Obsolete Product(s) - Obsolete Product(s)

Similar documents
TS mW Stereo Headphone Amplifier. Description. Applications. Order Codes

TS488 TS489. Pop-free 120 mw stereo headphone amplifier. Description. Features. Applications. TS488IST - MiniSO-8

RAIL TO RAIL OUTPUT 1W AUDIO POWER AMPLIFIER WITH STANDBY MODE ACTIVE LOW. Standby. Bypass VIN- Standby. Bypass V IN- STANDBY BYPASS V IN+

LM101A-LM201A LM301A SINGLE OPERATIONAL AMPLIFIERS

TEB1033 TEF1033-TEC1033

TSM100 SINGLE OPERATIONAL AMPLIFIER AND SINGLE COMPARATOR

Non-inverting input 1. Part Number Temperature Range Package Packing Marking. 4558C MC4558CPT TSSOP8 Tape & Reel MC4558IN

TSM106. Dual Operational Amplifier and Voltage Reference. Operational Amplifier: Voltage Reference: PIN CONNECTIONS (top view) DESCRIPTION ORDER CODES

UA748 PRECISION SINGLE OPERATIONAL AMPLIFIER

LF147 - LF247 LF347 WIDE BANDWIDTH QUAD J-FET OPERATIONAL AMPLIFIERS

TSV321-TSV358-TSV324. General Purpose, Input/Output Rail-to-Rail Low Power Operational Amplifiers. Description. Applications

LF151 LF251 - LF351 WIDE BANDWIDTH SINGLE J-FET OPERATIONAL AMPLIFIER

UA741 GENERAL PURPOSE SINGLE OPERATIONAL AMPLIFIER

TSM103/A DUAL OPERATIONAL AMPLIFIER AND VOLTAGE REFERENCE

Part Number Temperature Range Package Packing Marking. DIP14 Tube LM2902N LM2902D/DT SO-14 Tube or Tape & Reel

TSM104W/A QUAD OPERATIONAL AMPLIFIER AND PROGRAMMABLE VOLTAGE REFERENCE OPERATIONAL AMPLIFIERS

TS931ILT/AILT/BILT SOT23-5L Tape & Reel

LM158,A-LM258,A LM358,A

TL081 TL081A - TL081B

TL074 TL074A - TL074B

TS982. Wide bandwidth dual bipolar operational amplifier. Features. Applications. Description

TDA7231A 1.6W AUDIO AMPLIFIER OPERATING VOLTAGE 1.8 TO 15 V LOW QUIESCENT CURRENT HIGH POWER CAPABILITY LOW CROSSOVER DISTORTION SOFT CLIPPING

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s)

TL061 TL061A - TL061B

MC33078 LOW NOISE DUAL OPERATIONAL AMPLIFIER

TS522. Precision low noise dual operational amplifier. Features. Description

TL082 TL082A - TL082B

Inverting Input 1. Non-inverting Input 1

Obsolete Product(s) - Obsolete Product(s)

TL062 TL062A - TL062B

MC33172 MC Low power dual bipolar operational amplifiers. Features. Description

Macromodels User Manual

OPERATIONAL AMPLIFIERS

TDA W Hi-Fi AUDIO POWER AMPLIFIER

LF253, LF353. Wide bandwidth dual JFET operational amplifiers. Features. Description

MC Low noise quad operational amplifier. Features. Description

1.8 V input/output, rail-to-rail, low power operational amplifiers. Reference. TS185x TS1851 TS1852 TS1854. TS185xA TS1851A TS1852A TS1854A

LF253 LF353. Wide bandwidth dual JFET operational amplifiers. Features. Description

TL064 TL064A - TL064B

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s)

TSL channel buffers for TFT-LCD panels. Features. Application. Description

L2720/2/4 LOW DROP DUAL POWER OPERATIONAL AMPLIFIERS

TL081 TL081A - TL081B

. VERY LOW DISTORTION . AUTOMATIC QUIESCENT CURRENT TDA W HI-FI DUAL AUDIO DRIVER. WIDE SUPPLY VOLTAGE RANGE : 20 TO 90 V.

