Digital Communications: An Overview of Fundamentals

Similar documents
Digital Modulators & Line Codes

Chapter 14: Bandpass Digital Transmission. A. Bruce Carlson Paul B. Crilly 2010 The McGraw-Hill Companies

Communications II Lecture 7: Performance of digital modulation

UNIT IV DIGITAL MODULATION SCHEME

Passband Data Transmission I References Phase-shift keying Chapter , S. Haykin, Communication Systems, Wiley. G.1

Principles of Communications

Digital Communications - Overview

Problem Sheet: Communication Channels Communication Systems

Passband Data Transmission II References Frequency-shift keying Chapter 6.5, S. Haykin, Communication Systems, Wiley. H.1

Analog/Digital Communications Primer

Chapter 2 Introduction: From Phase-Locked Loop to Costas Loop

Lecture 4. EITN Chapter 12, 13 Modulation and diversity. Antenna noise is usually given as a noise temperature!

When answering the following 25 questions, always remember that there is someone who has to grade them. So please use legible handwriting.

TELE4652 Mobile and Satellite Communications

Revision: June 11, E Main Suite D Pullman, WA (509) Voice and Fax

Wrap Up. Fourier Transform Sampling, Modulation, Filtering Noise and the Digital Abstraction Binary signaling model and Shannon Capacity

L A-B-C dei Segnali Spread-Spectrum

Modulation exercises. Chapter 3

EE558 - Digital Communications

Communication Systems. Communication Systems

Chapter 2 Summary: Continuous-Wave Modulation. Belkacem Derras

COMM702: Modulation II

Lecture 11. Digital Transmission Fundamentals

The design of an improved matched filter in DSSS-GMSK system

EECS 380: Wireless Communications Weeks 5-6

f t 2cos 2 Modulator Figure 21: DSB-SC modulation.

Negative frequency communication

Transmit Beamforming with Reduced Feedback Information in OFDM Based Wireless Systems

EXPERIMENT #9 FIBER OPTIC COMMUNICATIONS LINK

Signals and communications fundamentals

Communication Systems. Department of Electronics and Electrical Engineering

ECMA st Edition / June Near Field Communication Wired Interface (NFC-WI)

Test 1 Review. Test 1 Review. Communication Systems: Foundational Theories. Communication System. Reference: Sections and

Digital Encoding And Decoding

unmodulated carrier phase refference /2 /2 3π/2 APSK /2 3/2 DPSK t/t s

Introduction: Analog Communication: Goal: Transmit a message from one location to another.

ECE3204 Microelectronics II Bitar / McNeill. ECE 3204 / Term D-2017 Problem Set 7

END-OF-YEAR EXAMINATIONS ELEC321 Communication Systems (D2) Friday, 19 November 2004, 9:20 a.m. Three hours plus 10 minutes reading time.

IMPERIAL COLLEGE of SCIENCE, TECHNOLOGY and MEDICINE, DEPARTMENT of ELECTRICAL and ELECTRONIC ENGINEERING.

Lecture #7: Discrete-time Signals and Sampling

Signal Characteristics

Communications II Lecture 5: Effects of Noise on FM. Professor Kin K. Leung EEE and Computing Departments Imperial College London Copyright reserved

Notes on the Fourier Transform

ECS455: Chapter 4 Multiple Access

Chapter 2: Fourier Representation of Signals and Systems

EE 330 Lecture 24. Amplification with Transistor Circuits Small Signal Modelling

March 13, 2009 CHAPTER 3: PARTIAL DERIVATIVES AND DIFFERENTIATION

Chapter 4: Angle Modulation

Chapter 4: Angle Modulation

CHAPTER CONTENTS. Notes. 9.0 Line Coding. 9.1 Binary Line Codes

ECMA-373. Near Field Communication Wired Interface (NFC-WI) 2 nd Edition / June Reference number ECMA-123:2009

