都市基盤工学 ( リモートセンシングと GIS 入門 ) Introduction to Remote Sensing and GIS. Ground-based sensors 地上からのセンサ 第 4 回 千葉大学大学院融合理工学府

Similar documents
D80 を使用したオペレーション GSL システム周波数特性 アンプコントローラー設定. Arc 及びLine 設定ラインアレイスピーカーを2 から7 までの傾斜角度に湾曲したアレイセクションで使用する場合 Arcモードを用います Lineモード

L1 Cultures Go Around the World

The studies began when the Tiros satellites (1960) provided man s first synoptic view of the Earth s weather systems.

Installation Manual WIND TRANSDUCER

Intermediate Conversation Material #10

Omochi rabbit amigurumi pattern

Lecture 6: Multispectral Earth Resource Satellites. The University at Albany Fall 2018 Geography and Planning

U N I T. 1. What are Maxine and Debbie talking about? They are talking about. 2. What doesn t Maxine like? She doesn t like. 3. What is a shame?

アルゴリズムの設計と解析. 教授 : 黄潤和 (W4022) SA: 広野史明 (A4/A8)

TDK-Lambda A C 1/27

TDK Lambda A /9

Radiometric calibration for ASTER-VNIR and HISUI in AIST

Lesson 5 What The Last Supper Tells Us

相関語句 ( 定型のようになっている語句 ) の表現 1. A is to B what C is to D. A と B の関係は C と D の関係に等しい Leaves are to the plant what lungs are to the animal.

CER7027B / CER7032B / CER7042B / CER7042BA / CER7052B CER8042B / CER8065B CER1042B / CER1065B CER1242B / CER1257B / CER1277B

レーダー流星ヘッドエコー DB 作成グループ (murmhed at nipr.ac.jp) 本規定は レーダー流星ヘッドエコー DB 作成グループの作成した MU レーダー流星ヘッド エコーデータベース ( 以下 本データベース ) の利用方法を定めるものである

Global Lightning and Sprite Measurements from International Space Station - GLIMS mission -

The seven pillars of Data Science

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011

Chronicle of a Disaster: Understand

国際宇宙ステーションからの雷放電と 高高度発光現象観測 (GLIMS) の概要と 現状

Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing. Mads Olander Rasmussen

NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS

The studies began when the Tiros satellites (1960) provided man s first synoptic view of the Earth s weather systems.

Introduction of Satellite Remote Sensing

研究開発評価に関する国際的な視点や国際動向

Delivering Business Outcomes

JSPS Science Dialog Program Kofu Higashi High School

Chapter 4 Radio Communication Basics

修士 / 博士課程専門課題 Ⅱ 試験問題

Decisions in games Minimax algorithm α-β algorithm Tic-Tac-Toe game

Remote Sensing Platforms

車載カメラにおける信号機認識および危険運転イベント検知 Traffic Light Recognition and Detection of Dangerous Driving Events from Surveillance Video of Vehicle Camera

Effects and Problems Coming in Sight Utilizing TRIZ for Problem Solving of Existing Goods

Creation of Digital Archive of Japanese Products Design process

超伝導加速空洞のコストダウン. T. Saeki (KEK) 24July ILC 夏の合宿一ノ関厳美温泉

TDK Lambda C /35

[ 言語情報科学論 A] 統計的言語モデル,N-grams

HARD LOCK Technical Reports

特集 米国におけるコンシューマ向けブロードバンド衛星サービスの現状

Remote Sensing Platforms

Big thank you from Fukushima Friends UK (FF)

無線通信デバイスの技術動向 松澤昭 東京工業大学大学院理工学研究科電子物理工学専攻 TiTech A. Matsuzawa 1

GDC2009 ゲーム AI 分野オーバービュー

(Osaka Industrial Technology - Platform)

ZWS50B EVALUATION DATA 型式データ

Some Basic Concepts of Remote Sensing. Lecture 2 August 31, 2005

Ⅲ. 研究成果の刊行に関する一覧表 発表者氏名論文タイトル名発表誌名巻号ページ出版年. lgo/kourogi_ pedestrian.p df. xed and Augmen ted Reality

