W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 11. V/ns T J. mj I AR

Similar documents
IRFS3004-7PPbF HEXFET Power MOSFET

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 13

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 26

T J = 25 C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V (BR)DSS DraintoSource Breakdown Voltage 24 V V (BR)DSS / T J

1412 P C = 25 C Maximum Power Dissipation 300 Linear Derating Factor. V/ns T J. Thermal Resistance Symbol Parameter Typ. Max.

W/ C V GS Gate-to-Source Voltage ±16 dv/dt Peak Diode Recovery f 8.0. V/ns T J. mj I AR. Avalanche Current d A See Fig. 14, 15, 22a, 22b E AR

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 5.3

W/ C V GS Gate-to-Source Voltage ±20 dv/dt Peak Diode Recovery f 4.6. V/ns T J. mj I AR. Avalanche Current d A See Fig. 14, 15, 22a, 22b, E AR

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 27

IRLS3034PbF IRLSL3034PbF

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 32

IRLS3036PbF IRLSL3036PbF HEXFET Power MOSFET

V DSS. W/ C V GS Gate-to-Source Voltage ±30 E AS (Thermally limited) mj T J Operating Junction and -55 to + 175

W/ C V GS Gate-to-Source Voltage ± 30 dv/dt Peak Diode Recovery e 57

IRFS4127PbF IRFSL4127PbF

IRFR1018EPbF IRFU1018EPbF

TO-220AB IRFB4410. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 19

IRFR3806PbF IRFU3806PbF

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 2.5

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 14. V/ns T J. mj I AR. Thermal Resistance Symbol Parameter Typ. Max.

IRFB3507PbF IRFS3507PbF IRFSL3507PbF

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 57

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 2.0

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 23. V/ns T J. mj I AR

IRFP4410ZPbF HEXFET Power MOSFET

TO-220AB IRFB3307. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 11. V/ns T J Operating Junction and -55 to

40V V DSS. R DS(on) typ. I D (Silicon Limited) I D (Package Limited) 409Ac 195A. HEXFET Power MOSFET

Standard Pack. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 6.7. V/ns Operating Junction and. mj I AR

IRFS3107PbF IRFSL3107PbF HEXFET Power MOSFET

Absolute Maximum Ratings Max. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

TO-220AB IRFB4610. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 7.6

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

IRFR4105ZPbF IRFU4105ZPbF

TO-220AB IRFB4310. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 14

A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) 560 P C = 25 C Power Dissipation 330 Linear Derating Factor

40V D V DSS. R DS(on) typ. 317Ac 195A. I D (Silicon Limited) I D (Package Limited) HEXFET Power MOSFET. Ordering Information. Applications.

AUTOMOTIVE MOSFET TO-220AB IRL3705Z. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) W/ C V GS Gate-to-Source Voltage ± 16

IRFZ46ZPbF IRFZ46ZSPbF IRFZ46ZLPbF

AUTOMOTIVE MOSFET TO-220AB IRL1404Z. Absolute Maximum Ratings Max. I T C = 25 C Continuous Drain Current, V 10V (Silicon Limited)

-280 P C = 25 C Power Dissipation 170 Linear Derating Factor. W/ C V GS Gate-to-Source Voltage ± 20

IRFR540ZPbF IRFU540ZPbF

Ordering Information Base Part Number Package Type Standard Pack Complete Part Number 500 I D = 100A T J = 125 C 200 I D,

C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting Torque, 6-32 or M3 screw 1.1 (10) N m (lbf in)

V DSS R DS(on) max Qg (typ.) 30V GS = 10V 57nC

IRFB4020PbF. Key Parameters V DS 200 V R DS(ON) 10V 80 m: Q g typ. 18 nc Q sw typ. 6.7 nc R G(int) typ. 3.2 Ω T J max 175 C

IRFR3710ZPbF IRFU3710ZPbF HEXFET Power MOSFET

Approved (Not Released) V DSS R DS(on) max Qg. 30V 3.5mΩ 36nC

Ordering Information Base part number Package Type Standard Pack Complete Part Form Quantity Number IRFB7437PbF TO-220 Tube 50 IRFB7437PbF

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

V DSS R DS(on) max Qg. 30V 4.8m: 15nC

IRF2804PbF IRF2804SPbF IRF2804LPbF HEXFET Power MOSFET

G D S. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 6.7

AUTOMOTIVE MOSFET TO-220AB IRF I DM. 890 P C = 25 C Power Dissipation 330 Linear Derating Factor. 2.2 V GS Gate-to-Source Voltage ± 20