Basics of Spread Spectrum Systems

EE201 Circuit Theory I Fall

LECTURE 1 CMOS PHASE LOCKED LOOPS

ECE ANALOG COMMUNICATIONS - INVESTIGATION 7 INTRODUCTION TO AMPLITUDE MODULATION - PART II

Solution of ECE 342 Test 2 S12

Channel Estimation for Wired MIMO Communication Systems

EXPERIMENT #4 AM MODULATOR AND POWER AMPLIFIER

Mobile Communications Chapter 2: Wireless Transmission

SOFT ESTIMATES FOR DOUBLY ITERATIVE DECODING FOR 16 QAM AND 64 QAM MODULATION

Objectives. Presentation Outline. Digital Modulation Revision

ICT 5305 Mobile Communications

Laboratory #2. Spectral Analysis of Digital Baseband Signals. SYSC 4600 Digital Communications

Offset Phase Shift Keying Modulation in Multiple-Input Multiple-Output Spatial Multiplexing

Example Message bandwidth and the transmitted signal bandwidth

Phase-Shifting Control of Double Pulse in Harmonic Elimination Wei Peng1, a*, Junhong Zhang1, Jianxin gao1, b, Guangyi Li1, c

Performance Analysis of High-Rate Full-Diversity Space Time Frequency/Space Frequency Codes for Multiuser MIMO-OFDM

OpenStax-CNX module: m Elemental Signals. Don Johnson. Perhaps the most common real-valued signal is the sinusoid.

Lecture 13: Capacity of Cellular Systems

EECE 301 Signals & Systems Prof. Mark Fowler

SystemC-AMS Hands-On Lab Part 2

Generating Polar Modulation with R&S SMU200A

Optical phase locked loop for transparent inter-satellite communications

Multicarrier-Based QAPM Modulation System for the Low Power Consumption and High Data Rates

Mach Zehnder Interferometer for Wavelength Division Multiplexing

6.976 High Speed Communication Circuits and Systems Lecture 19 Basics of Wireless Communication

6.003: Signals and Systems

ELEG 3124 SYSTEMS AND SIGNALS Ch. 1 Continuous-Time Signals

Question 1 TELE4353. Average Delay Spread. RMS Delay Spread = = Channel response (2) Channel response (1)

Technology Trends & Issues in High-Speed Digital Systems

P. Bruschi: Project guidelines PSM Project guidelines.

10. The Series Resistor and Inductor Circuit

Memorandum on Impulse Winding Tester

Double Tangent Sampling Method for Sinusoidal Pulse Width Modulation

Pulse amplitude modula.on Baseband to passband and back

Dead Zone Compensation Method of H-Bridge Inverter Series Structure

Pointwise Image Operations

t 2 (x(t)-y(t)) 2 dt. Similarly, for discrete-time signals x[n] and y[n], the difference energy over the time interval [n 1,n 2 ] is n 2 (x[n]-y[n])

Examination Mobile & Wireless Networking ( ) April 12,

Performance Limitations of an Optical Heterodyne CPFSK Transmission System Affected by Polarization Mode Dispersion in a Single Mode Fiber

EE303: Communication Systems

Experiment 6: Transmission Line Pulse Response

Introduction - Basic Concepts

Digital modulation and mobile radio. Refresher topic

Sound. Audio DSP. Sinusoids and Sound: Amplitude. Sound Volume

UNIT V DIGITAL TRANSMISSION SYSTEMS

(This lesson plan assumes the students are using an air-powered rocket as described in the Materials section.)

Communications II LABORATORY : Lab1- Signal Statistics, an Introduction to Simulink and FM

Microwave Transistor Oscillator Design

Power losses in pulsed voltage source inverters/rectifiers with sinusoidal currents

Transcription:

IMPERIAL COLLEGE LONDON DEPARTMENT of ELECTRICAL and ELECTRONIC ENGINEERING. COMPACT LECTURE NOTES on COMMUNICATION THEORY. Prof. Ahanassios Manikas, version Auumn 2008 Digial Communicaions: An Overview of Fundamenals Consellaion Diagram & Line Codes

