED SOLID WOOD

Similar documents
THEORETICAL ASPECTS OF WOOD CROSS MILLING KINEMATICS AND DYNAMICS

STUDY ON MAKING DECORATIVE ITEMS CARVED WOOD

REGARDING THE APPRECIATION END EVALUATION OF THE MACHINE-TOOLS FOR WOOD PROCESSING THROUGH THE QUALITY CRITERIA

GRAPHIC MODELING OF A DRILLING FIXTURE AS A PART OF EMCO MILL 55 CNC MILLING AND DRILLING SYSTEM

MILLING PROCESS MANAGEMENT

MACHINING BY ELECTRICAL EROSION THE GEAR WHEELS

PRO LIGNO Vol. 13 N pp

INTERNAL GEARS MANUFACTURING POSSIBILITY ON THE GEAR HOBBING MACHINE FD250

OPTIMIZING TOOLS DIAMETERS AND TOOL PATH STYLE TO IMPROVE TIME MACHINING

Unit-I: Theory of Metal Cutting

Nonconventional Technologies Review no. 2/2010 THE CAD-CAM DESIGN OF THE DIE CASTING MOLD FOR GYPSUM SOUND ABSORBING PANELS

90 Indexable Positive Milling Cutter

TOOL PRODUCTION VIA RAPID TOOLING

Researches Concerning to Minimize Vibrations when Processing Normal Lathe

RESEARCHES REGARDING THE QUALITY OF PICKLES PLUMS

EVALUATION OF THE YARN QUALITY CHARACTERISTICS THROUGH SYNTHETIC INDICATORS

Lucrări ştiinţifice și cărţi în domeniul disciplinelor din postul didactic

Procedure for setting chatter-free cutting conditions using CutPRO and Process Damping

Up to 5 3 from 5 to 10 4 from 10 to 18 6 from 18 to 35 8

HORN Technology Days Technical Presentation: Tangential Milling Quality & Effectiveness. Speaker: Jeff Shope

Lower Spindle Power Consumptionn

Metal Cutting - 5. Content. Milling Characteristics. Parts made by milling Example of Part Produced on a CNC Milling Machine 7.

PROGRAM BY CALCULATION THE REGIMES OF CHIP REMOVAL

Lecture 15. Chapter 23 Machining Processes Used to Produce Round Shapes. Turning

Module 2. Milling calculations, coordinates and program preparing. 1 Pepared By: Tareq Al Sawafta

Milling operations TA 102 Workshop Practice. By Prof.A.chANDRASHEKHAR

ASPECTS CONCERNING THE ABSORBED POWER AT THE RECTIFICATION OF THE LARGE RUBBER PIECES IN THE PAPER INDUSTRY

External Turning. Outline Review of Turning. Cutters for Turning Centers

THE PROBLEM OF TOOL SELECTION FOR MILLING LARGE INTERNAL THREADS

The Selection of Manufacturing Engineering Process; By Dr. Saied. M. Darwish

Research on hardened steel turning with superhard tool material

EXPERIMENTAL STUDY OF AXIAL FORCE AND OF TORQUE IN CASE OF OLC45 STEEL DRILLING, USING EXPONENTIAL CALCULATION MODEL

STRAIGHT ROUTER CUTTERS AND GROOVERS

Machine Tools MILLING PROCESS. BY LAKSHMIPATHI YERRA Asst.professor Dept.of Mechanical Engg.

VIBRATIONS MEASUREMENT IN ORDER TO IDENTIFY THE FAULTS TO THE TABLES AND SUPPORTS ON WHICH THE EMBROIDERY MACHINES ARE PLACED

NPA. Expansion of the HM390 Triangular Inserts Line with Tools Carrying 5 mm Edged Inserts. New Product Announcement. Page 1 / 9

STUB ACME - INTERNAL AND EXTERNAL

SYSTEM OF CONTROLLING THE PROCESS OF STEEL ELABORATION IN DC ELECTRIC ARC FURNACES

EXPERIMENTAL MONTAGE USED TO STUDY THE VIBRATION OF THE DRILL TOOL IN THE PROCESS OF MANUFACTURING THE BRONZE MATERIALS

DETECTION OF ERRONEOUS OPERATION IN TTL INTEGRATED CIRCUITS USING MODULUS FUNCTIONS OF NOISE MARGINS

ENG classic Catalogo Minimax Classic_Ing.indd 2 Catalogo Minimax Classic_Ing.indd 2 13/12/ /12/

sales dept. Italy: foreign sales dept.: registered offi ce: sales offi ce: classic

