IR MOSFET StrongIRFET IRL40SC228

Similar documents
IR MOSFET StrongIRFET IRF60R217

IR MOSFET StrongIRFET IRFP7718PbF

Orderable Part Number IRFP4768PbF TO-247AC Tube 25 IRFP4768PbF

Base part number Package Type Standard Pack Orderable Part Number. IRFP7530PbF TO-247 Tube 25 IRFP7530PbF I D, T J = 25 C 50

IR MOSFET StrongIRFET IRF60B217

StrongIRFET IRL60B216

StrongIRFET IRL40B215

StrongIRFET IRFB7546PbF

Base Part Number Package Type Standard Pack Orderable Part Number

AUIRF1324S-7P AUTOMOTIVE GRADE

AUTOMOTIVE GRADE. Tube 50 AUIRFS3004-7P Tape and Reel Left 800 AUIRFS3004-7PTRL

AUTOMOTIVE GRADE. Tube 50 AUIRFS4115-7P Tape and Reel Left 800 AUIRFS4115-7TRL

StrongIRFET IRFB7740PbF

AUIRLS3034-7P AUTOMOTIVE GRADE. HEXFET Power MOSFET

AUTOMOTIVE GRADE. Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) 300

AUIRLS3034 AUTOMOTIVE GRADE. HEXFET Power MOSFET

AUTOMOTIVE GRADE. Thermal Resistance Symbol Parameter Typ. Max. Units R JC Junction-to-Case 1.32 R JA Junction-to-Ambient ( PCB Mount) 50 C/W

Ordering Information Base part number Package Type Standard Pack Complete Part Form Quantity Number IRFB7437PbF TO-220 Tube 50 IRFB7437PbF

AUIRFR4105Z AUIRFU4105Z

AUIRFR540Z AUIRFU540Z

Ordering Information Base Part Number Package Type Standard Pack Complete Part Number 500 I D = 100A T J = 125 C 200 I D,

AUTOMOTIVE GRADE. Base part number Package Type Standard Pack Orderable Part Number

AUTOMOTIVE GRADE. Orderable Part Number AUIRFZ44Z TO-220 Tube 50 AUIRFZ44Z AUIRFZ44ZS D 2 Tube 50 AUIRFZ44ZS Tape and Reel Left 800 AUIRFZ44ZSTRL

Orderable Part Number Form Quantity IRFHM8334PbF PQFN 3.3 mm x 3.3 mm Tape and Reel 4000 IRFHM8334TRPbF

Base Part Number Package Type Standard Pack Orderable Part Number. IRFP3006PbF TO-247 Tube 25 IRFP3006PbF

V DSS. 40V 1.5mΩ 2.0mΩ 250Ac 195A. R DS(on) typ. max. I D (Silicon Limited) I D (Package Limited) HEXFET Power MOSFET

AUTOMOTIVE GRADE C T STG

AUTOMOTIVE GRADE. Standard Pack Orderable Part Number AUIRL3705Z TO-220 Tube 50 AUIRL3705Z AUIRL3705ZL TO-262 Tube 50 AUIRL3705ZL AUIRL3705ZS D 2 -Pak

IRFHM8326PbF. HEXFET Power MOSFET. V DSS 30 V V GS max ±20 V R DS(on) max 4.7 V GS = 10V)

FASTIRFET IRFHE4250DPbF

40V V DSS. R DS(on) typ. I D (Silicon Limited) I D (Package Limited) 409Ac 195A. HEXFET Power MOSFET

AUTOMOTIVE GRADE. Thermal Resistance Symbol Parameter Typ. Max. Units R JC Junction-to-Case 1.9 R JA Junction-to-Ambient ( PCB Mount) 50 C/W

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 23. V/ns T J. mj I AR

V DSS. 40V R DS(on) typ. 1.4mΩ max. 1.8mΩ 250Ac. I D (Silicon Limited) I D (Package Limited) 195A. HEXFET Power MOSFET.