6. Digial Modulaors GENERAL BLOCK STRUCTURE OF A DIGITAL COMMUNICATION SYSTEM H( f) ^ ^ ^ ^ ^ ^ Digial Communicaions - An Overview of Fundamenals 1 a poin T : =Ð>Ñ waveform. The digial modulaor akes # cs -bis a a ime a some uniform rae r cs and ransmis one of Q =2 # cs disinc waveforms = " ÐÑ,...,sQ ÐÑ i.e. we have an # cs -bi-sequence is ransmied Q-ary communicaion sysem. A new waveform corresponding o a new every seconds If # cs =" we have one bi a a ime œ 0 È= " i.e. a binary comm. sysem 1 È= # a poin T^ : noisy waveform <Ð>Ñ œ 5 =Ð>Ñ 8Ð>Ñ. The ransmied waveform =Ð>Ñ, affeced by he channel, is received a poin T^ a poin B^ : a binary sequence. based on he received signal <Ð>Ñ he digial demodulaor has o decide which of he Q waveforms = 3Ð>Ñ has been ransmied in any given ime inerval X -= Digial Communicaions - An Overview of Fundamenals 2

..01..101..00.. 0..00 s 1( )= 0..01 s 2( )= : H, Pr(H ) 1 1 : H, Pr(H ) 2 2 s ()= 1..11 s M( )= : H M, Pr(H M) s () Channel..00..101..10.. r ()=()+n() s 0..00 s 1( )= 0..01 s 2( )= 1..11 s M( )= : D 1, Pr(D 1) : D 2, Pr(D 2) : D M, Pr(D M) D Deecor wih a Decision Device (Decision Rule) r ()= Digial Communicaions - An Overview of Fundamenals 3 If Qœ# ÊBinary Digial Modulaor ÊBinary Communicaion Sysem If Q # ÊM-ary Digial Modulaor ÊM-ary Communicaion Sysem œ Ô PrÐH" ll" Ñß PrÐH" ll# Ñß ÞÞÞß PrÐH" llqñ PrÐH# ll" Ñ, PrÐH# ll# Ñ, ÞÞÞß PrÐH# llqñ Ö Ù. ÞÞÞ ÞÞÞ ÞÞÞ ÞÞÞ ÕPrÐH ll Ñ, PrÐH ll Ñ, ÞÞÞ PrÐH ll ÑØ O " O # O Q Digial Communicaions - An Overview of Fundamenals 4

ì Binary Com. Sysems: use Qœ2 possible waveforms Ö = Ð>Ñß = Ð>Ñ à! " Q-ary Com. Sysems: use Q possible waveforms Ö = Ð>Ñß ÞÞÞß = Ð>Ñ à 1 Q ì The Q signals (or channel symbols) are characerized by heir energy I 3 X I œ ' -= # 0 = Ð>Ñ..> à a3 Ð1Ñ 3 3 Furhermore heir similariy (or dissimilariy) is characerized by heir cross-correlaion " 3 34 II 3 4 X œ ' -= * È = Ð>Ñ = Ð>Ñ.> 2 3 4 0.. ÐÑ Digial Communicaions - An Overview of Fundamenals 5 6.1. Firs Modelling of Digial Modulaors Digial Communicaions - An Overview of Fundamenals 6

Noe: How o ransform a sequence of 0's and 1's o a sequence of 1's i/p Ä o/p œ" # i/p Ä o/p Digial Communicaions - An Overview of Fundamenals 7 6.1. Examples of Binary Modulaors A binary digial modulaor maps 0's and 1's ono wo analogue symbol- È= Ð>Ñ waveforms s0ðñ and s1ðñ, ha is œ 0! 0 Ÿ Ÿ T "È= Ð>Ñ cs " The hree basic binary digial modulaors Ú Ý 0 È = 9 Ð>Ñ œ E! ÞcosÐ# 1J ->Ñ ASK ( Ampliude Shif-Keyed) Û " È = " Ð>Ñ œ E" ÞcosÐ# 1J ->Ñ Ý Ü for!ÿ>ÿx-= Ú 0 È = 9Ð>Ñ œ E-ÞcosÐ# 1J ->Ñ PSK ( Phase Shif-Keyed) Û " È = " Ð>Ñ œ E-ÞcosÐ# 1J -> ")! Ñ Ü for!ÿ>ÿx Ú 0 È = 9Ð>Ñ œ E- ÞcosÐ# 1J! >Ñ FSK ( Frequency Shif-Keyed) Û " È = " Ð>Ñ œ E- ÞcosÐ# 1J " >Ñ Ü for!ÿ>ÿx -= -= Digial Communicaions - An Overview of Fundamenals 8