TDK Lambda A A 1/14

P Z N V S T I. センサ信号入力仕様 Input signal type. 1 ~ 5 V 4 ~ 20 ma 1 ~ 5 V 4 ~ 20 ma 1 ~ 5 V 4 ~ 20 ma 1 ~ 5 V 4 ~ 20 ma

P (o w) P (o s) s = speaker. w = word. Independence bet. phonemes and pitch. Insensitivity to phase differences. phase characteristics

Remote Sensing Activities in NICT

The Current State of Digital Healthcare

4. Contact arrangement 回路形式 1 poles 1 throws 1 回路 1 接点 (Details of contact arrangement are given in the assembly drawings 回路の詳細は製品図による )

TED コーパスを使った プレゼンにおける効果的な 英語表現の抽出

TDK Lambda INSTRUCTION MANUAL. TDK Lambda C A 1/35

Infineon 24GHz Radar Solution. May 2017 PMM RSF DM PMM Business development

PH75A280-* RELIABILITY DATA 信頼性データ

Lepton Flavor Physics with Most Intense DC Muon Beam Yusuke Uchiyama

Specifications characterize the warranted performance of the instrument under the stated operating conditions.

Season 15: GRAND FINAL PLAYER GUIDE. ver.2019/1/10

Omni LED Bulb. Illustration( 实际安装, 설치사례, 設置事例 ) Bulb, Downlight OBB. OBB-i15W OBB-i20W OBB-i25W OBB-i30W OBB-i35W. Omni LED.

CG Image Generation of Four-Dimensional Origami 4 次元折り紙の CG 画像生成

XG PARAMETER CHANGE TABLE

9 th TRIZ symposium Meltex, Inc. Tajima. QFD and TRIZ Case Study in Surface Treatment Chemical

磁気比例式 / 小型高速応答単電源 3.3V Magnetic Proportion System / Compact size and High-speed response. Vcc = +3.3V LA02P Series

Final Product/Process Change Notification Document # : FPCN22191XD1 Issue Date: 24 January 2019

CPM6018RA Datasheet 定電流モジュール. Constant-current Power Modules. TAMURA CORPORATION Rev.A May, / 15

NINJA LASER INNOVATORS BY DESIGN SINCE 1770

宇宙飛行生物学 (Bioastronautics( 宇宙飛行生物学 (Bioastronautics) の大学院教育への利用. Astrobiology)? 宇宙生物学 (Astrobiology( 宇宙生物学 カリキュラム詳細

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011

Int n r t o r d o u d c u ti t on o n to t o Remote Sensing

Study on Multipath Propagation Modeling and Characterization in Advanced MIMO Communication Systems. Yi Wang

An Introduction to Geomatics. Prepared by: Dr. Maher A. El-Hallaq خاص بطلبة مساق مقدمة في علم. Associate Professor of Surveying IUG

次の対話の文章を読んで, あとの各問に答えなさい ( * 印の付いている単語 語句には, 本文のあとに 注 がある )

科学技術 学術審議会大型プロジェクト作業部会 2015 年 12 月 22 日 永野博

Magellan Systems Japan, Inc.

F01P S05L, F02P S05L, F03P S05L SERIES

An Introduction to Remote Sensing & GIS. Introduction

Effective Utilization of Patent Information in Japanese global companies

Standardization of Data Transfer Format for Scanning Probe Microscopy

NINJA Experiment : Neutrino Interaction research with Nuclear emulsion and J-PARC Accelerator

Corporate Education for Manufacturing (Semiconductors) - Creation of a training system and technical textbook -

[1] 大橋和也, 森拓哉, 古関隆章 運転整理時における乗車率に応じた旅客行動の変化のモデル化 電気学会論文誌 D,J-Rail 2013 特集,2015,pp

Future Perspectives of Science, Technology and Innovation

Feasibility Study for Super Low Altitude Satellite borne Doppler Lidar (S-LIDAR)