Base part number Package Type IRFP4137PbF TO-247AC Tube 25 IRFP4137PbF

T J = 25 C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V (BR)DSS DraintoSource Breakdown Voltage 24 V V (BR)DSS / T J

AUTOMOTIVE GRADE. A I DM Pulsed Drain Current -44 P A = 25 C Maximum Power Dissipation 3.8 P C = 25 C Maximum Power Dissipation 110

IRFR1018EPbF IRFU1018EPbF

IRFR3806PbF IRFU3806PbF

IRFS3004-7PPbF HEXFET Power MOSFET

AUTOMOTIVE GRADE. Thermal Resistance Symbol Parameter Typ. Max. Units R JC Junction-to-Case 2.2 R JA Junction-to-Ambient ( PCB Mount) 50 C/W

IRLS3034PbF IRLSL3034PbF

IRLS3036PbF IRLSL3036PbF HEXFET Power MOSFET

1412 P C = 25 C Maximum Power Dissipation 300 Linear Derating Factor. V/ns T J. Thermal Resistance Symbol Parameter Typ. Max.

Lower Conduction Losses

IRFS4127PbF IRFSL4127PbF

40V D V DSS. R DS(on) typ. 317Ac 195A. I D (Silicon Limited) I D (Package Limited) HEXFET Power MOSFET. Ordering Information. Applications.

AUTOMOTIVE GRADE. Thermal Resistance Symbol Parameter Typ. Max. Units R JC Junction-to-Case 1.4 R JA Junction-to-Ambient ( PCB Mount) 50 C/W

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 5.3

TO-220AB IRFB4410. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 19

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 13

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 26

IRFB3507PbF IRFS3507PbF IRFSL3507PbF

IRFB4020PbF. Key Parameters V DS 200 V R DS(ON) 10V 80 m: Q g typ. 18 nc Q sw typ. 6.7 nc R G(int) typ. 3.2 Ω T J max 175 C

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 27

W/ C V GS Gate-to-Source Voltage ±20 dv/dt Peak Diode Recovery f 4.6. V/ns T J. mj I AR. Avalanche Current d A See Fig. 14, 15, 22a, 22b, E AR

IRF7MS V, N-CHANNEL HEXFET MOSFET TECHNOLOGY. POWER MOSFET THRU-HOLE (Low-Ohmic TO-254AA) PD-94609A

TO-220AB IRFB3307. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 11. V/ns T J Operating Junction and -55 to

C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting Torque, 6-32 or M3 screw 1.1 (10) N m (lbf in)

W/ C V GS Gate-to-Source Voltage ±16 dv/dt Peak Diode Recovery f 8.0. V/ns T J. mj I AR. Avalanche Current d A See Fig. 14, 15, 22a, 22b E AR

V DSS. W/ C V GS Gate-to-Source Voltage ±30 E AS (Thermally limited) mj T J Operating Junction and -55 to + 175

TO-220AB IRFB4610. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 7.6

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 11. V/ns T J. mj I AR

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

IRL5NJ V, P-CHANNEL LOGIC LEVEL POWER MOSFET SURFACE MOUNT (SMD-0.5) PD-94052C. Product Summary

IRF5M V, P-CHANNEL HEXFET MOSFET TECHNOLOGY POWER MOSFET THRU-HOLE (TO-254AA) PD-94155A

A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) 560 P C = 25 C Power Dissipation 330 Linear Derating Factor

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

TO-220AB. IRF3205ZPbF. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

IRFS3107PbF IRFSL3107PbF HEXFET Power MOSFET

IRF3CMS17N80. POWER MOSFET THRU-HOLE (Low-Ohmic TO-254AA) 800V, N-CHANNEL PD Product Summary Part Number RDS(on) I D.