The above binary digial modulaors using complex represenaion: Ú 0 È= 9 Ð>ÑœEÞ! expð# j 1J>Ñ - ASK ( Ampliude Shif-Keyed) Û "È=Ð>ÑœEÞ " " expð# j 1J>Ñ - Ü for!ÿ>ÿx -= Ú œ E- èëëéëëê Ý 0 È= 9Ð>Ñœ E-expÐ!ÑÞ j expð# j 1J>Ñ - PSK ( Phase Shif-Keyed) Û "È=Ð>Ñœ " ðóóóóñóóóóò EÞ - expð")!ñ j expð# j 1J>Ñ - Ý œ E- Ü for!ÿ>ÿx -= Ú 0 È= 9Ð>ÑœEÞ - expð# j 1J>Ñ! FSK ( Frequency Shif-Keyed) Û "È=Ð>ÑœEÞ " - expð# j 1J>Ñ " Ü for!ÿ>ÿx -= Digial Communicaions - An Overview of Fundamenals 9 6.2. Examples of M-ary Modulaors Digial Communicaions - An Overview of Fundamenals 10

6.3. An Imporan M-ary Modulaor ( Q œ '%Ñ A 64-ary Modulaor: Based on Walsh-Hadamard marix " " ì 1= c1 d # œ marix " " Ð# #Ñ 64 œ ðóóóóóóóóóóóóóóóñóóóóóóóóóóóóóóóò # Œ # Œ # Œ # Œ # Œ # 6-imes where Œ denoes he Kronecker produc of wo marices e.g. for wo marices and if œ E "" E "# hen E E #" ## Œ œ E"" E"# E E #" ## Digial Communicaions - An Overview of Fundamenals 11 ì Properies: ˆ T 64 œ '% ˆ 64 '% ˆ Le H 3 denoe he 3-h column of 64 i.e. 64 œ ch ß H ß ÞÞÞß H " # '% Then he following example illusraes an applicaion of "Walsh Hadamard" as a 64-ary Modulaor demodulaor d Digial Communicaions - An Overview of Fundamenals 12

Digial Communicaions - An Overview of Fundamenals 13

Sysems: 1. Coheren (if demodulaor is coheren) 2. Non-coheren (if demodulaor is non-coheren) Noe: Opimum demodulaors are coheren. Digial Communicaions - An Overview of Fundamenals 14 6.4. Second Modelling of Digial Modulaors: Signal Consellaion ì We may represen he signal = Ð>Ñ 3 by a poin ÐA =3 Ñin a H-dimensional Euclidean space wih H ŸQÞ ì The se of poins (vecors) specified by he columns of he marix œ ca ß A ß ÞÞÞß A = = = " # Q d is known as "signal consellaion". H I 3 œa A œ¼a ¼ ÐÑ 3 = = = 3 3 3 # " 3 34 II = H. = œ A A œ È 3 4 3 4 A = H. A 3 = 4 ½A ½Þ½A ½ = 3 = 4 ÐÑ 4 Digial Communicaions - An Overview of Fundamenals 15

