Design And Development Of Magnetron Power Source From Three Phase Supply Madhukesh Heggannavar, 2 Prakash Mugali and 3 Shashidhar M.

Similar documents
Magnetron. Physical construction of a magnetron

Highly efficient water heaters using magnetron effects

COURSE: ADVANCED MANUFACTURING PROCESSES. Module No. 5: OTHER PROCESSES

MICROWAVE AND RADAR LAB (EE-322-F) LAB MANUAL VI SEMESTER

(i) Determine the admittance parameters of the network of Fig 1 (f) and draw its - equivalent circuit.

Module IV, Lecture 2 DNP experiments and hardware

Experiment-4 Study of the characteristics of the Klystron tube

-31- VII. MAGNETRON DEVELOPMENT. Prof. S. T. Martin V. Mayper D. L. Eckhardt R. R. Moats S. Goldberg R. Q. Twiss

Wireless Charging of Mobile Phones using Microwaves K. E. CH. VIDHYA SAGAR 1, S. V. SRINIVASA RAJU 2

LESSON PLAN. LESSON PLAN DURATION : - 15 weeks (from JULY 2018 to NOVEMBER 2018)

R.K.YADAV. 2. Explain with suitable sketch the operation of two-cavity Klystron amplifier. explain the concept of velocity and current modulations.

MICROWAVE ENGINEERING-II. Unit- I MICROWAVE MEASUREMENTS

7. Experiment K: Wave Propagation

Physics 4BL: Electricity and Magnetism Lab manual. UCLA Department of Physics and Astronomy

ECRH on the Levitated Dipole Experiment

Lecture 19 Optical Characterization 1

EC 1402 Microwave Engineering

Overview of experiments and projects

Navy Electricity and Electronics Training Series

MICROWAVE MICROWAVE TRAINING BENCH COMPONENT SPECIFICATIONS:

Period 3 Solutions: Electromagnetic Waves Radiant Energy II

BASIC ELECTRICITY/ APPLIED ELECTRICITY

BASIC ELECTRICITY/ APPLIED ELECTRICITY

St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad

10 GHz Microwave Link

Chapter 21. Alternating Current Circuits and Electromagnetic Waves

EE320L Electronics I. Laboratory. Laboratory Exercise #4. Diode Rectifiers and Power Supply Circuits. Angsuman Roy

LNB and its ham radio usage

Maltase cross tube. D. Senthilkumar P a g e 1

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

Projects in microwave theory 2009

Intermediate Physics PHYS102

UNIT - V WAVEGUIDES. Part A (2 marks)

Circuit Components Lesson 4 From: Emergency Management Ontario

PRINCIPLES OF RADAR. By Members of the Staff of the Radar School Massachusetts Institute of Technology. Third Edition by J.

S-band Magnetron. Tuner revolutions to cover frequency range 4.75 (note 3) Mounting position (note 4) Any Cooling (note 5) Water

Analysis and Minimizing Strategies for Conducted Emission from Power Supply Cable of GPS Based Vehicle Tracking System

Renewable Energy Based Interleaved Boost Converter

EMC Amplifiers Going Beyond the Basics to Ensure Successful Immunity Tests

CHAPTER 6 EMI EMC MEASUREMENTS AND STANDARDS FOR TRACKED VEHICLES (MIL APPLICATION)

Chapter 3 SPECIAL PURPOSE DIODE

Revised April Unit/Standard Number. Proficiency Level Achieved: (X) Indicates Competency Achieved to Industry Proficiency Level

SHORT QUESTIONS MICROWAVE ENGINEERING UNIT I

The Electro-Magnetic Spectrum

MICROWAVE ENGINEERING

REVERBERATION CHAMBER FOR EMI TESTING

Learning Material Ver 1.1

Revised April Unit/Standard Number. High School Graduation Years 2016, 2017 and 2018

Exercise 1-4. The Radar Equation EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION OF FUNDAMENTALS

Electron Spin Resonance v2.0

Turn off all electronic devices

Note 2 Electromagnetic waves N2/EMWAVES/PHY/XII/CHS2012

Technician Licensing Class T6

MICROWAVE ENGINEERING LAB VIVA QUESTIONS AND ANSWERS

Unit/Standard Number. LEA Task # Alignment

Fundamentals of Electromagnetics With Engineering Applications by Stuart M. Wentworth Copyright 2005 by John Wiley & Sons. All rights reserved.