IRFZ46ZPbF IRFZ46ZSPbF IRFZ46ZLPbF

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

Lower Conduction Losses

Lower Conduction Losses Low Thermal Resistance to PCB ( 0.5 C/W)

AUTOMOTIVE MOSFET. 30 Pulsed Drain Current c. I DM P C = 25 C Maximum Power Dissipation 120 Linear Derating Factor

IRFF230 JANTX2N6798 JANTXV2N6798

IRF6641TRPbF DIGITAL AUDIO MOSFET. Key Parameters V DS 200 V R DS(ON) V GS = 10V 51 m Qg typ. 34 nc R G(int) typ. 1.0

V DSS R DS(on) max (mw)

Absolute Maximum Ratings Max. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

IRFR3710ZPbF IRFU3710ZPbF HEXFET Power MOSFET

IR MOSFET - StrongIRFET

TO-220AB. IRF540ZPbF A I DM. 140 P C = 25 C Power Dissipation 92 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

TO-220AB IRFB4310. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 14

AUTOMOTIVE MOSFET. I D = 140A Fast Switching

AUTOMOTIVE MOSFET TO-220AB IRL1404Z. Absolute Maximum Ratings Max. I T C = 25 C Continuous Drain Current, V 10V (Silicon Limited)

IR MOSFET - StrongIRFET

AUTOMOTIVE MOSFET TO-220AB IRL3705Z. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) W/ C V GS Gate-to-Source Voltage ± 16

IRF2804PbF IRF2804SPbF IRF2804LPbF HEXFET Power MOSFET

-280 P C = 25 C Power Dissipation 170 Linear Derating Factor. W/ C V GS Gate-to-Source Voltage ± 20

IRFP2907PbF. HEXFET Power MOSFET V DSS = 75V. R DS(on) = 4.5mΩ I D = 209A. Typical Applications. Benefits

IRF3808S IRF3808L HEXFET Power MOSFET

W/ C V GS Gate-to-Source Voltage ± 30 dv/dt Peak Diode Recovery e 57

IRFR4105ZPbF IRFU4105ZPbF

IRFR540ZPbF IRFU540ZPbF

IRLR3915PbF IRLU3915PbF

TO-220AB. IRF2807ZPbF. 350 P C = 25 C Maximum Power Dissipation 170 Linear Derating Factor

V DSS V GS R DS(on) Q g tot Q gd Q gs2 Q rr Q oss V gs(th)

SMPS MOSFET. V DSS R DS(on) max I D

Part Number Radiation Level RDS(on) I D IRHLUC7970Z4 100 krads(si) A IRHLUC7930Z4 300 krads(si) A LCC-6

Transcription:

I D, Drain Current (A) IR MOSFET StrongIRFET Application Brushed Motor drive applications BLDC Motor drive applications Battery powered circuits Half-bridge and full-bridge topologies Synchronous rectifier applications Resonant mode power supplies OR-ing and redundant power switches DC/DC and AC/DC converters DC/AC Inverters G D S HEXFET Power MOSFET V DSS R DS(on) typ. max I D (Silicon Limited) I D (Package Limited) D 4V.5m.65m 557A 36A Benefits Optimized for Logic Level Drive Improved Gate, Avalanche and Dynamic dv/dt Ruggedness Fully Characterized Capacitance and Avalanche SOA Enhanced body diode dv/dt and di/dt Capability Lead-Free* RoHS Compliant, Halogen-Free G S S S S S S D2PAK-7Pin G D S Gate Drain Source Standard Pack Base Part Number Package Type Orderable Part Number Form Quantity D2PAK-7Pin Tape and Reel Left 8 R DS (on), Drain-to -Source On Resistance ( m ) 5 I D = 1A 6 LIMITED BY PACKAGE 4 5 3 4 2 1 T J = 125 C 4 8 12 16 2 V GS, Gate-to-Source Voltage (V) 3 2 1 25 5 75 1 125 15 175 T C, Case Temperature ( C) Fig 1. Typical On-Resistance vs. Gate Voltage Fig 2. Maximum Drain Current vs. Case Temperature 1 217-5-12