国際会議 ACM CHI ( ) HCI で生まれた研究例 2012/10/3 人とコンピュータの相互作用 WHAT IS HCI? (Human-Computer Interaction (HCI)

Call for a Pro-Innovation

Local Populations Facing Long- Term Consequences of Nuclear Accidents: Lessons learned from Chernobyl and Fukushima

Development of a pixel sensor based on SOI technology for the ILC vertex detector

Spectral Signatures. Vegetation. 40 Soil. Water WAVELENGTH (microns)

1XH DC Power Module. User manual ユーザマニュアル. (60V 15A module version) HB-UM-1XH

ELV60 EVALUATION DATA 型式データ

TDK Lambda WC /24

Katsumi Hattori and Daishi Kaida Graduate School of Science, Chiba University, Japan

超小型 Very small (L:3.2 W:1.5 t:0.4mm) 高利得 High gain 無指向性 Omini-directional. < 用途 Applications> PHS 機器 DECT 機器 その他 PHS & DECT systems, etc ST01

Introduction to Satellite Remote Sensing

Present Status of SMEs I

品名 :SCM1561M 製品仕様書. LF No RoHS 指令対応 RoHS Directive Compliance 発行年月日 仕様書番号 SSJ SANKEN ELECTRIC CO., LTD. 承認審査作成 サンケン電気株式会社技術本部 MCD 事業部

Page No. 原文 リライト EDITOR'S NOTES 1 4 NATURAL ART

Transcription:

都市基盤工学 ( リモートセンシングと GIS 入門 ) Introduction to Remote Sensing and GIS 第 4 回 2018. 5. 9 千葉大学大学院融合理工学府 Graduate School of Science and Engineering, Chiba University 地球環境科学専攻都市環境システムコース Department of Urban Environment Systems 劉ウェン Wen LIU http://ares.tu.chiba-u.jp/ 1 講義予定 Lecture Schedule (1) 2018 年 4 月 11 日 ( 水 ) イントロダクション Introduction (2) 2018 年 4 月 18 日 ( 水 ) リモセンの基礎原理 1 Fundamentals of RS #1 (3) 2018 年 4 月 25 日 ( 水 ) リモセンの基礎原理 2 Fundamentals of RS #2 (4) 2018 年 5 月 9 日 ( 水 ) 衛星とセンサ 1 Satellites and sensors #1 Liu (5) 2018 年 5 月 16 日 ( 水 ) 衛星とセンサ 2 Satellites and sensors #2 (6) 2018 年 5 月 23 日 ( 水 ) 衛星とセンサ 3 Satellites and sensors #3 (7) 2018 年 5 月 30 日 ( 水 ) 画像解析 1 Image Analysis #1 Liu (7) 2018 年 6 月 6 日 ( 水 ) 画像解析 2 Image Analysis #2 Liu (9) 2018 年 6 月 13 日 ( 水 ) GIS の基礎 1 Basics of GIS #1 Maruyama (10) 2018 年 6 月 20 日 ( 水 )GIS の基礎 2 Basics of GIS #1 Maruyama (11) 2018 年 6 月 27 日 ( 水 ) マイクロ波リモセン #1 Microwave RS #1 Liu (12) 2018 年 7 月 4 日 ( 水 )GIS の基礎 3 Basics of GIS #3 Maruyama (13) 2018 年 7 月 11 日 ( 水 ) 課題発表 1 Presentation by Students #1 (14) 2018 年 7 月 18 日 ( 水 ) 課題発表 2 Presentation by Students #2 (15) 2018 年 7 月 25 日 ( 水 ) 課題発表 3 Presentation by Students #3 2 Various Platforms on the Ground, in the Air, and in Space Platforms for remote sensors may be situated on the ground, on an aircraft or balloon (or some other platform within the Earth's atmosphere), or on a spacecraft or satellite outside of the Earth's atmosphere. プラットフォームは地上, 空中, 宇宙 Ground-based sensors 地上からのセンサ Ground-based sensors are often used to record detailed information about the surface. 地表の詳細な情報を得る Sensors may be placed on a ladder, scaffolding, tall building, cherry-picker, crane, etc. 梯子, 足場, 高層ビル, クレーン Mobile Laser Scanner Ground Penetration Radar Remote sensing in early days 3 High-position camera Nasca Lines, Peru Ground Laser Scanner 4