Ground. Input: 0-24VDC

Subminiature Multi-stage Band-Pass Filter Based on LTCC Technology Research

FCC Technician License Course

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET)

Technician License Course Chapter 2 Radio and Signals Fundamentals

MAGNETO-DIELECTRIC COMPOSITES WITH FREQUENCY SELECTIVE SURFACE LAYERS

Hidden Active Cellphone Detector.

Γ L = Γ S =

Physics 4C Chabot College Scott Hildreth

MRI SYSTEM COMPONENTS Module One

IJSER. Abstract. transfer electrical power from a source to a device without the aid of wires. Introduction

Normal-conducting high-gradient rf systems

6 Experiment II: Law of Reflection

ELECTROMAGNETIC SPECTRUM ELECTROMAGNETIC SPECTRUM

Ground Penetrating Radar

Ionization (gas filled) tubes

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM COURSE TITLE: MICROWAVE & RADAR ENGINEERING (COURSE CODE: )

An acousto-electromagnetic sensor for locating land mines

The Principle V(SWR) The Result. Mirror, Mirror, Darkly, Darkly

LECTURE 20 ELECTROMAGNETIC WAVES. Instructor: Kazumi Tolich

Radar. Radio. Electronics. Television. .104f 4E011 UNITED ELECTRONICS LABORATORIES LOUISVILLE

T6A4. Electrical components; fixed and variable resistors, capacitors, and inductors; fuses, switches, batteries

Microwave and optical systems Introduction p. 1 Characteristics of waves p. 1 The electromagnetic spectrum p. 3 History and uses of microwaves and

TAP 313-1: Polarisation of waves

Crossed-Field Amplifier (Amplitron)

Digital PWM Techniques and Commutation for Brushless DC Motor Control Applications: Review

SAR REDUCTION IN SLOTTED PIFA FOR MOBILE HANDSETS USING RF SHIELD

4/30/2012. General Class Element 3 Course Presentation. Circuit CoCircuit Componentsmponents. Subelement G6. 3 Exam Questions, 3 Groups

Electrical, Electronic and Communications Engineering Technology/Technician CIP Task Grid

Correlation Between Measured and Simulated Parameters of a Proposed Transfer Standard

Projects in microwave theory 2017

Study of 1-phase AC to DC controlled converter (both fully controlled And half controlled)

Thermal Management of Solid-State RF Cooking Appliances

The ETO-Alpha 89 ETO-Alpha 89

070 ELECTRONICS WORKS EXAMINATION STRUCTURE

A NOVEL DUAL-BAND PATCH ANTENNA FOR WLAN COMMUNICATION. E. Wang Information Engineering College of NCUT China

PRINCIPLES OF COMMUNICATION SYSTEMS. Lecture 1- Introduction Elements, Modulation, Demodulation, Frequency Spectrum

Simulation of the Near-field of a Ferrite Antenna

Microwave Circuit Design and Measurements Lab. INTRODUCTION TO MICROWAVE MEASUREMENTS: DETECTION OF RF POWER AND STANDING WAVES Lab #2

Lecture 1 INTRODUCTION. Dr. Aamer Iqbal Bhatti. Radar Signal Processing 1. Dr. Aamer Iqbal Bhatti

Developme nt of Active Phased Array with Phase-controlled Magnetrons

Experiment 12: Microwaves

List of Figures. Sr. no.

Pulsed 5 MeV standing wave electron linac for radiation processing

Transcription:

Design And Development Of Magnetron Power Source From Three Supply Madhukesh Heggannavar, 2 Prakash Mugali and 3 Shashidhar M. Patil 1 Student, BEC Bagalkot, Karnataka, India. 2 Managing Director, Enerzi Microwave Systems Pvt.Ltd., Belgaum, India. 3 Professor - E&E dept, BEC Bagalkot, Karnataka, India. ABSTRACT: Electromagnetic radiations are phenomena that takes the form of self propagating waves in a vacuum or in matter. Microwaves are a part of the electro-magnetic (EM) radiation spectrum, with a frequency range of 300Mhz to 300Ghz.Microwave heating applications ceramics, Metallic powder, Food products, Wood, Polymers, Rubber, Textile & Paper. Various sources of microwaves include the Magnetron, Klystron, Travelling-wave tube (TWT) and gyrotron. These devices work in the density modulated mode rather than the current modulated mode. This means that they work on the basis of clumps of electrons flying through them, rather than using a continuous stream. The scope of this project work requires us to focus on such device namely Magnetron. Microwave wave heating has advantages over the conventional heating due to which it is finding applications in industries for heating. The heart of every microwave oven is a high voltage system whose purpose is to generate Microwaves. This high voltage system is called as Magnetron power supply. Three phase supply design for magnetron power source by providing gate firing signal using control scheme to the thyristors can be achieved by using the power scheme design respectively. In power scheme design three identical thyristors are connected in each phase of the three phase line supply and of the three thyristors are connected to the star connected load. Control scheme design is formed by using the comparators, diode and logic gate. In control scheme design input is taken from the mains supply and of the control card which can be used for gate triggering pulses for thyristors. The objective is to design control pulses for the gate triggering signals, and also monitoring various parameters such as voltage, current and total power control for various applications. Using a three phase supply we can achieve high power to the magnetron power source as compared to the single phase control in single phase supply with much better ripple characteristics. Thus high power magnetron source for industrial and practical applications is conveniently used. KEYWORDS: Microwaves, Magnetron, Power supply card, Control card, Thyristor card. I. INTRODUCTION Microwaves are electromagnetic waves with wavelengths ranging from as long as one meter to as short as one millimeter, or equivalently, with frequencies between 300 MHz (0.3 GHz) and 300 GHz. This broad definition includes both UHF (Ultra High Frequency) and EHF (Extremely high frequency) (millimetre waves), and various sources use different boundaries. In all cases, microwave includes the entire SHF band (3 to 30 GHz, or 10 to 1 cm) at minimum, with RF engineering often putting the lower boundary at 1 GHz (30 cm), and the upper around 100 GHz (3mm). Fig.1.1: Electromagnetic Spectrum The applications of microwaves are vast. The microwaves are used in various fields like, Communications, radar systems, radio astronomy, navigation etc. Microwave heating is used in industrial processes for drying and curing products heating. Microwave heating is finding a wide application in industry for Ceramics, Metallic Powder, Food Products, Wood / Bamboo, Polymers / Rubber, Textile / Paper. 1.1 Microwave Heating When materials are exposed to microwave radiation, it gets reflected(r),absorbed(a)or transmitted (T) depending on the dielectric properties of the material permittivity (ε) and permeability (μ),which is a function of composition, size and temperature. Practically all the three phenomena are present partially when a material is exposed to microwaves. The absorbed portion (A) of the incident microwave, heats the material by polarization of the atomic / molecular structure. As the microwave travel through the material, it gets attenuated, resulting in volumetric heating. 1549

For most industrial heating applications the microwave frequencies are restricted to: 896-915 MHz, 2425-2475 MHz and 5775-5825 MHz the rest of the frequency range is mostly reserved for communication purposes. Advantages of Microwave Heating: Volumetric heating Eco-Friendly No exhaust gases Energy Efficient Low Operational Cost Uniform heating 1.1.1 Microwave Sources: Magnetron, klystron, traveling-wave tube (TWT), and gyrotron operate on the ballistic motion of electrons in a vacuum under the influence of controlled electric or magnetic fields. These devices work in the density modulated mode, rather than the current modulated mode. This means that they work on the basis of clumps of electrons flying ballistically through them, rather than using a continuous stream. Low power microwave sources use solid-state devices such as the field-effect transistor (at least at lower frequencies), tunnel diodes, Gunn diodes, and IMPATT diodes. The heart of every microwave oven is the high voltage system. Its purpose is to generate microwave energy. The high-voltage components accomplish this by stepping up AC line voltage to high voltage, which is then changed to an even higher DC voltage. This DC power is then converted to the RF energy that cooks the food. II.MAGNETRON the grid. While the external configurations of different magnetrons will vary, the basic internal structures are the same; these include the anode, the filament/cathode, the antenna, and the magnets. The ANODE (or plate) is a hollow cylinder of iron from which an even number of anode vanes extends inward. The open trapezoidal shaped areas between each of the vanes are resonant cavities that serve as tuned circuits and determine the frequency of the tube. The anode operates in such a way that alternate segments must be connected, or strapped, so that each segment is opposite in polarity to the segment on either side. In effect, the cavities are connected in parallel with regard to the. This will become easier to understand as the description of operation is considered. The FILAMENT (also called heater), which also serves as the cathode of the tube, is located in the canter of the magnetron, and is supported by the large and rigid filament leads, which are carefully sealed into the tube and shielded. The ANTENNA is a probe or loop that is connected to the anode and extends into one of the tuned cavities. The antenna is coupled to the waveguide, a hollow metal enclosure, into which the antenna transmits the RF energy. The MAGNETIC FIELD is provided by strong permanent magnets, which are mounted around the magnetron so that the magnetic field is parallel with the axis of the cathode. Fig.2.1: (a) A magnetron and (b) schematic cross-sectional view of the magnetron cavity 2.1 Basic Magnetron Structure The nucleus of the high-voltage system is the magnetron tube. The magnetron is a diode-type electron tube which is used to produce the required 2450 MHz of microwave energy. It is classed as a diode because it has no grid just like an ordinary electron tube. A magnetic field imposed on the space between the anode (plate) and the cathode serves as Fig.2.2: Structure of Magnetron This paper discusses about design and development of the three phase power supply circuits for Magnetron power source for industrial microwave systems which require consistent, maintenance free, long life and superior controls for required parameters through controlled design input parameters. The power supply to the magnetron is achieved in the project by using a three phase input. The three phase input is given to the power scheme consisting 1550

