SYLLABUS CHAPTER - 2 : INTENSITY TRANSFORMATIONS. Some Basic Intensity Transformation Functions, Histogram Processing.

Similar documents
INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

Anna University, Chennai B.E./B.TECH DEGREE EXAMINATION, MAY/JUNE 2013 Seventh Semester

SRI VENKATESWARA COLLEGE OF ENGINEERING. COURSE DELIVERY PLAN - THEORY Page 1 of 6

Digital Image Processing

PRACTICAL IMAGE AND VIDEO PROCESSING USING MATLAB

Syllabus of the course Methods for Image Processing a.y. 2016/17

Teaching Scheme. Credits Assigned (hrs/week) Theory Practical Tutorial Theory Oral & Tutorial Total

Digital Image Processing

Image acquisition. Midterm Review. Digitization, line of image. Digitization, whole image. Geometric transformations. Interpolation 10/26/2016

A.V.C. COLLEGE OF ENGINEERING DEPARTEMENT OF CSE CP7004- IMAGE PROCESSING AND ANALYSIS UNIT 1- QUESTION BANK

SRM UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY SCHOOL OF COMPUTING DEPARTMENT OF CSE COURSE PLAN

Digital Image Processing Question Bank UNIT -I

Digital Image Processing

1.Discuss the frequency domain techniques of image enhancement in detail.

Midterm Review. Image Processing CSE 166 Lecture 10

LAB MANUAL SUBJECT: IMAGE PROCESSING BE (COMPUTER) SEM VII

FACULTY OF ENGINEERING AND TECHNOLOGY

Digital Image Processing 3/e

1. (a) Explain the process of Image acquisition. (b) Discuss different elements used in digital image processing system. [8+8]

CoE4TN4 Image Processing. Chapter 3: Intensity Transformation and Spatial Filtering

Digital Image Processing 3 rd Edition. Rafael C.Gonzalez, Richard E.Woods Prentice Hall, 2008

Table of contents. Vision industrielle 2002/2003. Local and semi-local smoothing. Linear noise filtering: example. Convolution: introduction

DIGITAL IMAGE PROCESSING UNIT III

Compression and Image Formats

Transforms and Frequency Filtering

Image Processing Computer Graphics I Lecture 20. Display Color Models Filters Dithering Image Compression

Frequency Domain Enhancement

Smoothing frequency domain filters

Images with (a) coding redundancy; (b) spatial redundancy; (c) irrelevant information

ECC419 IMAGE PROCESSING

Image Smoothening and Sharpening using Frequency Domain Filtering Technique

Digital Image Processing. Filtering in the Frequency Domain (Application)

Qäf) Newnes f-s^j^s. Digital Signal Processing. A Practical Guide for Engineers and Scientists. by Steven W. Smith

Image Processing Lecture 4

Solution for Image & Video Processing

Color & Compression. Robin Strand Centre for Image analysis Swedish University of Agricultural Sciences Uppsala University

Syllabus. osmania university UNIT - I UNIT - II UNIT - III CHAPTER - 1 : INTRODUCTION TO DIGITAL COMMUNICATION CHAPTER - 3 : INFORMATION THEORY

Fourier Transforms and the Frequency Domain

CS/ECE 545 (Digital Image Processing) Midterm Review

Digital Image Processing

Assistant Lecturer Sama S. Samaan

Prof. Vidya Manian Dept. of Electrical and Comptuer Engineering

Examples of image processing

Image Processing. Adrien Treuille

International Journal of Innovative Research in Engineering Science and Technology APRIL 2018 ISSN X

Color Image Processing

DIGITAL IMAGE PROCESSING (COM-3371) Week 2 - January 14, 2002

Digital Image Processing Introduction

Templates and Image Pyramids

Non Linear Image Enhancement

ECE/OPTI533 Digital Image Processing class notes 288 Dr. Robert A. Schowengerdt 2003

Digital Image Processing

Digital Image Fundamentals

Digital Image Processing. Lecture # 3 Image Enhancement

Templates and Image Pyramids

Ch. 3: Image Compression Multimedia Systems

IMAGE ENHANCEMENT IN SPATIAL DOMAIN

IMAGE PROCESSING PAPER PRESENTATION ON IMAGE PROCESSING

TDI2131 Digital Image Processing

Images and Graphics. 4. Images and Graphics - Copyright Denis Hamelin - Ryerson University