Absolute Maximum Rating Symbol Parameter Max. Units I D @ T C = 25 C Continuous Drain Current, VGS @ 1V (Silicon Limited) 557 I D @ T C = 1 C Continuous Drain Current, V GS @ 1V (Silicon Limited) 393 I D @ T C = 25 C Continuous Drain Current, V GS @ 1V (Wire Bond Limited) 36 A I DM Pulsed Drain Current 144 P D @T C = 25 C Maximum Power Dissipation 416 W Linear Derating Factor 2.8 W/ C V GS Gate-to-Source Voltage ± 2 V T J Operating Junction and -55 to + 175 T STG Storage Temperature Range C Soldering Temperature, for 1 seconds (1.6mm from case) 3 Avalanche Characteristics E AS (Thermally limited) Single Pulse Avalanche Energy 1275 E AS (Thermally limited) Single Pulse Avalanche Energy 215 mj I AR Avalanche Current A See Fig 15, 16, 23a, 23b E AR Repetitive Avalanche Energy mj Thermal Resistance Symbol Parameter Typ. Max. Units R JC Junction-to-Case.36 R CS Case-to-Sink, Flat Greased Surface.5 C/W R JA Junction-to-Ambient 62 Static @ (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units Conditions V (BR)DSS Drain-to-Source Breakdown Voltage 4 V V GS = V, I D = 25µA V (BR)DSS / T J Breakdown Voltage Temp. Coefficient.31 V/ C Reference to 25 C, I D = 5mA.5.65 V R GS = 1V, I D = 1A DS(on) Static Drain-to-Source On-Resistance m.6.9 V GS = 4.5V, I D = 5A V GS(th) Gate Threshold Voltage 1. 2.4 V V DS = V GS, I D = 25µA 1. V DS = 4 V, V GS = V I DSS Drain-to-Source Leakage Current µa 15 V DS = 4V,V GS = V,T J =125 C Gate-to-Source Forward Leakage 1 V I GSS na GS = 2V Gate-to-Source Reverse Leakage -1 V GS = -2V R G Gate Resistance 2.2 Notes: Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 36A. Note that Current imitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-114) Repetitive rating; pulse width limited by max. junction temperature. Limited by T Jmax, starting, L =.146mH, R G = 5, I AS = 1A, V GS =1V. I SD 1A, di/dt 18A/µs, V DD V (BR)DSS, T J 175 C. Pulse width 4µs; duty cycle 2%. C oss eff. (TR) is a fixed capacitance that gives the same charging time as C oss while V DS is rising from to 8% V DSS. C oss eff. (ER) is a fixed capacitance that gives the same energy as C oss while VDS is rising from to 8% V DSS. R is measured at T J approximately 9 C. Limited by T Jmax, starting, L = 1mH, R G = 5, I AS = 65A, V GS =1V. Pulse drain current is limited to 144A by source bonding technology. When mounted on 1" square PCB (FR-4 or G-1 Material). For recommended footprint and soldering techniques refer to application note #AN-994: http://www.infineon.com/technical-info/appnotes/an-994.pdf 2 217-5-12

Dynamic Electrical Characteristics @ (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units Conditions gfs Forward Transconductance 264 S V DS = 1V, I D = 1A Q g Total Gate Charge 25 37 I D = 1A Q gs Gate-to-Source Charge 57 V DS = 2V nc Q gd Gate-to-Drain Charge 14 V GS = 4.5V Q sync Total Gate Charge Sync. (Qg Qgd) 11 t d(on) Turn-On Delay Time 67 V DD = 2V t r Rise Time 21 I D = 3A ns t d(off) Turn-Off Delay Time 222 R G = 2.7 t f Fall Time 176 V GS = 4.5V C iss Input Capacitance 1968 V GS = V C oss Output Capacitance 235 V DS = 25V C rss Reverse Transfer Capacitance 1575 pf ƒ = 1.MHz, See Fig.7 C oss eff.(er) Effective Output Capacitance (Energy Related) 269 V GS = V, VDS = V to 32V C oss eff.(tr) Output Capacitance (Time Related) 339 V GS = V, VDS = V to 32V Diode Characteristics Symbol Parameter Min. Typ. Max. Units Conditions Continuous Source Current MOSFET symbol 557 (Body Diode) showing the A G Pulsed Source Current integral reverse 144 (Body Diode) p-n junction diode. I S I SM V SD Diode Forward Voltage 1.2 V,I S =1A,V GS = V dv/dt Peak Diode Recovery dv/dt 2. V/ns T J = 175 C,I S = 1A,V DS = 4V t rr Reverse Recovery Time 42 V DD = 34V ns 43 T J = 125 C I F = 1A, Q rr Reverse Recovery Charge 43 di/dt = 1A/µs nc 45 T J = 125 C I RRM Reverse Recovery Current 1.7 A D S 3 217-5-12