Aircraft 航空機 Aerial platforms are primarily stable wing aircraft, although helicopters are occasionally used. 固定翼航空機, ペリコプターなど Aircraft are often used to collect very detailed images and facilitate the collection of data over virtually any portion of the Earth s surface at any time. いつでもどこでも行ける Start Point Unmanned Aerial Vehicles (UAVs) 無人航空機 Z Y X Observation Point Radio Control Helicopter DSM Dr. Y. Honda, CEReS, Chiba Univ. Kunikaze III, GSI Disaster reconnaissance Small Helicopter-type UAV Drone Air Photo Service Co. DJI Phantom 2 Aerial photo 5 AR.Drone 2.0 MS-06LB Nonami Lab http://www.yamazaki-k.co.jp/airphoto/ 6 Structure from Motion (SfM) Unknown camera viewpoints Reconstruct Scene geometry Camera motion Construction of 3D model of structures from many images with unknown positions 複数の画像からカメラの撮影位置を自動的に推定し 3D モデルを構築する技術. Space Shuttle スペースシャトル On February 11, 2000, the Shuttle Radar Topography Mission (SRTM) payload onboard Space Shuttle Endeavour launched into space. With its radars sweeping most of the Earth s surfaces, SRTM acquired enough data during its ten days of operation to obtain the most complete near-global high-resolution database of the Earth s topography. 毛利さんのデータ The Shuttle Radar Topography Mission maps 80% of the Earth s terrain at 30 meter resolution. 地表の80% の標高データを30m 解像度で取得 p 1 p 4 p 3 p 5 p 2 p 7 minimize f(r, T, P) p6 Camera 1 Camera 3 Camera 2 R 1,t 1 R R 2,t 3,t 2 3 7 数字は観測回数 8 http://www2.jpl.nasa.gov/srtm/

SRTM Data http://edc.usgs.gov/srtm/data/obtainingdata.html 1-arc second (30 meter) SRTM data postings of the continental United States can now be obtained via the USGS EDC Seamless Distribution System. 1 秒メッシュ (30m) の標高データは米国について公開 As new 3-arc second (90 meter) international continental datasets are processed and received, USGS will distribute this data via the Seamless Data Distribution System. 世界データは3 秒メッシュ (90m) で公開 2014 年より30mで世界大半を公開開始 arc second: a unit equal to 1/3600th of a degree the newly available full-resolution data 3D Representation of satellite images with SRTM 90m DEM 衛星画像とSRTM 90m DEMによる3D 表示 2004 年インド洋津波,Khaolak, Phan-ga, Thailand 2008 年中国 四川地震 Before 2004/12/31 ASTER After QuickBird KHAO LAK, PHANG NGA, THAILAND 2002/11/15 http://visibleearth.nasa.gov/cgi-bin/viewrecord?500 http://www2.jpl.nasa.gov/srtm/ 9 10 Satellites 人工衛星 In space, remote sensing is conducted commonly from satellites. 宇宙からは人工衛星 Man-made satellites include those platforms launched for remote sensing, communication, and telemetry (location and navigation) purposes. 衛星はリモセン, 通信, 位置観測など Because of their orbits, satellites permit repetitive coverage of the Earth s surface on a continuing basis. 衛星は繰り返し連続的に地球をカバー Orbits of Satellites 衛星軌道 Orbit selection can vary in terms of altitude and their orientation and rotation relative to the Earth. 軌道は高度, 方向と地球に対する回転で決まる Satellites at very high altitudes, which view the same portion of the Earth s surface at all times, have geostationary orbits. 静止衛星は高度が高い Many remote sensing platforms are designed to follow a near polar orbit (basically north-south) which, in conjunction with the Earth s rotation (west-east), allows them to cover most of the Earth s surface 地球観測衛星は準極軌道 Cost is often a significant factor in choosing among the various platform options. 費用がプラットフォームの選択要因 11 Orbit of Terra 12