Enhancement. Degradation model H and noise must be known/predicted first before restoration. Noise model Degradation Model

IMAGE ENHANCEMENT - POINT PROCESSING

Fundamentals of Multimedia

Digital Image Processing

Computer Graphics. Si Lu. Fall er_graphics.htm 10/02/2015

15EI403J- IMAGE PROCESSING LAB MANUAL

What is image enhancement? Point operation

Image Enhancement in the Spatial Domain (Part 1)

2/24/2012. Image processing and analysis circle. Anatomy Skills Image processing fundamentals. Definitions

Thesis: Bio-Inspired Vision Model Implementation In Compressed Surveillance Videos by. Saman Poursoltan. Thesis submitted for the degree of

Smoothing frequency domain filters

Chapter 9 Image Compression Standards

Image Processing for feature extraction

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

Computing for Engineers in Python

EC-433 Digital Image Processing

GUJARAT TECHNOLOGICAL UNIVERSITY BE SEM-VIII Examination May 2012 Subject code: Subject Name: Data Communication & Networking

Chapter 17. Shape-Based Operations

Digital Signal Processing

PRACTICAL IMAGE AND VIDEO PROCESSING USING MATLAB

Lecture # 01. Introduction

Image Processing. Adam Finkelstein Princeton University COS 426, Spring 2019

Last Lecture. Lecture 2, Point Processing GW , & , Ida-Maria Which image is wich channel?

Design of Various Image Enhancement Techniques - A Critical Review

Information Hiding: Steganography & Steganalysis

The Scientist and Engineer's Guide to Digital Signal Processing By Steven W. Smith, Ph.D.

Lossy and Lossless Compression using Various Algorithms

Module 6 STILL IMAGE COMPRESSION STANDARDS

Understanding Digital Signal Processing

Computer Vision, Lecture 3

Performance Evaluation of Edge Detection Techniques for Square Pixel and Hexagon Pixel images

Compression. Encryption. Decryption. Decompression. Presentation of Information to client site

Noise and Restoration of Images

from: Point Operations (Single Operands)

REVIEW OF IMAGE COMPRESSION TECHNIQUES FOR MULTIMEDIA IMAGES

Keywords: BPS, HOLs, MSE.

Image Processing. 2. Point Processes. Computer Engineering, Sejong University Dongil Han. Spatial domain processing

2. REVIEW OF LITERATURE

Introduction to Multimedia Computing

CHAPTER 6 COLOR IMAGE PROCESSING

Transcription:

Contents i SYLLABUS UNIT - I CHAPTER - 1 : INTRODUCTION TO DIGITAL IMAGE PROCESSING Introduction, Origins of Digital Image Processing, Applications of Digital Image Processing, Fundamental Steps, Components, Elements of Visual Perception, Light and the Electromagnetic Spectrum, Image Sensing and Acquistion, Image Sampling and Quantization, Some Basic Relationships between Pixels. CHAPTER - 2 : INTENSITY TRANSFORMATIONS TIONS Some Basic Intensity Transformation Functions, Histogram Processing. UNIT - II CHAPTER - 3 : SPATIAL FILTERING Fundamentals of Spatial Filtering, Smoothing Spatial Filters, Sharpening Spatial Filters. CHAPTER - 4 : FILTERING IN THE FREQUENCY DOMAIN Preliminary Concepts, Sampling and the Fourier Transform of Sampled Functions, Fourier Transform and the Frequency Domain, The Discrete Fourier Transform (DFT) of One Variable, Extension to Function of Two Variables, Image Smoothing using Frequency Domain Filters, Image Sharpening Using Frequency Domain Filters. UNIT - III CHAPTER - 5 : IMAGE RESTORA ORATION A Model of the Image Degradation/Restoration Process, Noise Models, Restoration in the Presence of Noise Only-Spatial Filtering, Inverse Filtering, Minimum Mean Square Error (Wiener) Filtering, Least Squares Filtering. CHAPTER - 6 : COLOR IMAGE PROCESSING Color Fundamentals, Color Models, Pseudo Color Image Processing, Basics of Full- Color Image Processing. CHAPTER - 7 : MORPHOLOGICAL IMAGE PROCESSING Preliminaries, Erosion and Dilation, Opening and Closing Functions.