Roll No. :.. Invigilator s Signature :.. CS/B.Tech (ME)/SEM-5/ME-504/ TECHNOLOGY OF MACHINING. Time Allotted : 3 Hours Full Marks : 70

HSS Circular Saw Blades. mechelec

FRACTAL SECTOR ANTENNA WITH RESONATORS ARRANGED IN A SQUARE SHAPE

THE STUDY OF THE SYNCHRONOUS MOTOR

Manufacturing Method of Large-Sized Spiral Bevel Gears in Cyclo-Palloid System Using Multi-Axis Control and Multi- Tasking Machine Tool

Broaches The basic characteristic

CHAPTER 23 Machining Processes Used to Produce Various Shapes Kalpakjian Schmid Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-1

Trade of Toolmaking. Module 6: Introduction to CNC Unit 2: Part Programming Phase 2. Published by. Trade of Toolmaking Phase 2 Module 6 Unit 2

COMPUTER AIDED DESIGNING OF THE CABINET FURNITURE. Teofil MIHAILESCU, Wilhelm LAURENZI, Viorel POPA. Universitatea "Transilvania" din Brasov

Chapter 24 Machining Processes Used to Produce Various Shapes.

Making toolholders for a Sieg type Quick Change Toolpost

Thread Mills. Solid Carbide Thread Milling Cutters

Influence of Vibration Amplitude Oscillations on the Conical Sieve Suspended Dorel STOICA, Gheorghe VOICU, Carmen RUSĂNESCU

ASPECTS REGARDING THE ELECTRICAL RESISTIVITY SOFTWARE MEASUREMENTS ON INSULATING MATERIALS USING 6517A HI-R SWEEP TEST PROGRAM

Gear milling solutions handbook

PROCESSING INSTRUCTIONS. MANUFACTURER: RESOPAL MATERIAL: RESOPAL Traceless Premium (TP)

Determining the Chip Load

C1.1. Lucrari indexate ISI Web of Knowledge

Machining. Drilling Countersinking Tapping Turning Milling

Machining Strenx and Hardox. Drilling, countersinking, tapping, turning and milling

Innovative woodworking machinery

VIBRATIONS LEVEL ANALYSIS DURING THE OPERATION OF A HIGH HEAD HYDROPOWER PLANT

Applied Machining Technology

Syslog Technologies Innovative Thoughts

Lecture 18. Chapter 24 Milling, Sawing, and Filing; Gear Manufacturing (cont.) Planing

2. Special tools. swiss made

I 640 West. c Offi. pany Phone. c ~ g CHICAGO 6. Ill. M h:tjryant OMPOUND RING BAR SUPPORT. GilBERT C DEarbom ~.

NC Spot Drill with Patented indexable carbide insert.

Chapter 24. Machining Processes Used to Produce Various Shapes: Milling

No Need To Choose Nine9 Does It All! >>

Within the product group Rapid-Line, Jongen Werkzeugtechnik GmbH produces special milling tools and inserts as well as special solid-carbide cutters.

SPECIAL INTERNAL WORM GEAR PAIRS WITH HELLICAL WORM

MANUFACTURING TECHNOLOGY

Tools for the toughest demands. Overview of router bits. A handy guide

METODE DE EVALUARE A IMPACTULUI ASUPRA MEDIULUI ŞI IMPLEMENTAREA SISTEMULUI DE MANAGEMENT DE MEDIU

VHF 2 VHF 2. Vertical Milling Machine

Lowest clamping depth without pre-marking

Thread milling cutters

THERMOGRAPHIC ANALYSIS OF THE RICOMA 2 HEAD EMBROIDERY MACHINE

Computer Numeric Control

Chapter 23: Machining Processes: Turning and Hole Making

Maier ML20D - Technical Details. for illustration purposes only. Maier CNC Swiss Type Lathe ML20D ProLine

Application and Technical Information Thread Milling System (TMS) Minimum Bore Diameters for Thread Milling

Radial Drilling Machine YOM bore capacity in steel (diameter) 70 mm arm length 2500 mm workpiece height max mm

Makrolon Solid Polycarbonate Sheets

Tungsten Carbide Burs for Tough Applications

Useful accessories for lathe and milling systems.