Geostationary Orbits 静止衛星 The geostationary satellites, at altitudes of approximately 36,000 km, revolve at speeds which match the rotation of the Earth so they seem stationary, relative to the Earth s surface. 地球の自転と同じ速度で赤道上の上空に位置する This allows the satellites to observe and collect information continuously over specific areas. Weather and communications satellites commonly have these types of orbits. 特定の地域を常時観測, 気象衛星や通信衛星 Due to their high altitude, some geostationary weather satellites can monitor weather and cloud patterns covering an entire hemisphere of the Earth. ほぼ半球を観測可能 Near-polar Orbits 準極軌道 Near-polar orbits are so named for the inclination of the orbit relative to a line running between the North and South poles. 極を結ぶ面よりやや傾く Many of these satellite orbits are also sun-synchronous such that they cover each area of the world at a constant local time of day. 同じ時間に回帰をする ( 太陽同期 ) At any given latitude, the position of the sun in the sky as the satellite passes overhead will be the same within the same season. 同緯度では衛星通過時刻の太陽位置は季節ごとに同じ This ensures consistent illumination conditions when acquiring images in a specific season over successive years, or over a particular area over a series of days. 永年に渡る観測データで同じ日照条件 This is an important factor for monitoring changes between images or for mosaicking adjacent images together. 環境変化把握やモザイク画像作成が可能 13 14 Ascending and Descending Paths 上昇 下降軌道 Most of the remote sensing satellites are in near-polar orbits, which means that the satellite travels northwards (ascending) on one side of the Earth and then toward the southern pole (descending) on the second half of its orbit. 準極軌道では北向きが上昇軌道, 南向きが下降軌道 Orbits of earth observation satellites 衛星は今どこにいるか? If the orbit is also sun-synchronous, the ascending path is most likely on the shadowed side of the Earth while the descending path is on the sunlit side. 太陽同期軌道では上昇が夜間, 下降が日中 Sensors recording reflected solar energy only image the surface on a descending path. Active sensors which provide their own illumination or passive sensors that record emitted (e.g. thermal) radiation can also image the surface on ascending paths. 太陽エネルギーを使う光学センサは下降軌道で画像取得 15 http://odweb.tksc.jaxa.jp/odds/main.jsp UTC: Universal Time Coordinate UTC+9 hours in Japan 16

Swath 観測幅 走査幅 As a satellite revolves around the Earth, the sensor sees a certain portion of the Earth s surface. The area imaged on the surface, is referred to as the swath. 衛星の軌道から観測される範囲を観測幅という Swath and spatial resolution of various satellites If seen from the Earth, the satellite is shifting westward because the Earth is rotating. This apparent movement allows the satellite swath to cover a new area with each consecutive path. 地球の自転により, 軌道は見かけ上, 西に移動 ETM+ Spatial Resolution Relative to Other Sensors http://landsathandbook.gsfc.nasa.gov/dat a_properties/prog_sect6_2.html The satellite s orbit and the rotation of the Earth work together to allow complete coverage of the Earth s surface, after it has completed one complete cycle of orbits. 衛星軌道と地球の自転により,1 周期の軌道で地球全域をカバー 17 18 Orbit Cycle and Revisit Period 軌道周期と回帰周期 An orbit cycle will be completed when the satellite retraces its path, passing over the same point on the Earth s surface directly below the satellite (called the nadir point) for a second time. 直下の同じ地点に来る時間は軌道周期 Steerable sensors can view an area (off-nadir) before and after the orbit passes over a target, thus making the revisit period less than the orbit cycle time. 直下でない観測域に入る時間を回帰周期 The revisit period is an important consideration for a number of monitoring applications, especially when frequent imaging is required (e.g., to monitor the spread of an oil spill). 回帰周期は頻繁な観測が必要な場合に重要 In near-polar orbits, areas at high latitudes will be imaged more frequently than the equatorial zone due to the increasing overlap in adjacent swaths. 準極軌道では高緯度地域は頻繁に観測 = Path (orbit) = Path Number = USGS/EROS Data Center - Sioux Falls, SD = Svalbaard, Norway = Poker Flat, Alaska Paths of Landsat http://landsat.gsfc.nasa.gov/ https://landsat.usgs.gov/index.php 19 Path and Row of Landsat 20