ii Contents UNIT - IV CHAPTER - 8 : IMAGE COMPRESSION Fundamentals, Fidelity Criteria Image Compression Models, Lossless Compression, Lossy Compression, Image Compression Standards. UNIT - V CHAPTER - 9 : IMAGE SEGMENTATION TION Fundamentals, Point, Line and Edge Detection, Segmentation by Thresholding, Region- Based Segmentation, Segmentation Using Watershed Algorithm. CHAPTER - 10 : REPRESENTATION TION AND DESCRIPTION Representation, Some Simple Descriptors, Shape Numbers, Fourier Descriptors. CHAPTER - 11 : OBJECT RECOGNITION Patterns and Pattern Classes, Matching, Minimum Distance Classifier, Correlation.

Contents iii digital image processing FOR b.e. (o.u) IV year i semester (COMMON TO CSE AND IT) CONTENTS UNIT - I [CH. H. - 1] ] [INTRODUCTION TO DIGITAL IMAGE PROCESSING]... 1.1-1.46 1.1 INTRODUCTION... 1.2 1.2 ORIGINS OF DIGITAL AL IMAGE GE PROCESSING... 1.4 1.3 APPLICATIONS OF DIGITAL AL IMAGE GE PROCESSING... 1.4 1.4 FUNDAMENT AMENTAL AL STEPS IN DIGITAL AL IMAGE GE PROCESSING... 1.6 1.5 COMPONENTS OF DIGITAL AL IMAGE GE PROCESSING SYSTEM... 1.8 1.6 ELEMENTS OF VISUAL PERCEPTION... 1.9 1.6.1 Structure of the Human Eye... 1.10 1.6.2 Image Formation in the Eye... 1.12 1.6.3 Brightness Adaptation and Discrimination... 1.13 1.6.3.1 Contrast Sensitivity... 1.14 1.6.3.2 Brightness Adaptation... 1.15 1.6.3.3 Acquity and Contour (Mach Bands)... 1.17 1.6.3.4 Simultaneous Contrast... 1.17 1.6.3.5 Integration... 1.18

iv Contents 1.7 LIGHT AND THE ELECTROMAGNETIC SPECTRUM... 1.19 1.8 IMAGE SENSING AND ACQUISITION... 1.20 1.8.1 Image Acquisition using Sensors... 1.21 1.8.1.1 Image Acquisition Using Single Image Sensor... 1.21 1.8.1.2 Image Acquisition using Sensor Strips... 1.22 1.8.1.3 Image Acquisition Using Sensor Arrays... 1.23 1.8.2 A Simple Image Formation Model... 1.24 1.9 IMAGE SAMPLING AND QUANTIZA ANTIZATION TION... 1.26 1.9.1 Basic Concepts in Sampling and Quantization... 1.26 1.9.2 Representing Digital Images... 1.28 1.9.3 Spatial and Gray-Level Resolution... 1.29 1.9.3.1 Differences between Gray-Level Image and Binary Image... 1.34 1.9.4 Aliasing and Moire Patterns... 1.34 1.9.5 Zooming and Shrinking of Digital Images... 1.36 1.10 SOME BASIC RELATIONSHIPS BETWEEN PIXELS... 1.39 1.10.1 Neighbors of a Pixel... 1.39 1.10.2 Adjacency... 1.40 1.10.3 Connectivity,, Region and Boundary... 1.41 1.10.3.1 Connectivity... 1.41 1.10.3.2 Region... 1.41 1.10.3.3 Boundary... 1.41 1.10.4 Distance Measures... 1.41 1.10.5 Image Operations on a Pixel Basis... 1.45 1.10.6 Linear and Non-Linear Operations... 1.45