CURRICULUM VITAE. Languages: English, French

Compatibility overview of accessories for lathe

SAW ARBORS B MADE IN THE * * * * * * * USA USA * * * * * * * A B C D E SSA-500

BIG GOURMAND SNGX 13 LNET 16 HELICAL MILLING CUTTERS FOR ROUGHING.

Lowest clamping depth without pre-marking

Trade of Toolmaking. Module 3: Milling Unit 9: Precision Vee Block Assembly Phase 2. Published by. Trade of Toolmaking Phase 2 Module 3 Unit 9

topset master automatic throughfeed moulder

Aspects Regarding the Comparative Study of the Cryogenic and Conventional Milling of Vulcanized Rubber

Milling complex surfaces with cutting edge displacement towards the cut surface

ENGI 7962 Mastercam Lab Mill 1

TECHNOLOGY FOR WINDOWMAKERS

Transcription:

Analele Universităţii din Oradea, Fascicula Protecţia Mediului Vol. XVII, 2011 ABOUT THE PLANING CROSS LAMINATED SOLID WOOD Galis Ioan *, Lucaci Codruţa, Lustun Liana, Fetea Marius, Derecichei Laura, Cheregi Gabriel ** *University of Oradea, Faculty of Environmental Protection, 26 Gen. Magheru St., 410048, Oradea, Romania **University of Oradea, Faculty of Electrical Engineering and Information Tehnology, 1 University St., 410087, Oradea, Romania Abstract This work paper is about the measurement of cross cutting by milling laminated solid wood witch requires some drilling conditions. The scientific work has treated different aspects of the milling process. This values characterizing the values of the dynamic parameters. The specific cutting work represents a main factor to determining the values of power and cutting forces in milling. Also it characterizes the specific energy consumption for cutting. Key words: Wood Milling, splintering, Cutting Power. INTRODUCTION Milling wood has the highest weight in the whole cutting operation. Further studies and research are extremely numerous. Studies and scientific work have treated different aspects of timber milling and cutting regimes and the construction and milling exploitations. MATERIALS AND METHODS For cutting power measurement using a power meter recorder (FLUKE 1653) mounted in the electrical circuit of the main engine of the milling machine (Figure 1). This wattmeter allows the measurement of cutting power with measurement accuracy of ± 5 %. Each cutting value power represents the arithmetic mean value of five measurements performed on standard pieces in identical milling condition. Fig. 1. Wattmeter recorder (FLUKE 1653) 427

Experiments were performed on a manual milling machine (FELDER PROFIL 40) with main features: Spindle speed n = 3000, 4500, 6000, 9000 rot/min Beating radial spindle mounting area mills br 0, 004 mm Electric motor power 2.8 kw spindle drive Fig. 2. Manual milling machine Fig. 3. Types of Milling We used milling and head milling cutters manufactured and maintained by plant Codlea About ASCO TOOLS SA. The cutters used in experiments with the following characteristics: 240 mm diameter 30 mm bore Blade width b = 10 mm edged carbide teeth with 20 K number of teeth z = 4 angles α = 15, β = 55, γ = 20 sharp and measured at ASCO TOOLS SA 428

radius of rounding of cutting edges ρ 0, 005 mm To be able to study and have used the following: - cross-cutting advances in tooth u z = 0,1 mm; 0,2 mm; 0,4 mm; 0,6 mm; 0,8 mm; 1,0 mm; 1,2 mm; 1,6 mm - h milling and the following heights: 1 mm; 5 mm; 10 mm; 15 mm; 20 mm; 25 mm; 30 mm; 35 mm; 40 mm; 45 mm; 50 mm. RESULTS AND DISCUSSION The first objective was to study experimentally and the dependence of the dynamic parameters of the cutting tool and the milling system of cross-tree wood. Thus the dependence of power consumption and the advance per tooth, depending on the depth of cut for the three types of milling (open, semi, closed) for sharp-edged. Based on the values are determined: Cutting K resistivity; Average cutting force F m ; Average and maximum cutting force per tooth F dm, F dmax ; In table 1 is presented the cutting power P (kw): - milling cross open / semi / closed-fir (F.D.= milling cross open, F.S.D.= milling cross semi, F.I.= milling cross closed-fir) wood with U = 8 10%, - cutter diameter D = 240 mm, - cutter speed n = 4500 rot/min - number of teeth is z = 4, - teeth with sharp-edged of K = 20 (ρ 0.005mm), - milling width b = 10 mm 429

