Table of Contents. Abbrevation Glossary... xvii

Similar documents
Fiber-Optic Communication Systems

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p.

Optical Communication and Networks M.N. Bandyopadhyay

CONTENTS. Chapter 1 Wave Nature of Light 19

Principles of Optics for Engineers

Elements of Optical Networking

LASER DIODE MODULATION AND NOISE

DIRECT MODULATION WITH SIDE-MODE INJECTION IN OPTICAL CATV TRANSPORT SYSTEMS

Microwave Circuit Analysis and Amplifier Design

RF AND MICROWAVE ENGINEERING

MICROWAVE photonics is an interdisciplinary area

Module 16 : Integrated Optics I

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34

Semiconductor Optical Communication Components and Devices Lecture 39: Optical Modulators

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016

Optics and Lasers. Matt Young. Including Fibers and Optical Waveguides

CHAPTER 1 INTRODUCTION

CHAPTER 4 RESULTS. 4.1 Introduction

WIRELESS TRANSCEIVER DESIGN

Analog Optical Links for Wide-Bandwidth Radar Receivers

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

Multiply Resonant EOM for the LIGO 40-meter Interferometer

Optical Delay Line Application Note

Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration

All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser

Linearity and chirp investigations on Semiconductor Optical Amplifier as an external optical modulator

Introduction Fundamental of optical amplifiers Types of optical amplifiers

Performance Analysis Of An Ultra High Capacity 1 Tbps DWDM-RoF System For Very Narrow Channel Spacing

Broadband Linearization Technologies for Broadband Radio-over-Fiber Transmission Systems

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Sixth Edition. 4ü Spri rineer g<

The electric field for the wave sketched in Fig. 3-1 can be written as

UNIT I INTRODUCTION TO OPTICAL FIBERS

Digital Predistortion for Broadband Radio-over-Fiber Transmission Systems

Optical Single Sideband Modulation and Optical Carrier Power Reduction and CATV Networks

A NOVEL SCHEME FOR OPTICAL MILLIMETER WAVE GENERATION USING MZM

Agilent 71400C Lightwave Signal Analyzer Product Overview. Calibrated measurements of high-speed modulation, RIN, and laser linewidth

The Fiber-Optic Gyroscope

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016

21. (i) Briefly explain the evolution of fiber optic system (ii) Compare the configuration of different types of fibers. or 22. (b)(i) Derive modal eq

TC - Wire and Optical Transmission

π code 0 Changchun,130000,China Key Laboratory of National Defense.Changchun,130000,China Keywords:DPSK; CSRZ; atmospheric channel

ELECTROMAGNETIC SHIELDING HANDBOOK FOR WIRED AND WIRELESS EMC APPLICATIONS

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University

WIRELESS communication systems have shown tremendous

Photonic Signals. and Systems. An Introduction. NabeelA.Riza/Ph.D. Department of Electrical and Electronic Engineering University College Cork

Index. Cambridge University Press Computational Photonics: An Introduction with MATLAB Marek S. Wartak. Index.

Modulation of light. Direct modulation of sources Electro-absorption (EA) modulators

Millimeter Wave Spectrum Analyzer with Built-in >100 GHz Preselector

Lecture 9 External Modulators and Detectors

The Past, Present, and Future of Silicon Photonics

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE

Fiber Amplifiers. Fiber Lasers. 1*5 World Scientific. Niloy K nulla. University ofconnecticut, USA HONG KONG NEW JERSEY LONDON

Frequency Dependent Harmonic Powers in a Modified Uni-Traveling Carrier (MUTC) Photodetector

MICROWAVE OVER FIBER Applications and Performance

RF Power Amplifiers for Wireless Communications

Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links

TABEL OF CONTENTS CHAPTER TITLE PAGE ABSTRAKT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion


LINEAR MICROWAVE FIBER OPTIC LINK SYSTEM DESIGN

Chapter 8. Wavelength-Division Multiplexing (WDM) Part II: Amplifiers

OPTICAL GUIDED WAVES AND DEVICES

Measuring Photonic, Optoelectronic and Electro optic S parameters using an advanced photonic module