Contents v UNIT - I [CH. H. - 2] ] [INTENSITY TRANSFORMATIONS]... 1.47-1.78 2.1 BASICS OF INTENSITY TRANSFORMATION TION (GREY LEVEL TRANSFORMATION) TION)... 1.48 2.2 SOME BASIC INTENSITY TRANSFORMATION TION FUNCTIONS... 1.51 2.2.1 Image Negatives... 1.52 2.2.2 Log Transformations... 1.52 2.2.3 Power ower-l -Law Transformation ransformation... 1.53 2.2.3.1 Gamma Correction... 1.54 2.2.4 Piecewise iecewise-linear Transformation Functions... 1.55 2.2.4.1 Contrast Stretching... 1.55 2.2.4.2 Intensity Grey-Level Slicing... 1.56 2.2.4.3 Bit-Plane Slicing... 1.57 2.3 HISTOGRAM PROCESSING... 1.58 2.3.1 Histogram Equalization (or) Histogram Linearization... 1.62 2.3.1.1 Histogram Equalization for Continuous Functions... 1.62 2.3.1.2 Histogram Equalization for Discrete Values... 1.64 2.3.1.3 Advantages of Histogram Equalization... 1.65 2.3.2 Histogram Matching (Specification)... 1.70 2.3.2.1 Development of Direct Histogram Specification for Continuous Functions... 1.71 2.3.2.2 Development of Direct Histogram Specification for Discrete Functions... 1.72 2.3.2.3 Implementation... 1.73 2.3.3 Local Enhancement Technique... 1.76

vi Contents UNIT - II [CH.. - 3] ] [SP SPATIAL FILTERING TERING]... 2.1-2.12 3.1 FUNDAMENT AMENTALS ALS OF SPATIAL FILTERING... 2.2 3.2 SMOOTHING SPATIAL FILTERS... 2.4 3.2.1 Smoothing by Linear Filters... 2.4 3.2.2 Smoothing by Non-linear Filters... 2.6 3.3 SHARPENING SPATIAL FILTERS... 2.6 3.3.1 Use of Second Order Derivative for Enhancement- the Laplacian... 2.7 3.3.2 Use of First Order Derivative for Enhancement- the Gradient... 2.9 UNIT - II [CH. - 4] ] [FILTERING IN THE FREQUENCY DOMAIN]... 2.13-2.42 4.1 INTRODUCTION... 2.14 4.2 PRELIMINARY CONCEPTS... 2.14 4.2.1 Complex Number... 2.14 4.2.2 Fourier Series... 2.15 4.2.3 Impulses and their Shifting Property... 2.15 4.2.4 Fourier Transform of Functions of One Continuous Variable... 2.16 4.2.5 Convolution... 2.18 4.3 SAMPLING AND THE FOURIER TRANSFORM OF SAMPLED FUNCTIONS... 2.19 4.3.1 Sampling... 2.19 4.3.2 Fourier Transform of Sampled Functions... 2.21 4.3.3 Types of Sampling... 2.21 4.3.4 Sampling Theorem... 2.23

Contents vii 4.4 THE FOURIER TRANSFORM AND THE FREQUENCY DOMAIN... 2.23 4.4.1 The Discrete Fourier Transform (DFT) of One Variable... 2.23 4.4.2 Extension to Function of Two Variables... 2.24 4.4.3 Filtering in the Frequency Domain... 2.24 4.5 IMAGE SMOOTHING USING FREQUENCY DOMAIN FILTERS... 2.26 4.5.1 Ideal Low ow-p -Pass Filter (ILPF)... 2.26 4.5.2 Butterworth Low ow-p -Pass Filter (BLPF)... 2.30 4.5.3 Gaussian Low ow-p -Pass Filter (GLPF)... 2.31 4.6 IMAGE GE SHARPENING USING FREQUENCY DOMAIN FILTERS TERS... 2.35 4.6.1 Ideal High-Pass ass Filter (IHPF)... 2.35 4.6.2 Butterworth High-Pass ass Filter (BHPF)... 2.37 4.6.3 Gaussian High-Pass ass Filter (GHPF)... 2.38 UNIT - III [CH. - 5] ] [IMAGE RESTORATION]... 3.1-3.24 5.1 INTRODUCTION... 3.2 5.2 A MODEL OF THE IMAGE GE DEGRADATION/REST TION/RESTORA ORATION PROCESS... 3.2 5.3 NOISE MODELS... 3.6 5.3.1 Gaussian Noise... 3.6 5.3.2 Rayleigh Noise... 3.7 5.3.3 Erlang Noise (Gamma Noise)... 3.8 5.3.4 Exponential Noise... 3.8 5.3.5 Uniform Noise... 3.9 5.3.6 Impulse (Salt and Pepper) Noise... 3.10