Table 1 The cutting power in milling cross open / closed-fir wood process Milling height Advance per tooth in mm/ tooth, feed rate u in m/min h 0,1 0,2 0,4 0,6 0,8 1,0 1,2 1,6 1,8 3,6 7,2 10,8 14,4 18 21,6 28,8 1 F.D. 0,03 0,03 0,035 0,038 0,04 0,045 0,047 0,057 F.S.D. 0,03 0,03 0,035 0,038 0,04 0,045 0,047 0,057 F.I. 0,03 0,03 0,035 0,038 0,04 0,045 0,047 0,057 5 F.D. 0,07 0,08 0,095 0,11 0,13 0,15 0,16 0,19 F.S.D. 0,07 0,08 0,1 0,11 0,13 0,16 0,17 0,2 F.I. 0,07 0,08 0,1 0,12 0,13 0,17 0,18 0,21 10 F.D. 0,1 0,11 0,14 0,17 0,21 0,25 0,29 0,34 F.S.D. 0,1 0,11 0,14 0,18 0,22 0,25 0,3 0,36 F.I. 0,1 0,11 0,15 0,2 0,24 0,27 0,32 0,38 15 F.D. 0,13 0,13 0,18 0,22 0,27 0,315 0,37 0,43 F.S.D. 0,13 0,14 0,19 0,23 0,28 0,34 0,4 0,47 F.I. 0,13 0,15 0,2 0,24 0,29 0,36 0,43 0,51 20 F.D. 0,14 0,16 0,2 0,25 0,31 0,36 0,43 0,48 F.S.D. 0,14 0,16 0,2 0,26 0,34 0,39 0,45 0,53 F.I. 0,15 0,17 0,24 0,29 0,36 0,42 0,48 0,59 F.D. 0,17 0,19 0,25 0,29 0,36 0,41 0,49 0,54 25 F.S.D. 0,17 0,2 0,27 0,31 0,39 0,45 0,5 0,6 F.I. 0,18 0,21 0,28 0,34 0,42 0,49 0,58 0,66 F.D. 0,19 0,22 0,29 0,35 0,43 0,5 0,58 0,65 30 F.S.D. 0,19 0,23 0,31 0,38 0,47 0,55 0,64 0,72 F.I. 0,2 0,24 0,32 0,43 0,5 0,6 0,68 0,79 F.D. 0,21 0,23 0,32 0,38 0,46 0,54 0,6 0,67 35 F.S.D. 0,21 0,24 0,34 0,41 0,50 0,58 0,67 0,72 F.I. 0,22 0,25 0,34 0,44 0,55 0,63 0,72 0,84 F.D. 0,23 0,24 0,34 0,43 0,53 0,6 0,68 0,77 40 F.S.D. 0,24 0,25 0,36 0,47 0,57 0,66 0,75 0,86 F.I. 0,24 0,26 0,38 0,5 0,62 0,72 0,85 0,96 F.D. 0,25 0,27 0,35 0,44 0,54 0,61 0,68 0,76 45 F.S.D. 0,26 0,28 0,40 0,49 0,60 0,68 0,78 0,87 F.I. 0,27 0,30 0,42 0,54 0,67 0,78 0,92 1,08 F.D. 0,28 0,30 0,39 0,50 0,60 0,68 0,78 0,88 50 F.S.D. 0,29 0,31 0,42 0,54 0,66 0,75 0,85 0,96 F.I. 0,30 0,33 0,45 0,58 0,72 0,83 0,99 1,2 In table 2 is presented the cutting power P (kw): - Milling cross open / closed-fir wood with U = 8 10%, - cutter diameter D = 240 mm, - cutter speed n = 4500 rot/min, - number of teeth z = 4, - teeth with sharp-edged of K = 20 (ρ 0.005mm), - milling width b = 10 mm, - the amount of material milled (milled length) L1 = 1 m, L2 = 200 m, L3 = 400 m, L4 = 600 m - 430