6.5. Disance beween wo M-ary signals ì The disance beween wo signals = 3Ð>Ñ and = 4Ð>Ñ is he Euclidean disance beween heir associae vecors A and A i.e.. 34 = = 3 4 œ ½A A œ ÊŠ A A Š A A œ œ ÉAHA AH A #AHA œ ÉI I 23 ÈI I Ê = = 3 4 ½ H = = = = 3 4 3 4 = = = = = = 3 3 4 4 3 4 3 4 34 3 4. # œ I I 23 ÈI I 34 3 4 34 3 4 ì I is clear from he above ha he Euclidean disance. 34 associaed wih wo signals = 3Ð>Ñ and = 4Ð>Ñ indicaes, like he cross-correlaion coefficien, he similariy or dissimilariy of he signals. Digial Communicaions - An Overview of Fundamenals 16 6.6. Examples of Consellaion Diagram Consider an M-ary Sysem having he following signals Ö = 1Ð>Ñ, = 2Ð>Ñ,..., = Q Ð>Ñ wih! Ÿ>ŸX -= ì M-ary ASK ˆ channel symbols: = 3Ð>Ñ œ E3ÞcosÐ2 J >Ñ 9< = 3Ð>Ñ œ E3Þexp 4# 1J - > ˆdimensionaliy of signal space œ Hœ" ˆ if Qœ% hen 1 - where E3 œ given= #3 " Q (say) Es 1 Es 2 Es 3 Es 4 Origin ˆ if Qœ) hen 00 01 11 10 s1( ) s2( ) s3( ) s4( ) Es 1 Es 2 Es 3 Es 4 Origin Es 5 Es 6 Es 7 Es 8 000 s1( ) 001 s2( ) 011 s3( ) 010 s4( ) 110 s5( ) s 6( ) 101 s7( ) 100 s8( ) Digial Communicaions - An Overview of Fundamenals 17

ì M-ary PSK # ˆ channel symbols: = 3Ð>Ñœ EÞ cosˆ # 1J > 1 - Q Þ3 " 9 3 œ "ß #ß ÞÞß # 9< = 3Ð>Ñ œeþexpˆ 4ˆ 1 Q Þ 3 " 9 exp 4# 1J> - ˆdimensionaliy of signal-space œ Hœ2 ˆ if Qœ% & 9 œ! hen if Qœ% & 9 œ45 hen 01 Es 2 s 2( ) Es 2 01 s2( ) Es1 s1( ) 00 Es 3 11 s 3( ) Origin s 1( ) Es 1 00 Origin 45 0 s4( ) 10 11 s 3( ) Es 3 s 4( ) Es 4 10 Es 4 Digial Communicaions - An Overview of Fundamenals 18 ˆ if Qœ8 & 9 œ! hen Es 4 010 s4( ) Es 3 011 s3( ) Es 2 001 s2( ) 110 Es 5 s5( ) Origin 000 s1( ) Es 1 s6( ) 101 Es s 6 7( ) 100 s8( ) Es 8 Es 7 Digial Communicaions - An Overview of Fundamenals 19

ì M-ary FSK À very difficul o be represened using consellaion diagram Digial Communicaions - An Overview of Fundamenals 20 ì M-ary Ampliude & Phase - M-ary QAM À ˆ channel symbols: = Ð>ÑœE 3 Þ cos # 1J - > : 9 3œ"ß#ßÞÞßQ 3 3 9< = Ð>Ñ œ E 8 Þ cos # 1J - > : 9 87 7 ˆdimensionaliy of signal-space œ Hœ2 PAM-PSK QAM Ú 8 œ "ß #ß ÞÞß Q1 Û 7 œ "ß #ß ÞÞß Q Ü QœQ Q # " # Digial Communicaions - An Overview of Fundamenals 21

ì Two Represenaive Examples:..01..101..00.. 0..00 s 1( )= 0..01 s 2( )= : H, Pr(H ) 1 1 : H, Pr(H ) 2 2 s ()= 1..11 s M( )= : H M, Pr(H M) s () Channel..00..101..10.. r ()=()+n() s 0..00 s 1( )= 0..01 s 2( )= 1..11 s M( )= : D 1, Pr(D 1) : D 2, Pr(D 2) : D M, Pr(D M) D Deecor wih a Decision Device (Decision Rule) r ()= For an ASK M=4 and a QPSK Communicaion Sysem he figure above is equivalen o: Digial Communicaions - An Overview of Fundamenals 22 Equivalen Model of an ASK (M=4) Communicaion Sysem Digial Communicaions - An Overview of Fundamenals 23