of three thyristors, These thyristors are fired using a control scheme. The of the power scheme design is given to the load. III. METHODOLOGY 3.1. Power Supply Design Concept The Paper scope includes design of power supply for a magnetron power source. The block diagram of the power supply is as shown Fig 3.1. Once the electrons are emitted they start forming electron clouds around the filament, and need an extra energy to move towards the anode. This extra energy is provided by the electrostatic field produced by the high voltage DC power supply connected between anode and cathode. 3.2 Final Block Diagram of Modules Fig.3.1: Block diagram of the power supply design for magnetron 3.1.1 Power supply card Input to the power supply card is three phase 220vac and it converts AC to DC supplies the necessary power 5v,+12v,-12v to the control card. 3.1.2 Control card Output of the power supply card is given to the control card to provide the proper supply to the control cad components such as comparator, diodes and AND gate which operates on low supply voltages. By design of control card gate triggering signals will be formed and of this is given to the gate triggering and switching thyristor block. 3.1.3 Thyristor Block Solid state switches used to control the flow of electric current often used for circuit protection. The input to the power supply is the three phase mains 415Volts/50Hz, the mains is stabilized. The microcontroller based power controllers control the power to be delivered by the magnetron by controlling the two power supplies connected to the magnetron. One is the high current power supply with approximate rating of 20A/3.8V and the other is the high voltage DC power supply with approximate rating of 4KV/450mA. The filament of the magnetron requires a high current power supply to emit electrons by the process of thermionic emission. The high current supplied to the filament can be AC or DC, here the alternating current is selected as it is the simplest method. Fig.3.2:Final Block Diagram of Modules Final diagram of Modules as shown in the Fig.3.2 consists of a four pole MCB, control cards, stepdown transformer, power supply card and thyristor card. Three phase Input from the MCB is given to the step-down transformers. Input to each step-down transformer is 230Vac and its secondary is 5Vac.Output of the step-down transformer is given to the input of the control card because control card components operate on low supply voltages. Power supply gives the necessary dc supply of +12v,- 12v,+5v, and com to the control cards. Output of the control card is given to the thyristor cards and input to the thyrisor card taken from three line supply. Output of the thyristor cards is given to the star connected load. 3.3 Power scheme design 1551

Fig.3.3: Power scheme diagram Power scheme diagram consists of three identical thyristors which are connected in each phase as shown in the above Fig.3.3. Output of the each thyristor is connected to the load. 3.4 Control scheme design Fig.3.4: control Scheme Control scheme design consists of comparator, diode and AND gate. Control scheme design as shown in the figure. and neutral are the two inputs to the comparator. Output of the comparator is given to the diode which conducts only in forward direction and blocks the reverse current flow of current in the circuit. Output of the diode is given to pin number 2 of the AND gate and pin numbers 1 and 14 are shorted, Output of this AND gate is given to the thyristor gate signals. IV. RESULTS AND ANALYSIS For the load each of 500W sodium vapor lamps star connected was tested for variations in the input mains supply voltage from 415 Volts, to check the repeatability and consistency. The readings are tabulated and plotted. Power Setting The following readings of anode current are recorded when the power supply is operated at 415Vac mains supply and the current and voltage readings are tabulated for the same. Table 4.1: Readings for voltage, Current and Output power for input voltage V in =415 V ac input Y - input input Y- (amps) (amps) Y- (amps) (watts) (watts) Y- (watts) 10% 240 242 243 43 43 47 0.68 0.87 0.9 90.8 90.9 96.7 20% 240 242 243 116 115 118 0.87 0.87 0.9 110.9 113.7 121.2 30% 239 242 242 149 147 150 1.0 1.1 1.1 150.9 155.9 167.3 40% 239 241 242 179 180 182 1.3 1.3 1.3 238.5 243.9 265.9 50% 239 241 241 200 204 207 1.4 1.5 1.5 278.7 286.8 296.3 60% 238 240 241 220 224 225 1.5 1.6 1.6 335.9 340.2 347.8 70% 238 240 240 230 236 237 1.6 1.7 1.7 370.2 381.7 395.6 80% 238 239 240 238 242 242 1.7 1.8 1.8 400.7 410.5 420.7 90% 237 239 240 241 246 246 1.7 1.8 1.8 410.8 420.8 430.6 100% 237 238 239 242 256 247 1.75 1.8 1.9 430.9 460.5 440.9 Fig.4.1: Voltage graph Above graph voltage v/s power setting shows that as the power setting increases voltages in each phase also increases. Fig.4.2: Current graph 1552