Spatial Resolution of Satellites 空間解像度 Images where only large features are visible are said to have coarse or low resolution. 荒い ( 低 ) 解像度 ( 分解能 ) In fine or high resolution images, small objects can be detected. Military sensors for example, are designed to view as much detail as possible, and therefore have very fine resolution. 細かい ( 高 ) 解像度 => 軍事衛星 Commercial satellites provide imagery with resolutions varying from a few meters to several kilometers. 商業衛星は様々な解像度 Generally speaking, the finer the resolution, the less total ground area can be seen. 解像度が高いと写す範囲は狭い 21 Multispectral Sensors of Moderate-Resolution Satellites 主な中解像度衛星のマルチスペクトル センサ Sponsor Lifespan Spatial Resolution Swath Spectral Bands Other Sensor Specs 1984-30m MS 185x172 MS 7 Bands VNIR-TIR 120m TIR km Comparison of 1m (left), 10m (middle), 30m (right) spatial resolution http://homepage.mac.com/alexandreleroux/arsist/arsist.html 22 Multispectral IRS-P6 Sensor - Satellite Landsat 4 & 5 TM NASA/NOA A/USGS Landsat 7 ETM+ NASA/NOA A/USGS SPOT 4 LISS-4, LISS-3 & AWiFS April 15th 1999 - ongoing** 6 yrs mission 2xHRV-IR CNES March 1998 - & ongoing? Vegetation INDIA (ISRO) Oct. 2003 - ongoing 5.8, 23.5 & 56m 23.9, 141 LISS-4 3 bands 520-860nm & 740 km CBERS-2 CCD Camera ASTER Terra MITI/NASA December 15m VNIR 60 km x 3 bands VNIR 520-860nm, 1999 60 km 6 yrs mission 30m SWIR 6 bands SWIR 1600-2430nm, 90m TIR 5 bands TIR 8125-11650nm, Bands for stereoscopy 780- CHINA- BRAZIL Repeat Cycle 16 days 15m Pan 185x172 Pan 520-900nm ** Data quality 16 days km dropped significantly 30m MS 5 Bands VNIR since the SLC 60m TIR 2 Bands SWIR failure in June 1 Band TIR 2003. 10m Pan 60x60 km MS 4 bands (500-590, 610- Also Vegetation 3 to 26 680, 790-890, 1580-1750nm) Instrument at days 20m MS Pan (610-680nm) 1.1km pixel ±27 inclination ASTER DEM product available, about 30m accuracy. 24 days 16 days Oct. 2003 2 yrs 20m CCD(high-res.,5bands) 113 km 26 days ALOS AVNIR-2 JAXA Jan. 2006 10m MS 4 bands 46 days PRISM JAXA Jan. 2006 2.5m Pan 1 band Sensors of High-Resolution Satellites 高解像度衛星とセンサ High Resolution Sensor - Satellite ORBView-3 Quickbird-2 IKONOS-2 EROS 1A SPOT 5a HGR & Vegetatio n Sponsor Lifespan Spatial Resolutio Orbimage DigitalGlob e Space Imaging Swath Spectral Bands Other Sensor Specs June 2003 1m Pan 8 km MS 4 bands (450-520, 520-600, 620-690, 760-900nm) 5 yrs mission 4m MS Pan (450-900nm) Oct. 2001 - ongoing 0.61m Pan 16.5 km MS 4 bands (450-520, 520-600, 630-690, 760- Sept. 1999 - ongoing 2.44m MS 165 km track 890nm) Pan (450-900nm) Repeat Cycle QB 2 polar orbit 1-3.5 days ±30 in all directions Stereo ±26 inclination 1m Pan 11.3 km MS 4 bands (450-520, wide at nadir 520-600, 630-690, 760-900nm) 4m MS Pan (525.8-928.5nm) 11 bits data West Dec. 2000-1.8m Pan 12.6x12. Pan (500-900nm) Indian ongoing 6 km Spot Image May 2002 2.5 & 5m Pan 60 km > 5 yrs mission? MS 4 bands (500-590, 610-680, 790-890, 1580-1750 ) ±45 off nadir < 3 days Also Vegetation Instrument 1-3 days 1.8-4 days 3 to 26 days 10m MS Pan 510-730nm ±31 inclination 20m SWIR IRS-1C & 1D LISS3 & INDIA 1C: Dec. 95 5m Pan 70x70 k Pan 500-750nm Pan ±26 24 days WiFS sensors (ISRO) - ongoing 1D: Sept. 97-20m MS m Pan 142x142 MS 4 bands (520-590, km MSS 620-680, 770-860, 1550- inclination 5-24 offnadir Pan 180m WiFS 774x774 WiFS 2 bands (620-680, km WiFS 770-860nm) WorldView-1 DigitalGlobe Sept. 2007 0.5m Pan 17.6km Pan 1.7 days WorldView-2 DigitalGlobe Oct.. 2009 0.5m Pan 16.4km MS 8 bands (1.8m) + Pan (0.5m) 1.1 days GeoEye-1 GeoEye Sept.. 2008 0.4m Pan 15.2km MS bands (1.6m) + Pan (0.4m) 2.1 days WorldView-3 DigitalGlob Aug.. 2014 0.3m Pan 13.1km MS bands (1.24m) + Pan (0.31m) 1 day http://homepage.mac.com/alexandreleroux/arsist/arsist.html 23 Spectral Resolution スペクトル分解能 Different classes of features and details in an image can often be distinguished by comparing their responses over distinct wavelength ranges. Broad classes, such as water and vegetation, can usually be separated using very broad wavelength ranges - the visible and near infrared. 波長に依存する反射特性は物質を見分けるのに利用 Other more specific classes, such as different rock types, may not be easily distinguishable using these broad wavelength ranges and would require comparison at much finer wavelength ranges to separate them. より詳細な分類には細かい反射特性が必要 Reflectance of Different Rock Types 24