SYLLABUS Optical Fiber Communication

CSO/CTB PERFORMANCE IMPROVEMENT BY USING FABRY-PEROT ETALON AT THE RECEIVING SITE

Analysis and Design of Autonomous Microwave Circuits

4 Photonic Wireless Technologies

Wavelength Interleaving Based Dispersion Tolerant RoF System with Double Sideband Carrier Suppression

Introduction and concepts Types of devices

Radio Frequency Photonic In-Phase and Quadrature-Phase Vector Modulation

Chromatic Dispersion Compensation in Optical Fiber Communication System and its Simulation

University of Arizona ECE 430/530: Optical Communication Systems Spring 2010, Ivan B. Djordjevic Introduction to Fiber-Optics Communications

Review of Semiconductor Physics

University of Jordan. Faculty of Engineering & Technology. Study Plan. Master Degree. Year plan

Practical RF Circuit Design for Modern Wireless Systems

Optical communications

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

Optical switches. Switching Technology S Optical switches

Performance Evaluation of Radio Frequency Transmission over Fiber using Optical Amplifiers

NEW APPROACH TO DESIGN DIGITALLY TUNABLE OPTICAL FILTER SYSTEM FOR WAVELENGTH SELEC- TIVE SWITCHING BASED OPTICAL NETWORKS

Microwave and RF Engineering

A Fully Integrated 20 Gb/s Optoelectronic Transceiver Implemented in a Standard

OPTICAL COMMUNICATIONS S

Introduction to ixblue RF drivers and amplifiers for optical modulators

High-Speed Optical Modulators and Photonic Sideband Management

2 in the multipath dispersion of the optical fibre. (b) Discuss the merits and drawbacks of cut bouls method of measurement of alternation.

Optical IQ modulators for coherent 100G and beyond

Signal Conditioning Parameters for OOFDM System

Electrical-to-optical conversion of OFDM g/a signals by direct current modulation of semiconductor optical amplifiers

Preface... Chapter 1. Nonlinear Two-terminal Devices... 1

Optical systems have carrier frequencies of ~100 THz. This corresponds to wavelengths from µm.

Optodevice Data Book ODE I. Rev.9 Mar Opnext Japan, Inc.

Fiber Optic Communications Communication Systems

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 12, DECEMBER

This is a brief report of the measurements I have done in these 2 months.

Contents for this Presentation. Multi-Service Transport

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade:

A continuously tunable and filterless optical millimeter-wave generation via frequency octupling

Modulators. Digital Intensity Modulators. Analogue Intensity Modulators. 2.5Gb/sec...Page Gb/sec Small Form Factor...Page 3

INTRODUCTION. LPL App Note RF IN G 1 F 1. Laser Diode OPTICAL OUT. P out. Link Length. P in OPTICAL IN. Photodiode G 2 F 2 RF OUT

Transcription:

Table of Contents Preface... xiii Abbrevation Glossary... xvii Chapter 1 General Points... 1 1.1. Microwave photonic links... 1 1.2. Link description... 4 1.3. Signal to transmit... 5 1.3.1. Microwave signal... 5 1.3.2. Microwave carrier for a digital signal... 5 1.3.3. UWB signal... 6 1.3.4. Optical carrier... 6 1.3.5. Summary... 6 1.4. Limitations of microwave photonic links... 7 1.4.1. Limitations due to the materials constituting the different elements... 7 1.4.2. Noise sources in microwave photonic links... 8 1.4.3. Nonlinearities... 13 1.5. The components and characteristics of microwave photonic links... 13 Chapter 2 Generation and Modulation of Light... 15 2.1. Laser... 15 2.1.1. General points... 15 2.1.2. Semiconductor laser structure and optical gain in the active zone... 17 2.1.3. Operation of a Fabry-Perot laser... 19