Above graph current v/s power setting shows that as the power setting increases current in each phase also increases. Fig.4.6:Output at 80% Fig.4.3: Output Power graph 4.2 Voltage waveforms on CRO Above graph power v/s power setting shows that as the power setting increases power in each phase also increases. 4.1 Current Waveforms on CRO Fig.4.7:Output at 50% Fig.4.4:Output at 10% Fig.4.8:Output at 80% Fig.4.5:Output at 50% Fig.4.9:Output at 100% 1553

CONCLUSION Three phase supply design for magnetron power source by providing gate firing signal to the thyristors is achieved by using the power scheme, control scheme design respectively. The various parameters were monitored such as voltage, current and the power. Therefore using the three phase supply we are able to provide phase to phase supply and balance the load. Three phase-phase control has significant advantages over single phase firing and this was observed and confirmed through the readings as tabulated in the report. Three phase firing has provided the advantage of low ripple in the dc quantity. We have also observed better smooth control of power delivered to load as compared to the single phase firing. Three phase supply design provides low losses and more accurate firing angles compared to single phase supply. Low ripple and high performance are the major advantages. Thus the three phase power to the magnetron power source is achieved and high power magnetron source can be conveniently used for industrial applications. ACKNOWLEDGEMENTS Authors place on record the colleagues and friends at Enerzi Microwave systems Pvt. Ltd., Belgaum and the professors and lecturers at BEC, Bagalkot for their endless support and help. REFERENCES Books: [1]A.C.Metaxas and Roger J.Meredith, Industrial Microwave heating, Sec ond Edition, IET, 1983. [2]Von M. A. Laughton,D. F. Warne, Electrical Engineer s Reference book, Sixteenth Edition, Newnes, 2003. [3]Ned Mohan/Undeland/Robins, Power Electronics, Second Edition, Wiley, 1995. [4]P.S.Bimbra Power Electronics KhannaPuplishers,New Delhi,2002. [5]David A.Bell, Operational Amplifiers and Linear IC's, 2nd edition, PHI/Pearson, 2004. [6]Ramakanth A. Gayakwad Op-Amps and Linear Integrated Circuits, Fourth Edition,2004. BIBILOGRAPHY Mr. Madhukesh Heggannavar: was born in Belgaum, Karnataka, India on December 29, 1985. He obtained B.E (Electrical and Electronics) from Veshwesvaraya Techhnological University, Belgaum in 2010. He is currently persuing M.Tech. Degree in Power and Energy Systems in Electrical and Electronics Engineering, Basaveshwar Engineering College, Bagalkot, India. Email id madhukesh016@gmail.com Mr. Prakash S. Mugali: was born in Belgaum, Karnataka, India on July 19, 1980. He obtained his B.E (Electronics) degree from Visvesvaraya Technological University, Belgaum in 2002 and MBA from Symbiosys Pune. His areas of interest include Radiation Heating, Wind and Solar Systems, Power Systems, Automation and Energy Conservation. He possesses more than 10years of Experience in Industrial Electronics and Electro-mechanical Equipment Manufacturing. Having got an opportunity to work with many eminent scientists of the country and abroad he has been leading M/s. Enerzi Microwave Systems Pvt. Ltd. to develop various markets for different microwave applications. He currently serves as the Chairman and Managing Director of this company. Email id prakash@enerzi.co Prof. Shashidhar M.Patil: was born in Gudadur, in Raichur Dist, on 16 th January 1963. He Obtained his B.E. (Electrical and Electronics Engg.) degree from P.D.A College of Engineering, Gulbarga in 1985 and M.tech (Machine Drives and Power Electronics) from IIT Kharagpur in 1991. Presently he is working as a lecturer (selection grade) in the Department of Electrical and Electronics Engineering at Basaveshwar Engineering College,Bagalkot. Email id smpatil@yahoo.co.in 1554