Audio Engineering Society. Convention Paper. Presented at the 115th Convention 2003 October New York, New York

Similar documents
Implementation of cross-talk canceling filters with warped structures - Subjective evaluation of the loudspeaker reproduction of stereo recordings

Influence of artificial mouth s directivity in determining Speech Transmission Index

Measuring impulse responses containing complete spatial information ABSTRACT

Convention Paper Presented at the 138th Convention 2015 May 7 10 Warsaw, Poland

Convention Paper Presented at the 130th Convention 2011 May London, UK

New acoustical techniques for measuring spatial properties in concert halls

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 VIRTUAL AUDIO REPRODUCED IN A HEADREST

ROOM IMPULSE RESPONSES AS TEMPORAL AND SPATIAL FILTERS ABSTRACT INTRODUCTION

Listening with Headphones

Realtime auralization employing time-invariant invariant convolver

MEASURING DIRECTIVITIES OF NATURAL SOUND SOURCES WITH A SPHERICAL MICROPHONE ARRAY

APPLICATION NOTE MAKING GOOD MEASUREMENTS LEARNING TO RECOGNIZE AND AVOID DISTORTION SOUNDSCAPES. by Langston Holland -

PERCEIVED ROOM SIZE AND SOURCE DISTANCE IN FIVE SIMULATED CONCERT AUDITORIA

Reproduction of auditorium spatial impression with binaural and stereophonic sound systems

Adaptive Filters Application of Linear Prediction

Polar Measurements of Harmonic and Multitone Distortion of Direct Radiating and Horn Loaded Transducers

6-channel recording/reproduction system for 3-dimensional auralization of sound fields

Convention Paper Presented at the 116th Convention 2004 May 8 11 Berlin, Germany

Psychoacoustic Cues in Room Size Perception

Non-linear Digital Audio Processor for dedicated loudspeaker systems

Introduction. 1.1 Surround sound

IMPULSE RESPONSE MEASUREMENT WITH SINE SWEEPS AND AMPLITUDE MODULATION SCHEMES. Q. Meng, D. Sen, S. Wang and L. Hayes

Silence Sweep: a novel method for measuring electro-acoustical devices

EMULATION OF NOT-LINEAR, TIME-VARIANT DEVICES BY THE CONVOLUTION TECHNIQUE

Audio Engineering Society. Convention Paper. Presented at the 122nd Convention 2007 May 5 8 Vienna, Austria

Improving room acoustics at low frequencies with multiple loudspeakers and time based room correction

The analysis of multi-channel sound reproduction algorithms using HRTF data

From time to time it is useful even for an expert to give a thought to the basics of sound reproduction. For instance, what the stereo is all about?

NEW MEASUREMENT TECHNIQUE FOR 3D SOUND CHARACTERIZATION IN THEATRES

Combining Subjective and Objective Assessment of Loudspeaker Distortion Marian Liebig Wolfgang Klippel

Enhancing 3D Audio Using Blind Bandwidth Extension

Excelsior Audio Design & Services, llc

Revision 1.1 May Front End DSP Audio Technologies for In-Car Applications ROADMAP 2016

Listening Tests Performed Inside a Virtual Room Acoustic Simulator

Sound Processing Technologies for Realistic Sensations in Teleworking

Introduction to Equalization

EFFECT OF ARTIFICIAL MOUTH SIZE ON SPEECH TRANSMISSION INDEX. Ken Stewart and Densil Cabrera

URBANA-CHAMPAIGN. CS 498PS Audio Computing Lab. 3D and Virtual Sound. Paris Smaragdis. paris.cs.illinois.