TO-220AB. IRF4104PbF. A I T C = 25 C Continuous Drain Current, V 10V (Package limited)

TO-220AB. IRF3205ZPbF. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

AUTOMOTIVE MOSFET. 240 P C = 25 C Power Dissipation 110 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

AUTOMOTIVE MOSFET. 30 Pulsed Drain Current c. I DM P C = 25 C Maximum Power Dissipation 120 Linear Derating Factor

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

V DSS. 40V 1.5mΩ 2.0mΩ 250Ac 195A. R DS(on) typ. max. I D (Silicon Limited) I D (Package Limited) HEXFET Power MOSFET

AUTOMOTIVE MOSFET TO-220AB IRFZ44VZ A I DM. 230 P C = 25 C Power Dissipation 92 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

TO-220AB. IRF2807ZPbF. 350 P C = 25 C Maximum Power Dissipation 170 Linear Derating Factor

IRFR3710ZPbF IRFU3710ZPbF IRFU3710Z-701PbF HEXFET Power MOSFET

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

AUTOMOTIVE MOSFET IRLZ44Z A I DM. 204 P C = 25 C Power Dissipation 80 Linear Derating Factor V GS Gate-to-Source Voltage ± 16

IRLR3915PbF IRLU3915PbF

TO-220AB. IRF540ZPbF A I DM. 140 P C = 25 C Power Dissipation 92 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

IRLR3110ZPbF IRLU3110ZPbF

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

IRLR8721PbF IRLU8721PbF

IRF2204SPbF IRF2204LPbF HEXFET Power MOSFET

SMPS MOSFET. V DSS R DS(on) max I D

IRFP2907PbF. HEXFET Power MOSFET V DSS = 75V. R DS(on) = 4.5mΩ I D = 209A. Typical Applications. Benefits

SMPS MOSFET. V DSS R DS(on) typ. I D

SMPS MOSFET. V DSS R DS(on) typ. I D

Base part number Package Type Standard Pack Orderable Part Number. IRFP7530PbF TO-247 Tube 25 IRFP7530PbF I D, T J = 25 C 50

SMPS MOSFET. V DSS R DS(on) max I D

IRFR3709ZPbF IRFU3709ZPbF

V DSS. 40V R DS(on) typ. 1.4mΩ max. 1.8mΩ 250Ac. I D (Silicon Limited) I D (Package Limited) 195A. HEXFET Power MOSFET.

IRF3808S IRF3808L HEXFET Power MOSFET

SMPS MOSFET. V DSS R DS(on) typ. Trr typ. I D. 600V 385mΩ 130ns 15A

IRFB3607PbF IRFS3607PbF IRFSL3607PbF

IRLB8721PbF. V DSS R DS(on) max Qg (typ.) 30V GS = 10V 7.6nC. HEXFET Power MOSFET. Applications. Benefits. Absolute Maximum Ratings

TO-220AB. IRF3710ZPbF. 240 P C = 25 C Maximum Power Dissipation 160 Linear Derating Factor

SMPS MOSFET. V DSS R DS(on) max I D

IRFI4212H-117P. Description. Key Parameters g V DS 100 V R DS(ON) 10V 58 m: Q g typ. 12 nc Q sw typ. 6.9 nc R G(int) typ. 3.

IRFP054V. HEXFET Power MOSFET V DSS = 60V. R DS(on) = 9.0mΩ I D = 93Aˆ. Absolute Maximum Ratings. Thermal Resistance PD

SMPS MOSFET. V DSS R DS(on) max I D

AUTOMOTIVE MOSFET. I D = 140A Fast Switching

Base Part Number Package Type Standard Pack Orderable Part Number. IRFP3006PbF TO-247 Tube 25 IRFP3006PbF

IRLR3717 IRLU3717 HEXFET Power MOSFET

IRLR8729PbF IRLU8729PbF HEXFET Power MOSFET

SMPS MOSFET. V DSS R DS(on) max I D

StrongIRFET IRL40B215

IRFR24N15DPbF IRFU24N15DPbF

V DSS R DS(on) max (mw)

SMPS MOSFET. V DSS R DS(on) max I D

StrongIRFET IRFB7546PbF

TO-220AB IRF1404Z. Max. I T C = 25 C Continuous Drain Current, V 10V (Silicon Limited)