Equivalen Model of a QPSK Communicaion Sysem Digial Communicaions - An Overview of Fundamenals 24 Remember: A QPSK modulaor has four "channel-symbols" which are described by he following equaion: # 1 = 3( > ) = Ecos(2 1J -> + Q ( 3 " ) 9) for 3=1,2,3,4 ÐÑ 5 wih Q =4 and!ÿ>ÿx -= and he modulaion process is described by he so called "consellaion diagram". The previous figure shows he consellaion diagram for 9 œ 45. From his figure i is clear ha he consellaion diagram shows he mapping of binary digis o QPSK channel symbols (consellaion poins) as well as he square roo of he energy ÈI = of he channel symbols. The diagram also indicaes a Gray code mapping from binary digis o channel symbols (consellaion poins). Digial Communicaions - An Overview of Fundamenals 25

For insanceß if he bi-pair a he inpu of he QPSK modulaor is "01" hen he oupu is he waveform (channel symbol) =Ð>Ñ. # Overall, using complex number represenaion, is is clear from he consellaion diagram ha!! È = " Ð>Ñ œ ðóóóóñóóóóò ÈI= exp(j45 ) exp 4# 1J -> œ7"! 1 È = # Ð>Ñ œ ðóóóóóñóóóóóò ÈI= exp(j135 ) exp 4# 1J -> œ7# 11 È = $ Ð>Ñ œ ðóóóóóñóóóóóò ÈI= exp(j225 ) exp 4# 1J -> œ7$ 1!È =Ð>Ñœ % ðóóóóñóóóóò ÈI= exp(j45 ) exp 4# 1J -> œ7 % ÐÑ 6 Digial Communicaions - An Overview of Fundamenals 26 In oher words, =Ð>Ñœ7 3 3exp 4# 1J - > for 3œ1,2,3 and 4 ÐÑ 7 I is imporan o poin ou ha he four symbols 7ß7ß7 " # $ and 7% are known as baseband QPSK "channel symbols" and are used by he "QPSK consellaion symbol mapping" block shown in he previous figure. The erm exp 4# 1J - > in Equaions 6 and 7 is shown seperaely in he previous figure, in order o indicae he up-conversion from baseband o bandpass. In a similar fashion he down-conversion from baseband o bandpass is shown a he receiver's fron-end using he complex conjugae of he ransmier's carrier, i.e. using exp 4# J >. 1 - Thus, overall, we have exp 4# 1J > exp 4# 1J > =1. - - Digial Communicaions - An Overview of Fundamenals 27

Based on he above discussion i is clear ha he presence of he carrier does no affec he analysis of he sysem. Therefore, i is common pracice o ignore he carrier when analysing communicaion sysems, by working on he baseband. For he res of his explanaory noe he carrier erm will be ignored from boh Tx and Rx. Digial Communicaions - An Overview of Fundamenals 28 Summarising, a QPSK modulaor/demodulaor is represened by is consellaion diagram and he QPSK symbol mapper ransforms he binary sequence o a sequence of QPSK complex channel symbols 7 3, forming he baseband QPSK message signal 7Ð>Ñ of bandwidh F 3Þ/Þ 7ß7ß7 " # $ 9<7% å 7Ð>Ñ aò8ó. -Ð> n. X-= Ñà nt-= Ÿ Ðn "Ñ.T-= 8 where Ú Ý Û Ý Ü > -Ð>Ñ œ recš X -= ÖÒ8Ó a œ sequ. of independen daa symbols Ðmi Ñ Fœ " X -= Digial Communicaions - An Overview of Fundamenals 29

Thus, wih reference o he binary sequence of bis "001001" (message), by looking a he QPSK consellaion diagram i is clear ha he we have he following mapping 00 7" œ E exp(j %& ) "! 7% œ E exp(j $"& )!" 7# œ E exp(j "$& ) where Eœ I È = Noe ha, for a binary sysem mð>ñ å " aò8ó. -Ð> n. X-= Ñà nt Ÿ Ðn "Ñ.T where Ú Ý Û Ý Ü n > -= -= -Ð>Ñ œ recš X -= ÖÒ8Ó a œ sequ. of independen daa bis Ð 1sÑ Fœ " X -= Digial Communicaions - An Overview of Fundamenals 30 Examples of Decision Variables (QPSK- Receiver) 1.5 8 x 106 1 6 4 0.5 2 Im 0 Im 0-0.5-2 -4-1 -6-1.5-1.5-1 -0.5 0 0.5 1 1.5 Re 'good' -8-8 -6-4 -2 0 2 4 6 8 Re x 10 6 'bad' Digial Communicaions - An Overview of Fundamenals 31