vi Microwave Photonic Links 2.1.4. Optical confinement factor and rate equations... 21 2.1.5. Static mode of laser operation (or CW mode of operation)... 24 2.1.6. Dynamic mode of laser operation: RF small signal response... 26 2.1.7. RIN laser noise... 28 2.1.8. Increase in 1/f of RIN and superposition of a small signal and noise... 31 2.1.9. Different laser configurations... 32 2.1.10. CAD laser models... 41 2.1.11. Laser measurements and temperature stabilization... 47 2.2. Electro-optic modulator: EOM... 49 2.2.1. General physical principles... 50 2.2.2. Pockels or linear electro-optical effect... 50 2.2.3. Mach-Zehnder electro-optic modulator... 53 2.2.4. Single-Drive MZM: one driving electrode... 55 2.2.5. Dual-drive MZM: two driving electrodes... 69 2.2.6. Real Mach-Zehnder modulator: characteristics and performances... 71 2.2.7. Mach-Zehnder modulator technology... 73 2.3. Electro-absorption modulator: EAM... 75 2.3.1. Electro-absorption effect... 75 2.3.2. FKE... 80 2.3.3. Stark effect... 80 2.3.4. Quantum well structures... 82 2.3.5. MEA operation... 82 2.3.6. Characteristics of an EAM... 85 2.3.7. EML: EAM integrated to a DFB laser... 86 2.3.8. EAM electrical modeling for ultra-fast signal simulation.. 87 Chapter 3 Optical Fibers and Amplifiers... 93 3.1. Optical fibers... 93 3.1.1. General... 93 3.1.2. Material attenuation... 96 3.1.3. Material refraction index and dispersion... 98 3.1.4. Total reflection, numerical aperture, transmitted maximum frequency... 100 3.1.5. Step-index fiber... 105 3.1.6. Graded index fiber... 107 3.1.7. Single-mode fiber... 110 3.1.8. Plastic optical fibers... 114

Table of Contents vii 3.2. Optical amplifiers... 118 3.2.1. Semiconductor optical amplifiers: SOA... 119 3.2.2. EDFAs... 120 3.3. Appendix: modal analysis of propagation in a fiber... 122 3.3.1. Maxwell equations... 122 3.3.2. Maxwell equations in a cylindrical fiber... 123 3.3.3. Continuity and characteristic equation conditions... 127 3.3.4. Research of different propagation modes... 128 3.3.5. Approximation of linearly polarized modes... 132 Chapter 4 Photodetectors... 137 4.1. Photodetector definition... 137 4.2. Photodiodes... 138 4.2.1. Presentation... 138 4.2.2. Light absorption in a semiconductor... 139 4.2.3. p-i-n photodiode... 142 4.2.4. Metal-semiconductor-metal or MSM photodiode... 145 4.2.5. Equivalent circuits for p-i-n and MSM photodiodes... 147 4.2.6. Nonlinearities... 147 4.2.7. UTC photodiodes... 149 4.2.8. Charge compensation... 150 4.2.9. Partially depleted absorption zone... 151 4.2.10. Lateral lighting... 152 4.2.11. Lateral lighting: progressive wave structure... 153 4.2.12. Lateral lighting: periodic structures... 156 4.2.13. Resonant optical cavity photodetector... 157 4.2.14. Diluted waveguides and evanescent mode coupling... 160 4.2.15. Summary... 161 4.3. Phototransistors... 163 4.3.1. Bipolar or field-effect phototransistors?... 163 4.3.2. GaAlAs/GaAs and InGaP/GaAs phototransistors... 165 4.3.3. InP/InGaAs phototransistors... 167 4.3.4. Si/SiGe phototransistors... 172 4.3.5. Resonant optical cavities for phototransistors... 176 4.3.6. Phototransistor simulations and models... 176 4.3.7. Influence of the base load impedance... 180 4.3.8. Summary... 183 4.4. Appendix... 184 4.4.1. Lattice matched layers pseudomorphic layer, metamorphic layer... 184 4.4.2. Velocity overshoot effect... 186 4.4.3. Heterojunction bipolar phototransistor... 188