Orderable Part Number IRFP4768PbF TO-247AC Tube 25 IRFP4768PbF

SMPS MOSFET. V DSS R DS(on) max I D

Transcription:

PD 9687 IRFS367PPbF HEXFET Power MOSFET Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits Benefits l Improved Gate, Avalanche and Dynamic dv/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dv/dt and di/dt Capability l LeadFree G D S V DSS R DS(on) typ. max. I D (Silicon Limited) I D (Package Limited) D G S S D 2 Pak 7 Pin S SS 6V.5m: 2.m: 293Ac 24A G D S Gate Drain Source Absolute Maximum Ratings Symbol Parameter Max. Units I D @ T C = 25 C Continuous Drain Current, V GS @ V (Silicon Limited) 293c I D @ T C = C Continuous Drain Current, V GS @ V (Silicon Limited) 27 c I D @ T C = 25 C Continuous Drain Current, V GS @ V (Package Limited) 24 A I DM Pulsed Drain Current d 72 P D @T C = 25 C Maximum Power Dissipation 375 W Linear Derating Factor 2.5 W/ C V GS GatetoSource Voltage ± 2 V dv/dt Peak Diode Recovery f V/ns T J Operating Junction and 55 to 75 T STG Storage Temperature Range Soldering Temperature, for seconds 3 C (.6mm from case) Mounting torque, 632 or M3 screw lbxin (.Nxm) Avalanche Characteristics E AS (Thermally limited) Single Pulse Avalanche Energy e 33 mj I AR Avalanche Current d See Fig. 4, 5, 22a, 22b, A E AR Repetitive Avalanche Energy g mj Thermal Resistance Symbol Parameter Typ. Max. Units R θjc JunctiontoCase kl.4 R θja JunctiontoAmbient (PCB Mount) jk 4 www.irf.com C/W /6/8

IRFS367PPbF Static @ (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V (BR)DSS DraintoSource Breakdown Voltage 6 V V (BR)DSS / T J Breakdown Voltage Temp. Coefficient.7 V/ C R DS(on) Static DraintoSource OnResistance.5 2. mω V GS(th) Gate Threshold Voltage 2. 4. V I DSS I GSS DraintoSource Leakage Current GatetoSource Forward Leakage 2 GatetoSource Reverse Leakage 25 µa na R G(int) Internal Gate Resistance 2. Ω Conditions V GS = V, I D = 25µA Reference to 25 C, I D = 5mAd V GS = V, I D = 68A g V DS = V GS, I D = 25µA V DS = 6V, V GS = V V DS = 6V, V GS = V, V GS = 2V V GS = 2V Dynamic @ (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units Conditions gfs Forward Transconductance 29 S V DS = 25V, I D = 68A Q g Total Gate Charge 2 3 I D = 68A Q gs GatetoSource Charge 37 Q gd GatetoDrain ("Miller") Charge 6 Q sync Total Gate Charge Sync. (Q g Q gd ) 4 t d(on) TurnOn Delay Time 4 t r Rise Time 6 t d(off) TurnOff Delay Time 8 t f Fall Time 69 C iss Input Capacitance 885 C oss Output Capacitance 7 C rss Reverse Transfer Capacitance 525 C oss eff. (ER) Effective Output Capacitance (Energy Related)i 46 C oss eff. (TR) Effective Output Capacitance (Time Related) h 95 Diode Characteristics Symbol Parameter Min. Typ. Max. Units V DS = 3V V GS = V g I D = 68A, V DS =V, V GS = V V DD = 39V I D = 68A R G = 2.7Ω V GS = V g V GS = V V DS = 5V ƒ =.MHz (See Fig 5) V GS = V, V DS = V to 48V i(see Fig ) V GS = V, V DS = V to 48V h Conditions I D S Continuous Source Current MOSFET symbol 293c (Body Diode) showing the A G I SM Pulsed Source Current integral reverse 72 S (Body Diode)d pn junction diode. V SD Diode Forward Voltage.3 V, I S = 68A, V GS = V g t rr Reverse Recovery Time 44 V R = 5V, ns 48 I F = 68A Q rr Reverse Recovery Charge 5 di/dt = A/µs g nc 62 I RRM Reverse Recovery Current 2.3 A t on Forward TurnOn Time Intrinsic turnon time is negligible (turnon is dominated by LSLD) nc ns pf Notes: Calcuted continuous current based on maximum allowable junction temperature Bond wire current limit is 24A. Note that current limitation arising from heating of the device leds may occur with some lead mounting arrangements. Repetitive rating; pulse width limited by max. junction temperature. ƒ Limited by T Jmax, starting, L =.2mH R G = 25Ω, I AS = 68A, V GS =V. Part not recommended for use above this value. I SD 68A, di/dt 4 A/µs, V DD V (BR)DSS, T J 75 C. Pulse width 4µs; duty cycle 2%. C oss eff. (TR) is a fixed capacitance that gives the same charging time as C oss while V DS is rising from to 8% V DSS. C oss eff. (ER) is a fixed capacitance that gives the same energy as C oss while V DS is rising from to 8% V DSS. ˆ When mounted on " square PCB (FR4 or G Material). For recommended footprint and soldering techniquea refer to applocation note # AN994 echniques refer to application note #AN994. R θ is measured at T J approximately 9 C Š R θjc value shown is at time zero 2 www.irf.com