viii Contents 5.4 RESTORA ORATION IN THE PRESENCE OF NOISE ONLY-SP SPATIAL FILTERING TERING... 3.11 5.4.1 Mean Filters... 3.12 5.4.2 Order-Statistics Filters... 3.14 5.4.3 Adaptive Filters... 3.15 5.5 IMAGE RESTORA ORATION TECHNIQUES... 3.17 5.5.1 Constrained Method... 3.17 5.5.1.1 Inverse Filtering... 3.18 5.5.1.1.1 Pseudo-Inverse Filtering... 3.19 5.5.2 Unconstrained Method... 3.19 5.5.2.1 Least Mean Square Filter (or) Wiener Filter... 3.20 5.5.2.1.1 Drawbacks of Wiener Filters... 3.21 5.5.2.2 Constrained Least Square Filter... 3.21 5.5.2.3 Comparison of Least Mean Squares Approach and Constrained Least Squares Restoration... 3.23 UNIT - III [CH. - 6] ] [COLOR IMAGE PROCESSING]... 3.25-3.40 6.1 INTRODUCTION... 3.26 6.2 COLOR OR FUNDAMENT AMENTALS ALS... 3.26 6.3 COLOR MODELS... 3.30 6.3.1 The RGB Color Model... 3.31 6.3.2 The CMY and CMYK Color Model... 3.33 6.3.3 The HSI Color Model... 3.34 6.4 PSEUDO COLOR IMAGE PROCESSING... 3.37 6.4.1 Intensity Slicing... 3.38 6.4.2 Gray Level to Color Transformation... 3.39 6.5 BASICS OF FULL-COLOR IMAGE PROCESSING... 3.39

Contents ix UNIT - III [CH. H. - 7] ] [MORPHOLOGICAL IMAGE PROCESSING]... 3.41-3.52 7.1 INTRODUCTION... 3.42 7.2 PRELIMINARIES... 3.42 7.2.1 Some Basic Concepts from Set Theory... 3.42 7.2.2 Logical Operations Involving Binary Images... 3.44 7.3 DILATION AND EROSION... 3.46 7.3.1 Dilation... 3.46 7.3.2 Erosion... 3.46 7.4 A SIMPLE PRACTICAL FORMULAE FOR IMPLEMENTING DILATION AND EROSION... 3.48 7.5 OPENING AND CLOSING OPERATIONS... 3.51 7.5.1 Opening Operation... 3.51 7.5.2 Closing Operation... 3.52 7.5.3 Properties of Opening and Closing Operations... 3.52 UNIT - IV [CH. - 8] ] [IMAGE COMPRESSION]... 4.1-4.78 8.1 INTRODUCTION... 4.2 8.2 FUNDAMENT AMENTALS ALS... 4.3 8.2.1 Coding Redundancy... 4.4 8.2.2 Interpixel Redundancy... 4.7 8.2.3 Psychovisual Redundancy... 4.8 8.3 FIDELITY CRITERIA... 4.10 8.3.1 Objective Fidelity Criteria... 4.10 8.3.2 Subjective Fidelity Criteria... 4.11

x Contents 8.4 IMAGE COMPRESSION SYSTEM MODEL... 4.12 8.4.1 Source Encoder and Decoder... 4.12 8.4.2 Channel Encoder and Decoder... 4.13 8.5 LOSSLESS (OR) ERROR-FREE COMPRESSION... 4.14 8.5.1 Variable ariable-l -Length Coding... 4.15 8.5.1.1 Huffman Coding... 4.16 8.5.1.1.1 Coding Procedure... 4.16 8.5.1.1.2 Advantages of Huffman Coding... 4.18 8.5.1.1.3 Disadvantages of Huffman Coding... 4.19 8.5.1.2 Arithmetic Coding... 4.19 8.5.1.2.1 Features of Arithmetic Coding... 4.19 8.5.1.2.2 Coding Procedure... 4.20 8.5.1.2.3 Limitations of Arithmetic Coding... 4.22 8.5.1.3 Comparison of Arithmetic Coding and Huffman Coding... 4.22 8.5.2 Golomb Coding... 4.22 8.5.3 LZW Coding... 4.25 8.5.3.1 Coding Procedure... 4.25 8.5.3.2 Advantages of LZW Coding... 4.26 8.5.3.3 Disadvantages of LZW Coding... 4.26 8.5.4 Bit-Plane Coding... 4.26 8.5.4.1 Bit-Plane Decomposition... 4.27 8.5.4.2 Compression of Bit-Planes... 4.28