Live multi-track audio recording

CONTROL OF PERCEIVED ROOM SIZE USING SIMPLE BINAURAL TECHNOLOGY. Densil Cabrera

NJU26125 Application Note Acoustical Property Adjustment Procedure Manual New Japan Radio Co., Ltd

How To... Commission an Installed Sound Environment

The Subjective and Objective. Evaluation of. Room Correction Products

Convention Paper Presented at the 112th Convention 2002 May Munich, Germany

Speech and Audio Processing Recognition and Audio Effects Part 3: Beamforming

Three-dimensional sound field simulation using the immersive auditory display system Sound Cask for stage acoustics

Surround: The Current Technological Situation. David Griesinger Lexicon 3 Oak Park Bedford, MA

THE SPEAKER. The decibel scale is related to the physical sound intensity measured in watts/cm 2 by the following equation:

What you Need: Exel Acoustic Set with XL2 Analyzer M4260 Measurement Microphone Minirator MR-PRO

Convention Paper 7024 Presented at the 122th Convention 2007 May 5 8 Vienna, Austria

OPTIMIZED SYNTHESIS AND FPGA IMPLEMENTATION OF A FIR FILTER FOR MULTIPLE POSITION EQUALIZATION OF A RECORDING STUDIO/CONCERT HALL

Pre- and Post Ringing Of Impulse Response

ROOM IMPULSE RESPONSE SHORTENING BY CHANNEL SHORTENING CONCEPTS. Markus Kallinger and Alfred Mertins

Binaural auralization based on spherical-harmonics beamforming

Convention Paper Presented at the 126th Convention 2009 May 7 10 Munich, Germany

Pattern Recognition. Part 6: Bandwidth Extension. Gerhard Schmidt

DISTANCE CODING AND PERFORMANCE OF THE MARK 5 AND ST350 SOUNDFIELD MICROPHONES AND THEIR SUITABILITY FOR AMBISONIC REPRODUCTION

From Binaural Technology to Virtual Reality

The psychoacoustics of reverberation

Convention Paper Presented at the 130th Convention 2011 May London, UK

Final Exam Study Guide: Introduction to Computer Music Course Staff April 24, 2015

Convention Paper 6274 Presented at the 117th Convention 2004 October San Francisco, CA, USA

Audio Engineering Society Convention Paper Presented at the 110th Convention 2001 May Amsterdam, The Netherlands

[Q] DEFINE AUDIO AMPLIFIER. STATE ITS TYPE. DRAW ITS FREQUENCY RESPONSE CURVE.

Convention Paper 9870 Presented at the 143 rd Convention 2017 October 18 21, New York, NY, USA

Acoustical Active Noise Control

A STUDY ON NOISE REDUCTION OF AUDIO EQUIPMENT INDUCED BY VIBRATION --- EFFECT OF MAGNETISM ON POLYMERIC SOLUTION FILLED IN AN AUDIO-BASE ---

Sonnet. we think differently!

Processor Setting Fundamentals -or- What Is the Crossover Point?

INTRODUCTION Headphone virtualizers are systems that aim at giving the user the illusion that the sound is coming from loudspeakers rather then from t

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007

Case study for voice amplification in a highly absorptive conference room using negative absorption tuning by the YAMAHA Active Field Control system

ROOM SHAPE AND SIZE ESTIMATION USING DIRECTIONAL IMPULSE RESPONSE MEASUREMENTS

Advanced techniques for the determination of sound spatialization in Italian Opera Theatres

MATLAB for Audio Signal Processing. P. Professorson UT Arlington Night School

Volunteer Audio. Glossary

Simulation of realistic background noise using multiple loudspeakers

Predicting localization accuracy for stereophonic downmixes in Wave Field Synthesis

Measuring procedures for the environmental parameters: Acoustic comfort

SPATIAL SOUND REPRODUCTION WITH WAVE FIELD SYNTHESIS

Sound engineering course

Audio Engineering Society. Convention Paper. Presented at the 129th Convention 2010 November 4 7 San Francisco, CA, USA. Why Ambisonics Does Work

Development of multichannel single-unit microphone using shotgun microphone array

A Method of Measuring Low-Noise Acoustical Impulse Responses at High Sampling Rates

EBU UER. european broadcasting union. Listening conditions for the assessment of sound programme material. Supplement 1.

Sound is the human ear s perceived effect of pressure changes in the ambient air. Sound can be modeled as a function of time.