C, Capacitance (pf) V GS, GatetoSource Voltage (V) I D, DraintoSource Current (A) R DS(on), DraintoSource On Resistance (Normalized) I D, DraintoSource Current (A) I D, DraintoSource Current (A) IRFS367PPbF VGS TOP 5V V 8.V 6.V 5.V 4.5V 4.V BOTTOM 3.5V VGS TOP 5V V 8.V 6.V 5.V 4.5V 4.V BOTTOM 3.5V 3.5V 3.5V 6µs PULSE WIDTH Tj = 25 C.. V DS, DraintoSource Voltage (V) Fig. Typical Output Characteristics 6µs PULSE WIDTH Tj = 75 C. V DS, DraintoSource Voltage (V) Fig 2. Typical Output Characteristics T J = 75 C 2.5 2. I D = 68A V GS = V.5. V DS = 25V 6µs PULSE WIDTH. 2 3 4 5 6 7 V GS, GatetoSource Voltage (V) Fig 3. Typical Transfer Characteristics.5 6 4 2 2 4 6 8 2468 T J, Junction Temperature ( C) Fig 4. Normalized OnResistance vs. Temperature V GS = V, f = MHZ C iss = C gs C gd, C ds SHORTED 6. I D = 68A C rss = C gd C oss = C ds C gd C iss 2. V DS = 48V V DS = 3V C oss 8. C rss 4.. 4 8 2 6 2 24 28 V DS, DraintoSource Voltage (V) Q G, Total Gate Charge (nc) Fig 5. Typical Capacitance vs. DraintoSource Voltage Fig 6. Typical Gate Charge vs. GatetoSource Voltage www.irf.com 3

Energy (µj) E AS, Single Pulse Avalanche Energy (mj) V (BR)DSS, I D, Drain Current (A) DraintoSource Breakdown Voltage (V) I SD, Reverse Drain Current (A) I D, DraintoSource Current (A) IRFS367PPbF T J = 75 C OPERATION IN THIS AREA LIMITED BY R DS (on) µsec LIMITED BY PACKAGE msec msec DC V GS = V...4.8.2.6 2. Tc = 25 C Tj = 75 C Single Pulse.. V SD, SourcetoDrain Voltage (V) Fig 7. Typical SourceDrain Diode Forward Voltage V DS, DraintoSource Voltage (V) Fig 8. Maximum Safe Operating Area 35 3 25 Limited By Package 8 75 Id = 5mA 2 7 5 65 5 6 25 5 75 25 5 75 T C, Case Temperature ( C) Fig 9. Maximum Drain Current vs. Case Temperature 2.5 2. 55 6 4 2 2 4 6 8 2468 T J, Temperature ( C ) 4 2 Fig. DraintoSource Breakdown Voltage I D TOP 35A 7A BOTTOM 68A.5 8..5 6 4 2. 2 3 4 5 6 V DS, DraintoSource Voltage (V) 25 5 75 25 5 75 Starting T J, Junction Temperature ( C) Fig. Typical C OSS Stored Energy Fig 2. Maximum Avalanche Energy vs. DrainCurrent 4 www.irf.com