Multi-spectral and Hyper-spectral Sensors マルチスペクトル, ハイパースペクトル センサ Many remote sensing systems record energy over several separate wavelength ranges at various spectral resolutions. These are referred to as multi-spectral sensors. 通常の光学センサはマルチスペクトル Advanced multi-spectral sensors called hyperspectral sensors, detect hundreds of very narrow spectral bands throughout the visible, near-ir, and mid-ir portions of the EM spectrum. 百を越えるような多数のバンドを持つセンサはハイパースペクトル Hyperspectral Sensors 主なハイパースペクトル衛星センサ Hyperspectral Sensor - Satellite Sponsor Lifespan Spatial Resolution Swath Spectral Bands Other Sensor Specs EO-1 Hyperion NASA Dec. 1999-30m 7.5 km x 220 bands 400nm to 2500nm @10nm ongoing! 100 km Grating Imaging Spec (sept. 2003) Grating Imaging Spec 1 yr mission EO-1 LEISA AC NASA 12/1/1999 250m 7.5 km x 309 Bands 850-1600nm @2.4nm 1 yr mission 100 km Wedge Imaging Spec Envisat-1 MERIS ESA May 2002 300m 1150 km 15 bands programmable 5 identical Aerospatiale 5 yrs @nadir and 390-1040nm @2.5nm sensors France, mission 1200m Cannes, ACRI global ADEOS-2 GLI NASDA Dec. 2002-250/1000m 19 bands 375-865nm @8-20nm Failed Oct. 2003 prematurely on 3 yrs design 4 bands 460-825nm @50-110nm october 25 2003 6 bands 1050-2210nm @20-220nm 7 bands 3715-12000nm @330-1000nm Repeat Cycle 35 days Their very high spectral resolution facilitates fine discrimination between different targets based on their spectral response in each of the narrow bands. ハイパースペクトル センサは物質の詳細な識別に利用 25 Current and planned hyperspectral civilian spaceborne hyperspectral imagers. VISNIR: Visible and near-ir. SWIR: Short-wave IR. TIR: Thermal IR. http://spie.org/x91905.xml 26 http://homepage.mac.com/alexandreleroux/arsist/arsist.html Terra-MODIS (Moderate Resolution Imaging Spectroradiometer) Sees every point on our world every 1-2 days in 36 discrete spectral bands. Primary Use Band Bandwidth Land/Cloud 1 620-670 Boundaries 2 841-876 Land/Cloud 3 459-479 Properties 4 545-565 5 1230-1250 6 1628-1652 7 2105-2155 Ocean Color/ 8 405-420 Phytoplankton/ 9 438-448 Biogeochemistry 10 483-493 11 526-536 12 546-556 13 662-672 14 673-683 15 743-753 16 862-877 Atmospheric 17 890-920 Water Vapor 18 931-941 19 915-965 Surface/Cloud 20 3.660-3.840 Temperature 21 3.929-3.989 22 3.929-3.989 23 4.020-4.080 Atmospheric 24 4.433-4.498 Temperature 25 4.482-4.549 Cirrus Clouds 26 1.360-1.390 Water Vapor 27 6.535-6.895 28 7.175-7.475 29 8.400-8.700 Ozone 30 9.580-9.880 Surface/Cloud 31 10.780-11.280 Temperature 32 11.770-12.270 Cloud Top 33 13.185-13.485 Altitude 34 13.485-13.785 35 13.785-14.085 36 14.085-14.385 Bands 1 to 19, nm; Bands 20-36, μm Spatial Resolution: 250 m (bands 1-2) 250m 1km (at nadir): 500 m (bands 3-7) 1000 m (bands 8-36) 500m 27 Radiometric Resolution 放射分解能 Every time an image is acquired on film or by a sensor, its sensitivity to the magnitude of the EM energy determines the radiometric resolution. 電磁エネルギーの大きさに対する感度をいう The radiometric resolution of an imaging system describes its ability to discriminate very slight differences in energy. The finer the radiometric resolution of a sensor, the more sensitive it is to detecting small differences in reflected or emitted energy. 放射分解能が高いと放射特性の違いを見分けれる Quantitization 量子化 ( 濃度値の離散化 ) 2-bit Image 8-bit Image (4 grey levels) (256 grey levels) 28