University of Huddersfield Repository

SOUND FIELD MEASUREMENTS INSIDE A REVERBERANT ROOM BY MEANS OF A NEW 3D METHOD AND COMPARISON WITH FEM MODEL

Waves Nx VIRTUAL REALITY AUDIO

Convention Paper 7057

Virtual Sound Source Positioning and Mixing in 5.1 Implementation on the Real-Time System Genesis

Evaluation of a new stereophonic reproduction method with moving sweet spot using a binaural localization model

Accurate sound reproduction from two loudspeakers in a living room

Convention Paper 7480

Audio Engineering Society. Convention Paper. Presented at the 117th Convention 2004 October San Francisco, CA, USA

Principles of Audio Web-based Training Detailed Course Outline

DESIGN OF ROOMS FOR MULTICHANNEL AUDIO MONITORING

AUTOMATIC EQUALIZATION FOR IN-CAR COMMUNICATION SYSTEMS

DESIGN AND APPLICATION OF DDS-CONTROLLED, CARDIOID LOUDSPEAKER ARRAYS

WHAT ELSE SAYS ACOUSTICAL CHARACTERIZATION SYSTEM LIKE RON JEREMY?

Transcription:

Audio Engineering Society Convention Paper Presented at the 115th Convention 2003 October 10 13 New York, New York This convention paper has been reproduced from the author's advance manuscript, without editing, corrections, or consideration by the Review Board. The AES takes no responsibility for the contents. Additional papers may be obtained by sending request and remittance to Audio Engineering Society, 60 East 42 nd Street, New York, New York 10165-2520, USA; also see www.aes.org. All rights reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the Journal of the Audio Engineering Society. Implementation of a double StereoDipole system on a DSP board - Experimental validation and subjective evaluation inside a car cockpit Christian Varani 1, Enrico Armelloni 1, and Angelo Farina 1 1 Department of Industrial Engineering, University of Parma, Via delle Scienze 181/A, Parma 43100 Italy ABSTRACT Car cockpit is a critical environment for music; sound reproduction is in fact quite conditioned by reflections, echoes, engine noise and loudspeakers set up. An important technique to improve sound comfort is a spatial equalization where both magnitude and phase of signal are controlled. This technique is performed by a stereodipole system where two closely loudspeakers are setting in front of listener and digital processing is performed real-time by a DSP board. Cross-talk cancellation is achieved using FIR filters, whose coefficients are obtained by inversion of the measured cockpit impulse response. In this paper an experimental validation of a double stereodipole system, one for driver and other for passenger, is performed by subjective evaluations inside a commercial car. 1. INTRODUCTION Reproduce music inside a car cockpit is a difficult task, to improve sound comfort some technique are possible, here, one of that, spatial equalization is investigated. This technique is performed by a stereo dipole system where two closely loudspeakers are setting in front of listener. The worse defect of a stereophonic system,?, is the cross-talk effect at the listener ears due to loudspeakers. Cross-talk, that usually is not present in the music recording and is an artifact of a stereophonic reproduction, is a bad reproduction of sound at a location where it is not intended to be heard. For example the sound emitted from the left loudspeaker and heard at the right ear is a cross-talk. An opportune cross-talk cancellation is necessary to widen the stereo sound stage. Furthermore an equalization of the acoustic pressure response in the frequency domain allows achieving a good spatial equalization inside cockpit.