Table 2 The cutting power in milling cross open / closed-fir wood process in the amount of material Milling Advance per tooth in mm, feed rate u in m/min height h 0,1 0,2 0,4 0,8 1,2 Milled length l 1,8 3,6 7,2 14,4 21,6 L1 = 200 0,024/0,024 0,0375/0,037 0,04/0,04 0,05/0,05 0,055/0,055 1 L2 = 400 0,027/0,027 0,04/0,04 0,046/0,046 0,055/0,055 0,06/0,06 L3 = 600 0,029/0,029 0,043/0,043 0,05/0,05 0,06/0,06 0,065/0,065 L1 = 200 0,125/0,125 0,14/0,15 0,17/0,18 0,26/0,26 0,30/0,32 10 L2 = 400 0,135/0,135 0,15/0,16 0,18/0,2 0,29/0,31 0,33/0,35 L3 = 600 0,145/0,145 0,16/0,17 0,2/0,21 0,31/0,34 0,35/0,38 L1 = 200 0,175/0,19 0,2/0,21 0,26/0,29 0,37/0,43 0,54/0,6 20 L2 = 400 0,19/0,21 0,22/0,23 0,29/0,31 0,4/0,47 0,57/0,63 L3 = 600 0,21/0,22 0,23/0,25 0,31/0,33 0,44/0,5 0,61/0,65 L1 = 200 0,24/0,25 0,275/0,3 0,35/0,38 0,51/0,60 0,65/0,78 30 L2 = 400 0,26/0,27 0,3/0,32 0,38/0,42 0,56/0,65 0,70/0,85 L3 = 600 0,28/0,29 0,32/0,34 0,41/0,45 0,6/0,7 0,77/0,91 L1 = 200 0,29/0,3 0,3/0,32 0,41/0,46 0,64/0,74 0,74/0,96 40 L2 = 400 0,31/0,32 0,32/0,35 0,44/0,49 0,69/0,81 0,81/1,05 L3 = 600 0,33/0,35 0,35/0,38 0,48/0,53 0,74/0,87 0,87/1,12 L1 = 200 0,35/0,375 0,35/0,41 0,47/0,54 0,72/0,87 0,87/1,2 50 L2 = 400 0,365/0,4 0,41/0,45 0,51/0,59 0,78/0,94 0,94/1,29 L3 = 600 0,42/0,435 0,43/0,48 0,55/0,63 0,84/1,01 1,01/1,38 The knowing power cut resulting from the above tables we calculate the specific mechanical work cutting formula is denoted by K: Where: h = Milling height b = Milling width K 4 6 10 P = b h u In table 3 is presented the work of cutting specific K, in N*m/cm³ (specific cutting resistance K, in N/mm²): - Milling cross open / semi / closed-fir (F.D.= milling cross open, F.S.D.= milling cross semi, F.I.= milling cross closed-fir) wood with u = 8 10 % - teeth with sharp-edged of K = 20 - cutter diameter D = 240 mm - number of teeth z = 4 - cutter speed n = 4500 rot/min 431