viii Microwave Photonic Links Chapter 5 Performance of Microwave Photonic Links... 193 5.1. Microwave photonic links: diagrams and definitions... 193 5.1.1. Direct modulation link diagram and definitions... 193 5.1.2. External modulation link diagram and definitions... 197 5.1.3. Simplified link diagram and first gain computation... 198 5.2. Optomicrowave S-parameters and gains of each photonic link component... 201 5.2.1. Introduction... 201 5.2.2. Optomicrowave laser S-parameters and optomicrowave gain... 202 5.2.3. Optomicrowave optical fiber S-parameters and optomicrowave gain... 203 5.2.4. Photodiode optomicrowave S-parameters and gain... 204 5.2.5. Localized component external modulator optomicrowave S-parameters and gain... 205 5.2.6. Distributed component external modulator optomicrowave S-parameters and gain... 207 5.2.7. Summary of all S-parameters and optomicrowave gain... 209 5.3. Microwave photonic links optomicrowave S-parameters and gains... 210 5.3.1. Direct modulation microwave photonic link S-parameters... 210 5.3.2. Direct modulation microwave photonic link gains... 211 5.3.3. Localized external modulator microwave photonic link S-parameters... 212 5.3.4. Localized external modulator microwave photonic link gains... 213 5.3.5. Distributed external modulator microwave photonic link S-parameters... 213 5.3.6. Distributed external modulator microwave photonic link gains... 214 5.3.7. Link gain computation generalization... 215 5.4. Comparison of different link gains... 218 5.4.1. Direct modulation link gain computation... 218 5.4.2. Localized external modulator link gain computation... 219 5.4.3. Distributed external modulator link gain computations... 220 5.5. Direct modulation microwave photonic link optomicrowave noise figures... 221 5.5.1. Link noise figure diagram and computation method... 221 5.5.2. Laser noise figure... 223 5.5.3. Optical fiber noise figure... 223 5.5.4. Photodiode noise figure... 224

Table of Contents ix 5.5.5. Direct modulation link noise figure... 224 5.5.6. Matching effect at the input of a direct modulation link... 225 5.5.7. Generalization of a link noise figure computation... 226 5.6. External modulation microwave photonic link optomicrowave noise figure... 227 5.6.1. Equivalent diagram and steps recall... 227 5.6.2. Localized external modulator noise figure... 227 5.6.3. Distributed external modulator noise figure... 228 5.6.4. New evaluation of photodetector noise figure... 230 5.6.5. Localized external modulator microwave photonic link noise figure... 231 5.6.6. Matched input localized external modulator microwave photonic link noise figure... 231 5.6.7. Distributed external modulator microwave photonic link noise figure... 232 5.7. Comparisons of different link noise figures... 232 5.7.1. Evaluation of direct modulation link noise figure... 232 5.7.2. Evaluation of localized external modulator link noise figure... 234 5.7.3. Evaluation of matched input localized external modulator link noise figure... 235 5.7.4. Evaluation of distributed external modulator link noise figures... 236 5.7.5. Output noise power... 237 5.7.6. Some effectively measured noise figure values... 239 5.8. Microwave photonic link nonlinearity: distortion phenomena... 241 5.8.1. Single microwave signal nonlinearity... 241 5.8.2. Several input microwave signals nonlinearity... 242 5.8.3. Wideband input signal nonlinearity... 244 5.8.4. Nonlinearity combination of microwave photonic link components... 245 5.9. Microwave photonic link interference-free dynamic range... 246 5.9.1. Single input signal microwave photonic link interference-free dynamic range... 246 5.9.2. Several-input signal microwave photonic link interference-free dynamic range... 247 5.9.3. Some effectively measured interference-free dynamic range values... 249 5.10. Appendix... 250 5.10.1. Relation between parameters S, Z, Y, and ABCD... 250 5.10.2. Equation choice for the computation of microwave photonic link optomicrowave noise figure... 251