6.7. Performance Evaluaion ì In general he qualiy of a digial communicaion sysem is expressed in erms of he accuracy wih which he binary digis delivered a he oupu of he deecor represen he binary digis ha were fed ino he digial modulaor. ì I is generally aken ha i is he fracion of he binary digis ha are delivered back in error ha is a measure of he qualiy of he communicaion sysem. This fracion, or rae, is referred o as he bi error probabiliy : /, or, Bi- Error-Rae BER. Digial Communicaions - An Overview of Fundamenals 32 ì The performance of Q-ary communicaion sysems is evaluaed by means of he average probabiliy of symbol error : /ß-=, which ß for Q #ß is differen han he average probabiliy of bi error (or Bi-Error-Rae BER), : /. Tha is œ : /ß-= :/ß-= Á :/ for Q # œ : for Q œ # / (i.e. Binary Communicaion Sysems) However, because we ransmi binary daa, he probabiliy of bi error a more naural parameer for performance evaluaion han. : /ß-= : / is Digial Communicaions - An Overview of Fundamenals 33

Alhough, hese wo probabiliies are relaed i.e. : / œ f{ : /ß-= } heir relaionship depends on he encoding approach which is employed by he digial modulaor for mapping binary digis o Q-ary signals (channel symbols) Digial Modulaor bis Ä 3-h word of #-= bis èëëëëëëëëëëëëëëëëëëëéëëëëëëëëëëëëëëëëëëëê 1s bi 2nd bi...//... # -h bi cs È= 3 Ä channel symbols where # cs œ log 2 QÞ Digial Communicaions - An Overview of Fundamenals 34 >2 >2 ì An Imporan Bound involving. 34 (disance beween he 3 and 4 consellaion poin À ˆ The symbol error probabiliy is bounded as follows: : /ß=- Q Q. :/ß-s Ÿ Ð= 3Ñ 34 Pr T{ } Ð8Ñ 3œ" 4œ" 4Á3 È#R! ì definiion of he "minimum disance":. min œ mine. 34f a3ß 4 Digial Communicaions - An Overview of Fundamenals 35

6.8. Performance of BINARY Ðequiprobable Ñ DIGITAL MODUL./DEMODULATORS ì Consider a Binary Communicaions sysem 0 È= " œ or a more popular noaion: 0 È= 1 È= œ 1 È= # Consellaion diagram À 0 1 = 0 = 1 ÈI ÈI. 0 1 0 1. È#R! 3 p e œ T{ } œ ÞÞÞ=T{ ÈÐ" 3Ñ. EUE } Digial Communicaions - An Overview of Fundamenals 36 ì Thus, a he oupu of an opimum digial demodulaor he probabiliy of error can be calculaed by using he following expression: p e œ T{ ÈÐ" 3Ñ. EUE } Ð9Ñ where EUE œ E N! and PSD n ÐfÑ œ N! i # Ú " X-= E.' # # œ #! Š s! ÐÑ s" ÐÑ d Ý œ average signal energy wihû " X-= Ý 3 œ.' E! s! ÐÑ s" ÐÑ d Ü œ he ime cross-correlaion beween signals Digial Communicaions - An Overview of Fundamenals 37

N.B.: Ð" Ñ œ Å Êp œ Æ 3 E N e! if E N! œ fixed hen he opimum sysem is ha for which he correlaion coeff is " i.e. 3 œ 1 Ê s!ðñœ s"ðñ Ð10Ñ This is known as opimum, or ideal binary Communicaion Sysem p e ρ=1 ρ= -1 ρ=0 EUE Digial Communicaions - An Overview of Fundamenals 38 Examples - Baseband MODEMS: ˆAnipodal Ä 0 È=Ð>Ñœ E œ "È=Ð>ÑœE! - " - 0 Ÿ Ÿ ˆ =Ð>Ñ œ E-7Ð>Ñ Ð ÖÒ8Ó a œsequ. of independen daa bis Ð 1sÑ A - ˆ p= / T{ } 5 COHERENT MODEMS: 1. Ampliude Shif-Keyed ÐASK Ñ or On-Off Keying ÐOOKÑ 0 ˆ ÐASK or OOK Ñ Ä È=Ð>Ñœ!! œ 0 Ÿ Ÿ T "È=Ð>ÑœE " -cos # 1J> - ˆ sðñœe -.mðñ. cosð# 1F - Ñ É E N ˆ p= / T{ # } = 1 0 cs Digial Communicaions - An Overview of Fundamenals 39