1 5 10 15 20 25 30 35 40 45 50 Milling height The specific cutting resistance in cross open / semi / closed-fir case Advance per tooth in mm/ tooth, feed rate u in m/min 0,2 0,4 0,6 0,8 1,2 Table 3 0,1 1,0 1,6 1,8 3,6 7,2 10,8 14,4 18 21,6 28,8 F.D. 100,00 50,00 29,17 21,11 16,67 15,00 13,06 11,87 F.S.D. 100,00 50,00 29,17 21,11 16,67 15,00 13,06 11,87 F.I. 100,00 50,00 29,17 21,11 16,67 15,00 13,06 11,87 F.D. 46,67 26,67 15,83 12,22 10,83 10,00 8,89 7,90 F.S.D. 46,67 26,67 16,67 12,22 10,83 10,67 10,00 8,3 F.I. 46,67 26,67 16,67 13,33 10,83 10,67 9,44 8,75 F.D. 33,33 18,33 11,67 10,00 9,17 8,00 6,94 7,09 F.S.D. 33,33 18,33 11,67 11,11 9,58 8,33 7,22 7,50 F.I. 33,33 20,00 12,50 11,11 10,00 9,00 8,06 7,91 F.D. 28,89 16,67 10,00 8,15 7,50 6,89 6,48 5,97 F.S.D. 28,89 16,67 10,56 8,52 7,76 7,56 7,04 6,52 F.I. 28,89 15,56 11,11 8,89 8,06 8,00 7,41 7,08 F.D. 23,33 13,33 9,17 6,94 6,46 6,00 5,97 5,00 F.S.D. 23,33 13,33 9,58 7,32 7,08 6,50 6,53 5,52 F.I. 25,00 14,17 10,00 8,06 7,50 7,00 7,08 6,14 F.D. 22,67 12,67 8,33 6,22 6,00 5,47 5,00 4,50 F.S.D. 22,67 13,33 9,00 6,89 6,50 6,00 5,56 5,00 F.I. 24,00 14,00 9,33 7,56 7,00 6,53 6,00 5,50 F.D. 21,11 12,22 8,06 6,48 5,97 5,56 5,00 4,51 F.S.D. 21,11 12,78 8,61 7,04 6,53 6,11 5,46 5,00 F.I. 22,22 13,33 8,89 7,96 6,94 6,67 6,02 5,48 F.D. 20,00 10,95 7,62 6,03 5,48 4,76 4,52 3,99 F.S.D. 20,00 11,43 8,10 6,51 5,95 5,52 4,84 4,28 F.I. 20,95 11,90 8,57 5,58 6,55 6,00 5,16 5,10 F.D. 19,17 10,00 7,08 5,97 5,52 5,00 4,31 4,01 F.S.D. 20,00 10,42 7,50 6,53 5,94 5,50 4,72 4,48 F.I. 20,00 10,83 7,92 6,94 6,46 6,00 5,56 4,98 F.D. 18,52 10,00 7,04 5,43 5,00 4,52 4,01 3,51 F.S.D. 19,26 10,83 7,41 6,05 5,56 5,04 4,51 4,03 F.I. 20,00 11,11 8,33 7,04 6,03 5,56 5,00 5,30 F.D. 18,67 10,00 6,50 5,56 5,00 4,53 4,00 3,66 F.S.D. 19,33 10,33 7,00 6,00 5,50 5,00 4,53 4,00 F.I. 20,00 11,00 7,50 7,00 6,00 5,53 5,50 5,00 In table 4 is presented the work of cutting specific K, in N*m/cm³ (specific cutting resistance K, in N/mm²): - Milling cross open / semi / closed-fir (F.D.= milling cross open, F.S.D.= milling cross semi, F.I.= milling cross closed-fir) wood with u = 8 10 % - teeth with sharp-edged of K = 20 - cutter diameter D = 240 mm - number of teeth z = 4 - cutter speed n = 4500 rot/min - the amount of material milled L1 = 200m, L2 = 400 m, L3 = 600m 432