In this implementation two stereo dipole systems was set inside a commercial car, one for driver and other for passenger. Digital processing was performed realtime by a commercial ADSP 21161 EZKit Lite platform, an evaluation board supplied from Analog Devices. Crossover filter, cross-talk cancellation and acoustic equalization were obtained using filters based on a FIR structure, while inverse filter coefficients was calculated after Kirkeby theory. Car audio system was modified setting two couple of closely loudspeakers in front of driver an passenger seats for reproducing frequencies above 500 Hz, while frequencies below were reproduced by typical car system. Some measurements were performed, by a B&K binaural dummy head, to obtain Head Related Transfer Function at driver position and passenger one. Evaluating them, opportune inverse filters were designed and implemented on the DSP platform. Afterwards listening tests were performed inside the car cockpit to evaluate differences between a typical Hi-Fi system and new stereo dipole one. Subjective results show how a stereo dipole configuration achieves a better harmonization of the sound with respect to typical configuration. Listeners appreciated wider sound stage too. 2. CROSS TALK CANCELLATION AND STEREODIPOLE The approach employed here is derived from the formulation originally developed by Kirkeby and Nelson [1], with refinement from one of the authors [2]. Figure 1 shows the cross-talk phenomenon in the reproduction space. The 4 cross-talk canceling filters f, which are convolved with the original binaural material, have to be designed so that the signals collected at the ears of the listener are identical to the original signals. Imposing that pl=xl and pr=xr, a 4x4 linear equation system is obtained. Its solution yields: The problem is the computation of the InvFilter (denominator), as its argument is generally a mixed phase function. In the past, the authors attempted [3] to perform such an inversion employing the approximate methods suggested by Neely & Allen [4] and Mourjopoulos [5], but now the Kirkeby- Nelson frequency-domain regularization method is preferentially employed, due to its speed and robustness. A further improvement over the original method consists in the adoption of a frequency dependent regularization parameter. In practice, the denominator is directly computed in the frequency domain, where the convolutions are simply multiplications, with the following formula: Then, the complex inverse of it is taken, adding a small, frequency-dependent regularization parameter: Figure 1: cross-talk canceling scheme. In practice, ε(ω) is chosen with a constant, small value in the useful frequency range of the loudspeakers employed for reproduction (100 20k Hz in this case), and a much larger value outside the useful range. A smooth, logarithmic transition between the two values is interpolated over a transition band of 1/3 octave. 2

In figure 2 is depicted a stereodipole system, and is shown the angle between the speakers. Stereodipoles setup and reproduction layout are shown, respectively, in figure 3 and 4. AMPLIFIER Subwoofer StereoDipole Figure 4: Reproduction layout. In figure 5 shown connections about power amplifier used. Figure 2: Stereodipole reproduction through cross-talk canceling digital filters. Amplifier 3. DOUBLE STEREODIPOLE SYSTEM Traditional car audio system was modified setting two couple pairs of closely loudspeakers in front of driver an passenger seats, it is shown in figure 3. This setup was used for reproducing frequencies above 500 Hz, while frequencies below were reproduced by typical car system. Figure 5: Connection layout for amplifier to stereodipole. Inverse filters to obtain cross-cancellation were designed from binaural impulse response measured inside of car cockpit. They were implemented on 21161N DSP board. On this DSP board cross? further filters for subwoofer and volume control for each channel was implemented too. Figure 3: Position of loudspeakers in stereodipole configuration. To implement the system, no interaction between two stereodipoles was supposed. Figure 6: DSP board and amplifier. In order to perform IR measures a Bruël & Kaer 4100 dummy head was used, equipped with Falcon 4190 50mv/Pa microphone and suitable pre-amplifier. 3

Figure 7: Recording system with binaural dummy. 4. MEASUREMENTS The measurements performed with the dummy head have allowed computing the HRTF too; therefore a more accurate stereodipole system could be synthesized. Measures were employed two times, before to get IR and after to verify the exact cross-talk cancellation on the driver and the passenger s seats, using digital filters. Figure 8 shows the measured impulse responses of the system, corresponding to the 4 impulse responses referred to as h in figure 1. These measures were used to design inverse filters, obtained employing a CoolEdit plug-in. Figure 9: Spectrum of one direct path and cross path. The following figures (figure 10 and figure 11) show how the inverse digital filters work. Impulse responses were measured inserted in reproduction chain DSP board, so digital filters are depicted in figure 10. It is easy noting how cross-impulse responses (left-to-right and right-to-left) are noticeably lower than direct ones. Figure 8: Impulse response of car cockpit. Figure 10: Impulse response measured with digitals filters. This appreciable cross-talk cancellation is also obvious in figure 11, which shows the frequency responses of direct path and cross path. Is possible checking how the spectrum of cross path is 10 db lower than direct spectrum across the whole spectrum. Frequency responses of direct path (right-to-right) and cross path (right-to-left) are shown in figure 9. 4