C, Capacitance (pf) V GS, Gate-to-Source Voltage (V) I D, Drain-to-Source Current (A) R DS(on), Drain-to-Source On Resistance (Normalized) I D, Drain-to-Source Current (A) I D, Drain-to-Source Current (A) 1 1 3.25V 3.25V 1 6µs PULSE WIDTH Tj = 25 C VGS TOP 15V 1V 6.V 5.V 4.5V 4.V 3.5V BOTTOM 3.25V 1.1 1 1 1 V DS, Drain-to-Source Voltage (V) Fig 3. Typical Output Characteristics 1 6µs PULSE WIDTH Tj = 175 C VGS TOP 15V 1V 6.V 5.V 4.5V 4.V 3.5V BOTTOM 3.25V 1.1 1 1 1 V DS, Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics 1 2.2 I D = 1A V GS = 1V 1 1.8 T J = 175 C 1 1.4 1 1..1 V DS = 1V 6µs PULSE WIDTH 1 2 3 4 5 V GS, Gate-to-Source Voltage (V).6-6 -2 2 6 1 14 18 T J, Junction Temperature ( C) Fig 5. Typical Transfer Characteristics Fig 6. Normalized On-Resistance vs. Temperature 1 1 V GS = V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd 14 12 1 I D = 1A V DS = 32V V DS = 2V V DS = 8V 1 C iss C oss C rss 8 6 1 4 2 1 1 1 1 V DS, Drain-to-Source Voltage (V) 5 1 15 2 25 3 35 4 45 5 Q G, Total Gate Charge (nc) Fig 7. Typical Capacitance vs. Drain-to-Source Voltage Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage 4 217-5-12

V (BR)DSS, Drain-to-Source Breakdown Voltage (V) Energy (µj) I SD, Reverse Drain Current (A) I D, Drain-to-Source Current (A) 1 1 1 OPERATION IN THIS AREA LIMITED BY R DS (on) 1µsec 1 T J = 175 C 1 1 LIMITED BY PACKAGE 1msec 1 V GS = V.1.1.2.3.4.5.6.7.8.9 1. 1.1 V SD, Source-to-Drain Voltage (V) Fig 9. Typical Source-Drain Diode Forward Voltage 1msec 1 Tc = 25 C Tj = 175 C DC Single Pulse.1.1 1. 1. V DS, Drain-toSource Voltage (V) Fig 1. Maximum Safe Operating Area 52 Id = 5.mA 2. 5 1.6 48 1.2 46.8 44.4 42-6 -2 2 6 1 14 18 T J, Temperature ( C ). 1 2 3 4 V DS, Drain-to-Source Voltage (V) Fig 11. Drain-to-Source Breakdown Voltage Fig 12. Typical C oss Stored Energy R DS (on), Drain-to -Source On Resistance ( m ) 1..8.6 V GS = 3.5V V GS = 4.5V V GS = 6.V V GS = 8.V V GS = 1V.4 4 8 12 16 2 I D, Drain Current (A) Fig 13. Typical On-Resistance vs. Drain Current 5 217-5-12