Contents xi 8.5.4.2.1 Constant Area Coding (CAC)... 4.28 8.5.4.2.2 One-Dimensional Run-Length Coding... 4.29 8.5.4.2.3 Two wo-dimensional Run-L un-length Coding... 4.29 8.5.4.2.4 Contour Tracing and Coding... 4.31 8.5.5 Lossless Predictive Coding... 4.32 8.6 LOSSY COMPRESSION... 4.45 8.6.1 Lossy Predictive Coding... 4.46 8.6.2 Transform Coding... 4.47 8.6.2.1 Transform Coding System... 4.47 8.6.2.1.1 Transform Selection... 4.49 8.6.2.1.2 Sub-Image Size Selection... 4.54 8.6.2.1.3 Bit Allocation... 4.54 8.6.3 Wavelet Coding... 4.57 8.6.4 Comparison Among Transform Coding and Predictive Coding... 4.58 8.7 COMPARISON OF LOSSY AND LOSSLESS COMPRESSIONS... 4.60 8.8 IMAGE GE COMPRESSION STAND ANDARDS ARDS... 4.60 8.8.1 Joint Picture Expert Group (JPEG)... 4.60 8.8.2 Moving Picture Export Group (MPEG)... 4.69 8.8.2.1 MPEG-1... 4.69 8.8.2.2 MPEG-2... 4.73 8.8.3 Graphic Interchange Format Compression (GIF)... 4.76 8.9 IMAGE FORMATS AND CONTAINERS... 4.77

xii Contents UNIT - V [CH. H. - 9] ] [IMAGE SEGMENTATION]... 5.1-5.34 9.1 INTRODUCTION... 5.2 9.2 DETECTION OF DISCONTINUITIES... 5.3 9.2.1 Point Detection... 5.4 9.2.2 Line Detection... 5.5 9.2.3 Edge Detection... 5.6 9.2.3.1 Gradient Operators... 5.7 9.2.3.2 Laplacian Operators... 5.11 9.3 SEGMENTATION TION BY Y THRESHOLDING... 5.11 9.3.1 Foundation... 5.12 9.3.2 The Role of Illumination... 5.13 9.3.3 Basic Global Thresholding... 5.15 9.3.4 Basic Adaptive Thresholding... 5.16 9.3.5 Optimal Thresholding... 5.17 9.3.6 Local Thresholding... 5.20 9.3.7 Otsus Method... 5.21 9.4 REGION-BASED SEGMENTATION TION... 5.25 9.4.1 Basic Rules for Segmentation... 5.25 9.4.2 Region Growing... 5.26 9.4.3 Region Splitting and Merging... 5.28

Contents xiii 9.5 SEGMENTATION TION USING WATERSHED ALGORITHM... 5.29 9.5.1 Block Diagram of Watershed-Based Segmentation... 5.30 9.5.2 Watershed Algorithms... 5.30 9.5.2.1 Flooding Based Watershed Algorithms... 5.30 9.5.2.2 Rainfalling Watershed Algorithms... 5.33 UNIT - V [CH. H. - 10] ] [REPRESENTATION AND DESCRIPTION]... 5.35-5.50 10.1 INTRODUCTION... 5.36 10.2 REPRESENTATION TION... 5.36 10.2.1 Chain Codes... 5.36 10.2.2 Polygonal Approximation... 5.39 10.2.3 Signatures... 5.41 10.2.4 Boundary Segments... 5.42 10.2.5 Skeletons... 5.43 10.3 BOUNDAR ARY DESCRIPTORS ORS... 5.45 10.3.1 Simple Descriptors... 5.46 10.3.2 Shape Numbers... 5.46 10.3.3 Fourier Descriptors... 5.48

xiv Contents UNIT - V [CH. H. - 11] ] [OBJECT RECOGNITION]... 5.51-5.60 11.1 INTRODUCTION... 5.52 11.2 PATTERNS AND PATTERNS CLASSES... 5.52 11.3 RECOGNITION BASED ON DECISION-THEORETIC METHODS... 5.56 11.3.1 Matching... 5.57 11.3.1.1 Minimum Distance Classifier... 5.57 11.3.1.2 Matching by Correlation... 5.59