perceive the sound source in that position. The interpretation of graphs is simple: if the system works well then the circles with greater percentage will be located on the diagonal. To evaluate the actual interference between the two stereodipoles the tests are done like this: Sitting on the driver s seat with only driver s stereodipole on (figure 13); sitting on the passenger s seat with passenger s stereodipole on (figure 14); and then sitting on both seats with both stereodipoles on at the same time (figure 15, 16). Figure 11: Spectrum of one direct path and cross path with digital filters. 5. EXPERIMENTAL LISTENING AND SUBJECTIVE TESTS After impulse responses measurements, also an experimental listening and a subjective test were performed. Task of these tests were to evaluate the perception of the position of sound source comparing two different reproduction systems inside the car: a traditional and a steredipole system. 5.1. Experimental listening test Procedure used to perform this test was first, recording a source sound positioned in specific points around the binaural dummy head, and then reproducing the recording on the stereodipole system. The subject listening to the recoding reported where he or she actually perceived the origin of the source sound. Figure 13: Graph of sound perceiving for driver position with only stereodipole driver on Figure 12: Position of sound sources. Evaluation of results is reported in the next graphs, where the abscissa axis represents the real position of source sound and the ordinate axis represents the perceived position. The ray of the circles is proportional to the percentage of people who Figure 14: Graph of sound perceiving for passenger position with only stereodipole passenger on. 5

Figure 14: Graph of sound perceiving for driver position with both stereodipole on. 5.2. Subjective test Subjective tests were performed to collect data of some listeners, in order to compare two different reproduction systems inside the car: a traditional and a steredipole system. People, selected with a test that marks them like good listeners, answered to question concerning sound quality, localization and harmonization. The test was composed by the evaluation of the following quality benchmarks: 1) Initial sensation of the sound; 2) Musical scene localization (voice and instrument position); 3) Width of sound front; 4) Naturalness of sound reproduction; 5) Low frequency response; 6) Medium frequency response; 7) High frequency response. The value reported is the mean score. It is easy to observe that an increase of the score is occurred, using the stereodipole system (black histogram). This confirms the effectiveness of the proposed approach. Figure 16: Comparison between stereodipole system and classic system reproduction. Figure 15: Graph of sound perceiving for passenger position with both stereodipole on. When only a single systems (driver or passenger) was working, sound front and the positions of source sounds was correctly perceived. While when both systems were switched on an interaction between two stereodipoles, is present. Figure 15 and 16 show, in fact, a little smearing of the results. And the sound perceiving stops at 45. 6. CONCLUSIONS The stereodipole was implemented on a commercial ADSP 21161 EZKit Lite platform supplied from Analog Devices. Kirkeby s theory was used for design filter to perform cross-talk cancellation. This system was inserted in a car audio system, and it was also modified using two pairs of closely loudspeakers in front of fore seats for reproducing frequencies above 500 Hz. Listening test was performed to evaluate the perception of the position of sound source inside the 6

car and compare two different Hi-fi reproduction systems: a traditional and a steredipole system. Analysis of results of these tests, points out how the stereodipole system turns out to be able to emphasize sensations such as localization of sound source and naturalness of sound reproduction. Future developments of this work could be about position of stereodipoles inside the car and about inverse digital filters. With some improvements, the stereodipole system could even replace a classic reproduction system in a car cockpit 7. REFERENCES [1] O. Kirkeby, P. A. Nelson, H. Hamada, The "Stereo Dipole"-A Virtual Source Imaging System Using Two Closely Spaced Loudspeakers JAES vol. 46, n. 5, 1998 May, pp. 387-395. [2] O.Kirkeby, P.A. Nelson, P. Rubak, A. Farina, "Design of Cross-talk Cancellation Networks by using Fast Deconvolution" - 106th AES Convention, Munich, 8-11 may 1999. [3] A. Farina, F. Righini, Software implementation of an MLS analyzer, with tools for convolution, auralization and inverse filtering, Pre-prints of the 103rd AES Convention, New York, 26-29 September 1997. [4] S.T. Neely, J.B. Allen, Invertibility of a room impulse response, J.A.S.A., vol.66, pp.165-169 (1979). [5] J.N. Mourjopoulos, Digital Equalization of Room Acoustics, JAES vol. 42, n. 11, 1994 November, pp. 884-900. 7