Temporal Resolution 時間分解能 In addition to spatial, spectral, and radiometric resolution, the concept of temporal resolution is also important to consider in a remote sensing system. 時間分解能 ( 観測頻度 ) も重要 The absolute temporal resolution of a remote sensing system to image the exact same area at the same viewing angle a second time is equal to the revisit period. 回帰日数で, 同じ地域を同じ角度でみることができる Due to overlap in the imaging swaths of adjacent orbits for most satellites and the increase in this overlap with increasing latitude, some areas of the Earth tend to be re-imaged more frequently. 観測幅の重なりにより高緯度ではより頻繁な観測 Multi-temporal Imagery 多時期画像の重要性 The time factor in imaging is important when: Persistent clouds offer limited clear views of the Earth s surface (often in the tropics) 天候による観測可能日の制限 Short-lived phenomena (floods, oil slicks, etc.) need to be imaged 短期間の現象の撮影 Multi-temporal comparisons are required (e.g. the spread of a forest disease from one year to the next) 多時期による比較 The changing appearance of a feature over time can be used to distinguish it from near-similar features (wheat / corn) 時間変化による似たものの分類 Some satellite systems are able to point their sensors to image the same area between different satellite paths. センサの向きを変えて他の軌道から観測できる衛星もある. 29 RapidEye five satellites constellation 30 Banda Ache before and after the 2004.12.26 Tsunami False Color Composite 0 500m Seasonal change of NDVI by NOAA Dr. Y. Honda, CEReS, Chiba Univ. 32