2. Biphase Shif-Keyed: ìgeneral Ä 0 È=Ð>ÑœE! -cos # 1J> -?) œ "È=Ð>ÑœE cos # 1J>?) " - - 0 Ÿ Ÿ p = T{ È2.EUE. sin# Ð?) Ñ} / ì Phase-Reversal Keying ÐRSKÑ 0 È=Ð>Ñœ! E -sin # 1J> - ÐRSK Ñ Ä œ "È=Ð>ÑœE sin # 1J> " - - 0 Ÿ Ÿ p / = T{ È 2.EUE } Digial Communicaions - An Overview of Fundamenals 40 ì N.B.: for?)= 1 2 hen general=rsk and i is called BPSK BPSK s ÐÑœE-. sinð# 1J - > 7Ð>Ñ. # Ñ Ð12Ñ Equaion Ð11 Ñ can be rewrien as follows: 1 BPSK s ÐÑœE-.m ÐÑ. cosð# 1F - Ñ Ð13Ñ... BPSK can be considered as PM œ AM The PSD ÐÑ f 's of mðñ and =Ð>Ñare shown below: Digial Communicaions - An Overview of Fundamenals 41

Digial Communicaions - An Overview of Fundamenals 42 3. Frequency Shif-Keyed ÐFSKÑ ÐFSK Ñ À 0 È=Ð>ÑœE! -cos # 1J> - œ "È=Ð>ÑœE cos # 1 J? 0 > " - - m 0 Ÿ Ÿ,? f= #Xcs Digial Communicaions - An Overview of Fundamenals 43

Digial Communicaions - An Overview of Fundamenals 44 1 ASK : œ / TœÉ " # EUE # non-coheren ASK ÐNASK Ñ p= 0.5 expš 0.5TœÉ $ FSK : œ Tš ÈEUE % FSK (non-coheren) : œ E= E= / % N # N / / exp " " # # 1 1 0 0 EUE & BPSK :/ œ Tš È2 EUE " ' BPSK (differenial) :/ œ # exp e EUEf ( QPSK : œ Tš È2 EUE ) MSK : œ Tš È1.7 EUE * Gaussian MSK : Tš È1.36 EUE / / / "! M-ary PSK (coheren) : 2Tš È4 EUE sinˆ 1 / #Q " "" M-ary QAM :/ 4 Š 1 TœÉ ÈQ $ Q " EUE Digial Communicaions - An Overview of Fundamenals 45

Digial Communicaions - An Overview of Fundamenals 46 6.9. LINE CODES Digial Communicaions - An Overview of Fundamenals 47

Digial Communicaions - An Overview of Fundamenals 48?????? Digial Communicaions - An Overview of Fundamenals 49

Digial Communicaions - An Overview of Fundamenals 50 Digial Communicaions - An Overview of Fundamenals 51

Digial Communicaions - An Overview of Fundamenals 52 EXAMPLE Show ha for a bipolar line code he auocorrelaion funcion of he code sequence Öa[ 8 ] is as follows: Ú "Î# if 5 œ! VaaÐ5Ñ œ Û "Î% if 5 œ " Ü! if 5 # > X -= If PrÐ!Ñ œ PrÐ "Ñ œ!þ& and -Ð>Ñ œ recš ß derive an expression for he power specral densiy for he bipolar line code waveform 8= 7Ð Ñ œ aò8ó. -Ð> 8X Ñ -= Digial Communicaions - An Overview of Fundamenals 53

Digial Communicaions - An Overview of Fundamenals 54 Digial Communicaions - An Overview of Fundamenals 55