x Microwave Photonic Links 5.10.3. Calculation of a two-input signal microwave photonic link interference-free dynamic range... 261 Chapter 6 Complement to Microwave Photonic Link Performances... 267 6.1. Microwave signal attenuation during double sideband modulation... 267 6.1.1. Double sideband modulation recall... 267 6.1.2. Recall of single-mode optical fiber propagation characteristics... 268 6.1.3. Optical fiber double sideband modulated signal propagation... 270 6.1.4. Double sideband-modulated signal photodetection at the optical fiber output... 271 6.2. Modulator structures for optical carrier or high and low sideband removal... 273 6.2.1. Optical modulation recall... 273 6.2.2. Single sideband or carrier suppression optical modulators... 274 6.2.3. Carrier suppression and single sideband optical modulator... 277 6.3. Degradation of a microwave signal spectral purity by an optical link... 280 6.3.1. Phenomenon description... 280 6.3.2. Some definitions concerning the noise around a microwave carrier... 281 6.3.3. Amplitude and phase noise in an optical link... 282 6.3.4. Phase noise computation of a microwave signal transmitted by an optical link... 284 6.3.5. Amplitude noise computation of a microwave signal transmitted by an optical link... 286 Chapter 7 Electronic Amplifiers in Microwave Photonic Links... 289 7.1. Electronic amplifiers in optical links... 289 7.2. Amplifiers in the optical link emitter... 289 7.2.1. Different roles of electronic amplifiers on optical emitter. 289 7.2.2. Emission: modulator or laser input amplifiers... 290 7.3. Receiver: amplifiers at the photodetector output... 293 7.3.1. General points... 293 7.3.2. Transimpedance amplifiers... 294 7.3.3. Distributed amplifiers... 296

Table of Contents xi 7.3.4. Combination of transimpedance and distributed amplifiers... 298 7.3.5. Narrowband amplifiers... 298 7.3.6. Preamplifier after a phototransistor... 299 7.3.7. Other circuits after a phototransistor... 299 7.4. Appendix: analog and microwave amplifiers... 300 7.4.1. General points... 300 7.4.2. Analog amplifiers... 300 7.4.3. Microwave amplifier: expression of transistor reflection coefficients... 304 7.4.4. Microwave amplifiers: gain expressions... 306 7.4.5. Unilateralized transistor model: two-port network matching computation... 307 7.4.6. Non-unilateralized transistor: general case of a transistor with S12 0... 312 7.4.7. Low noise amplifier... 313 7.4.8. General models of low signal microwave amplifiers... 315 Chapter 8 Simulation and Measurement of Microwave Photonic Links... 321 8.1. State of the art and context... 321 8.1.1. Objective... 321 8.1.2. Choice of simulation software... 321 8.1.3. Different ADS simulation techniques... 322 8.2. Microwave optical link models... 324 8.2.1. Two-port network approach... 324 8.2.2. Electro-optic transducer: the laser... 325 8.2.3. Transmission guiding: the optical fiber... 329 8.2.4. The optoelectric transducer: the photodiode... 334 8.3. Nonlinearity effects in the link... 337 8.3.1. Nonlinearity sources... 337 8.3.2. 1 db compression point and first-order dynamic of the link... 338 8.3.3. Third-order intermodulation and third-order interference-free dynamic range of the link... 339 8.4. Link noise modeling... 340 8.4.1. Noise in the laser... 340 8.4.2. The optical fiber... 342 8.4.3. Noise in the photodiode... 342 8.4.4. Direct modulation link noise figure... 343 8.4.5. Noise power at the receiver... 344

xii Microwave Photonic Links 8.5. Other types of modulation of signals transmitted on an optical fiber... 348 8.5.1. Ultra-wideband signal modulation... 348 8.5.2. External modulation... 353 8.5.3. Generation of microwave signal by frequency beating... 358 8.6. Conclusion... 361 8.7. Appendix... 362 8.7.1. MB-OOK modulation... 362 8.7.2. OFDM modulation... 363 Bibliography... 367 Index... 393