Avalanche Current (A) E AR, Avalanche Energy (mj) IRFS367PPbF Thermal Response ( Z thjc ) C/W... D =.5.2..5.2. SINGLE PULSE ( THERMAL RESPONSE ) R R R 2 R 2 R 3 R 3 τ J τ J τ τ τ 2 τ 2 τ 3 τ 3 Ci= τi/ri Ci i/ri R 4 Ri ( C/W) τi (sec) R 4.62.5.247.95 Notes:. Duty Factor D = t/t2 2. Peak Tj = P dm x Zthjc Tc. E6 E5.... t, Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, JunctiontoCase τ 4 τ 4 τ C τ.43.45.462.67 Duty Cycle = Single Pulse. Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 5 C and Tstart =25 C (Single Pulse).5. Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Τ j = 25 C and Tstart = 5 C..E6.E5.E4.E3.E2.E tav (sec) 35 3 25 2 5 5 25 5 75 25 5 75 Starting T J, Junction Temperature ( C) Fig 5. Maximum Avalanche Energy vs. Temperature Fig 4. Typical Avalanche Current vs.pulsewidth TOP Single Pulse BOTTOM.% Duty Cycle I D = 68A Notes on Repetitive Avalanche Curves, Figures 4, 5: (For further info, see AN5 at www.irf.com). Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long ast jmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 6a, 6b. 4. P D (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (.3 factor accounts for voltage increase during avalanche). 6. I av = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed T jmax (assumed as 25 C in Figure 4, 5). t av = Average time in avalanche. D = Duty cycle in avalanche = t av f Z thjc (D, t av ) = Transient thermal resistance, see Figures 3) P D (ave) = /2 (.3 BV I av ) = DT/ Z thjc I av = 2DT/ [.3 BV Z th ] E AS (AR) = P D (ave) t av www.irf.com 5

Q RR (A) I RR (A) Q RR (A) V GS(th), Gate threshold Voltage (V) I RR (A) IRFS367PPbF 4.5 4. 3.5 I D = 25µA I D =.ma I D =.A 2 6 I F = 2A V R = 5V 3. 2 2.5 8 2..5 4. 75 5 25 25 5 75 25 5 75 T J, Temperature ( C ) Fig 6. Threshold Voltage vs. Temperature 2 4 6 8 2 di F /dt (A/µs) Fig. 7 Typical Recovery Current vs. di f /dt 2 6 2 I F = 68A V R = 5V 6 5 4 I F = 2A V R = 5V 3 8 2 4 2 4 6 8 2 di F /dt (A/µs) Fig. 8 Typical Recovery Current vs. di f /dt 2 4 6 8 2 di F /dt (A/µs) Fig. 9 Typical Stored Charge vs. di f /dt 6 5 4 I F = 68A V R = 5V 3 2 2 4 6 8 2 di F /dt (A/µs) Fig. 2 Typical Stored Charge vs. di f /dt 6 www.irf.com

IRFS367PPbF D.U.T ƒ Circuit Layout Considerations Low Stray Inductance Ground Plane Low Leakage Inductance Current Transformer Reverse Recovery Current Driver Gate Drive Period P.W. D.U.T. I SD Waveform Body Diode Forward Current di/dt D.U.T. V DS Waveform Diode Recovery dv/dt D = P.W. Period V GS =V V DD * R G dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. Device Under Test V DD ReApplied Voltage Body Diode Inductor Curent Current Forward Drop Ripple 5% I SD * V GS = 5V for Logic Level Devices Fig 2. Peak Diode Recovery dv/dt Test Circuit for NChannel HEXFET Power MOSFETs 5V tp V (BR)DSS V DS L DRIVER R G 2V V GS tp D.U.T IAS.Ω V DD A I AS Fig 22a. Unclamped Inductive Test Circuit Fig 22b. Unclamped Inductive Waveforms V DS R D V DS V GS D.U.T. 9% R G V DD VV GS Pulse Width µs Duty Factor. % % V GS t d(on) t r t d(off) t f Fig 23a. Switching Time Test Circuit Fig 23b. Switching Time Waveforms Current Regulator Same Type as D.U.T. Vds Id 5KΩ Vgs 2V.2µF.3µF V GS D.U.T. V DS Vgs(th) 3mA I G I D Current Sampling Resistors Qgs Qgs2 Qgd Qgodr Fig 24a. Gate Charge Test Circuit Fig 24b. Gate Charge Waveform www.irf.com 7

IRFS367PPbF D 2 Pak (TO263CB) 7 Long Leads Package Outline Dimensions are shown in milimeters (inches) D 2 Pak 7 Pin Part Marking Information Ã4 Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ 8 www.irf.com

IRFS367PPbF D 2 Pak 7 Pin Tape and Reel Dimensions are shown in milimeters (inches) Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 9245, USA Tel: (3) 25275 TAC Fax: (3) 252793 Visit us at www.irf.com for sales contact information. /28 www.irf.com 9