Table 4 The specific cutting resistance in the amount of material milled case Advance per tooth in mm, feed rate u in m/min Milling height h 0,1 0,2 0,4 0,8 1,2 1,8 3,6 7,2 14,4 21,6 L1 = 200 80-80 62,5-62,5 33,3-33,3 20,8-20,8 15,3-15,3 1 L2 = 400 90-90 66,6-66,6 38,3-38,3 22,9-22,9 16,6-16,6 L3 = 600 96,6-96,6 71,6-71,6 41,6-41,6 25-25 18,1-18,1 L1 = 200 41,6-41,6 23,3-25 14,2-15 10,8-10,8 8,3-8,9 10 L2 = 400 45-45 25-26,6 15-16,6 12,1-12,9 9,2-9,7 L3 = 600 48,3-48,3 26,6-28,3 16,6-17,5 12,9-14,2 9,7-10,5 L1 = 200 29,2-31,6 16,6-17,5 10,8-12,1 7,7-8,9 7,5-8,3 20 L2 = 400 31,6-33,3 18,3-19,2 12,1-12,9 8,3-9,8 7,9-8,8 L3 = 600 35-36,6 19,2-20,8 12,9-13,8 9,2-10,4 8,5-9 L1 = 200 26,6-27,8 15,3-16,6 9,7-10,6 7,1-8,3 6-7,2 30 L2 = 400 28,9-30 16,6-17,8 10,6-11,6 7,8-9 6,5-7,9 L3 = 600 31,3-32,2 17,8-18,9 11,4-12,5 8,3-9,7 7,1-8,4 L1 = 200 24,2-25 12,5-13,3 8,5-9,6 6,7-7,7 5,1-6,6 40 L2 = 400 25,8-26,8 13,3-14,6 9,2-10,2 7,2-8,4 5,6-7,3 L3 = 600 27,5-29,2 14,6-15,8 10-10,4 7,7-9,1 6-7,8 L1 = 200 23,2-25 11,6-13,7 7,8-9 6-7,3 4,8-6,7 50 L2 = 400 24,3-26,6 13,7-15 8,5-9,8 6,5-7,8 5,2-7,2 L3 = 600 26.5-27.5 14,3-16 9,2-10,5 7-8,4 5,6-7,6 50 40 h = 1 mm Fd, Fsd, Fi h = 5 mm Fd h = 5 mm Fsd h = 5 mm Fi h = 10 mm Fd h = 10 mm Fsd 30 20 10 h = 10 mm Fi h = 20 mm Fd h = 20 mm Fsd h = 20 mm Fi h = 50 mm Fd h = 50 mm Fsd h = 50 mm Fi 0 0,1 0,2 0,4 0,6 0,8 1 1,2 1,6 Fig. 4. The graphic of specific cutting advance depending on the tooth 100 90 80 70 60 50 40 30 20 10 0 1 10 20 30 40 50 Uz = 0,1 mm/dinte (Fd) Uz = 0,1 mm/dinte (Fi) Uz = 0,2 mm/dinte (Fd) Uz = 0,2 mm/dinte (Fi) Uz = 0,4 mm/dinte (Fd) Uz = 0,4 mm/dinte (Fi) Uz = 0,8 mm/dinte (Fd) Uz = 0,8 mm/dinte (Fi) Uz = 1,2 mm/dinte (Fd) Uz = 1,2 mm/dinte (Fi) Fig. 5. The graphic of specific cutting depths is depending on the milling length (200 m) 433

100 90 80 70 60 50 40 30 20 10 0 1 10 20 30 40 50 Uz = 0,1 mm/dinte (Fd) Uz = 0,1 mm/dinte (Fi) Uz = 0,2 mm/dinte (Fd) Uz = 0,2 mm/dinte (Fi) Uz = 0,4 mm/dinte (Fd) Uz = 0,4 mm/dinte (Fi) Uz = 0,8 mm/dinte (Fd) Uz = 0,8 mm/dinte (Fi) Uz = 1,2 mm/dinte (Fd) Uz = 1,2 mm/dinte (Fi) Fig. 6. The graphic of specific cutting depths is depending on the milling length (400 m) CONCLUSIONS The specific resistance values of specific cutting work are deducted from cutting power consumption. The specific cutting work values characterizes the cross cutting of the pine wood. This values characterizing the values of the dynamic parameters. The specific cutting work represents a main factor to determining the values of power and cutting forces in milling. Also it characterizes the specific energy consumption for cutting. REFERENCES 1. Cismaru I, 1989, Studiu privind influenţa modului de frezare a sculelor asupra calităţii suprafeţelor la prelucrarea prin frezare revista Industria lemnului nr. 1. 2. Dogaru V, M Câmpean,2004, Wood cutting and Tools, Universitatea Transilvania Braşov, pp 25 31. 3. Dogaru V., 1989, Contribuţii la studiul dinamicii procesului de frezare a lemnului, Universitatea din Braşov, seria BII, vol XXXI. 4. Dogaru V., 1985, Bazele tăierii lemnului şi a materialelor lemnoase, Editura tehnică, Bucureşti 5. Dogaru V., Rusu D, 1986, Frezarea reală a lemnului, Revista Industria lemnului nr. 1 6. Duţu G, Dogaru V., 2007, Frezarea materialelor pe bază de lemn cu scule cu tăişuri diamantate, Editura Universităţii Transilvania Braşov 7. Ispas M.,Ţăran N., 1997, Contribuţii asupra calităţii suprafeţelor opţinute prin frezare revista industra lemnului nr. 3-4 pp.21 25 8. Man V.,Man I, 1987, Superfrezarea lemnului Bucureşti revista industria lemnului nr.1 9. Râmbu I, Florescu I, Dogaru V, Iliescu V., 1980, Tehnologia prelucrării lemnului, tratat vol.i and II, Bucureşti 10. Ţăran N.,1983, Scule şi maşini moderne pentru frezarea lemnului, Editura Tehnică, Bucureşti 434