E AR, Avalanche Energy (mj) 1 Thermal Response ( Z thjc ) C/W.1.1 D =.5.2.1.5.2.1.1 SINGLE PULSE Notes: ( THERMAL RESPONSE ) 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc.1 1E-6 1E-5.1.1.1.1 t 1, Rectangular Pulse Duration (sec) Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 15 C and Tstart =25 C (Single Pulse) Avalanche Current (A) 1 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25 C and Tstart = 15 C. 1 1.E-6 1.E-5 1.E-4 1.E-3 1.E-2 1.E-1 tav (sec) Fig 15. Avalanche Current vs. Pulse Width 14 12 1 8 6 4 2 TOP Single Pulse BOTTOM 1.% Duty Cycle I D = 1A 25 5 75 1 125 15 175 Starting T J, Junction Temperature ( C) Fig 16. Maximum Avalanche Energy vs. Temperature Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-15 at www.irf.com) 1.Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long ast jmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 23a, 23b. 4. P D (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. I av = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed T jmax (assumed as 25 C in Figure 14, 15). t av = Average time in avalanche. D = Duty cycle in avalanche = tav f Z thjc (D, t av ) = Transient thermal resistance, see Figures 14) PD (ave) = 1/2 ( 1.3 BV I av ) = T/ Z thjc I av = 2 T/ [1.3 BV Z th ] E AS (AR) = P D (ave) t av 6 217-5-12

Q RR (nc) I RRM (A) Q RR (nc) V GS(th), Gate threshold Voltage (V) I RRM (A) 2.5 2. 28 24 2 I F = 6A V R = 34V T J = 125 C 1.5 1. ID = 25µA ID = 1.mA ID = 1.A 16 12 8.5 4. -75-25 25 75 125 175 T J, Temperature ( C ) 2 4 6 8 1 di F /dt (A/µs) Fig 17. Threshold Voltage vs. Temperature Fig 18. Typical Recovery Current vs. dif/dt 28 24 2 I F = 6A V R = 34V T J = 125 C 24 2 16 I F = 6A V R = 34V T J = 125 C 16 12 12 8 8 4 4 2 4 6 8 1 2 4 6 8 1 di F /dt (A/µs) di F /dt (A/µs) Fig 19. Typical Recovery Current vs. dif/dt Fig 2. Typical Stored Charge vs. dif/dt 24 2 16 I F = 1A V R = 34V T J = 125 C 12 8 4 2 4 6 8 1 di F /dt (A/µs) Fig 21. Typical Stored Charge vs. dif/dt 7 217-5-12

Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET Power MOSFETs V (BR)DSS 15V tp V DS L DRIVER R G 2V tp D.U.T I AS.1 + - V DD A I AS Fig 23a. Unclamped Inductive Test Circuit Fig 23b. Unclamped Inductive Waveforms Fig 24a. Switching Time Test Circuit Fig 24b. Switching Time Waveforms Vds Id Vgs VDD Vgs(th) Qgs1 Qgs2 Qgd Qgodr Fig 25a. Gate Charge Test Circuit Fig 25b. Gate Charge Waveform 8 217-5-12

D 2 Pak - 7 Pin Package Outline (Dimensions are shown in millimeters (inches)) D 2 Pak - 7 Pin Part Marking Information INTERNATIONAL RECTIFIER LOGO F1324S-7P YWWP PART NUMBER ASSEMBLY LOT CODE 17 89 DATE CODE Y = YEAR W = WEEK P = LEADFREE 9 217-5-12

Qualification Information Qualification Level Moisture Sensitivity Level RoHS Compliant D2PAK-7Pin Industrial (per JEDEC JESD47F) MSL1 (per JEDEC J-STD-2D ) Yes Applicable version of JEDEC standard at the time of product release. Revision History Date Comments 5/12/217 Corrected package picture added s on pin number 4 - page 1. Published by Infineon Technologies AG 81726 München, Germany Infineon Technologies AG 215 All Rights Reserved. IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ( Beschaffenheitsgarantie ). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer s products and any use of the product of Infineon Technologies in customer s applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com). WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. 1 217-5-12