TS924 RAIL TO RAIL HIGH OUTPUT CURRENT QUAD OPERATIONAL AMPLIFIER

Obsolete Product(s) - Obsolete Product(s)

TS834 MICROPOWER VOLTAGE SUPERVISOR RESET ACTIVE LOW OR HIGH INTEGRATED TIMER

TL084 TL084A - TL084B

TDA7495S 11W +11W AMPLIFIER

TS HIGH THERMAL STABILITY MICROPOWER SHUNT VOLTAGE REFERENCE

TL071 TL071A - TL071B

Obsolete Product(s) - Obsolete Product(s)

TDA W STEREO AMPLIFIER WITH MUTE & ST-BY

LMV321-LMV358-LMV324. Low cost low power input/output rail-to-rail operational amplifiers. Features. Applications. Description LMV321ILT (SOT23-5)

TDA W MONO CLASS-D AMPLIFIER 18W OUTPUT POWER:

TSH300 Ultra Low-Noise High-Speed Operational Amplifier Pin Connections (top view) + - Description Applications Order Codes OUT

TDA7269A W STEREO AMPLIFIER WITH MUTE & ST-BY

MC4558 WIDE BANDWIDTH DUAL BIPOLAR OPERATIONAL AMPLIFIERS. INTERNALLY COMPENSATED SHORT CIRCUIT PROTECTION GAIN AND PHASE MATCH BETWEEN

L272 DUAL POWER OPERATIONAL AMPLIFIERS

TDA W AUDIO AMPLIFIER

Obsolete Product(s) - Obsolete Product(s)

TS27L4. Very low power precision CMOS quad operational amplifiers. Features. Description

TSH24 HIGH PERFORMANCE QUAD BIPOLAR OPERATIONAL AMPLIFIER

TDA W MONO CLASS-D AMPLIFIER 1 FEATURES 2 DESCRIPTION. Figure 1. Package 25W OUTPUT POWER:

MC MC35171 LOW POWER SINGLE BIPOLAR OPERATIONAL AMPLIFIERS

Obsolete Product(s) - Obsolete Pr

TDA W STEREO AMPLIFIER WITH MUTING

L165 3A POWER OPERATIONAL AMPLIFIER

LM248, LM348. Four UA741 quad bipolar operational amplifiers. Description. Features

TDA7241B 20W BRIDGE AMPLIFIER FOR CAR RADIO

TDA7233 TDA7233D 1W AUDIO AMPLIFIER WITH MUTE

TDA7263M W STEREO AMPLIFIER WITH MUTING

LM4808 Dual 105 mw Headphone Amplifier

TDA1905 5W AUDIO AMPLIFIER WITH MUTING

Obsolete Product(s) - Obsolete Product(s)

TDA7240AV 20W BRIDGE AMPLIFIER FOR CAR RADIO

Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) STG3684

LMV321, LMV358, LMV324

STG719 LOW VOLTAGE 4Ω SPDT SWITCH

Obsolete Product(s) - Obsolete Product(s)

TSH110-TSH111-TSH112-TSH113-TSH114


QUAD BILATERAL SWITCH FOR TRANSMISSION OR MULTIPLEXING OF ANALOG OR DIGITAL SIGNALS

Part number Temperature range Package Packaging Marking. FC9 with back -40 C, +85 C. coating. TS4994EIJT Lead free flip-chip9 A94

Obsolete Product(s) - Obsolete Product(s)

TEB1033 TEF1033-TEC1033

ST755 ADJUSTABLE INVERTING NEGATIVE OUTPUT CURRENT MODE PWM REGULATORS

TSV611, TSV611A, TSV612, TSV612A

. 2 SEPARATE STANDBY : REDUCED. . HIGH SPEED : 150MHz - 110V/µs UNITY GAIN STABILITY LOW OFFSET VOLTAGE : 3mV . HIGH VIDEO PERFORMANCES :

TDA W MONO AMPLIFIER WITH MUTE/ST-BY

L2750 DUAL LOW DROP HIGH POWER OPERATIONAL AMPLIFIER

DIP14 Tube LM2901N LM2901D/LM2901DT SO-14 Tube or Tape & Reel

TSV6390, TSV6390A, TSV6391, TSV6391A

A W CLASS AB BTL AUDIO POWER AMPLIFIER EXTERNAL GAIN CONFIGURATION CAPABILITY

LDRxxyy VERY LOW DROP DUAL VOLTAGE REGULATOR

74V2G66STR DUAL BILATERAL SWITCH

Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) TDA7297D 10W+10W DUAL BRIDGE AMPLIFIER 1 FEATURES 2 DESCRIPTION

TDA W Hi-Fi AUDIO AMPLIFIER

Transcription:

TS486 TS487 mw STEREO HEADPHONE AMPLIFIER WITH STANDBY MODE OPERATING FROM to 5.5V STANDBY MODE ACTIVE LOW (TS486) or HIGH (TS487) OUTPUT POWER: 2mW @5V, 38mW @3.3V into 6Ω with.% THD+N max (khz) LOW CURRENT CONSUMPTION: 2.5mA max High Signal-to-Noise ratio: 3dB(A) at 5V High Crosstalk immunity: 83dB (F=kHz) PSRR: 58 db (F=kHz), inputs grounded ON/OFF click reduction circuitry Unity-Gain Stable SHORT CIRCUIT LIMITATION Available in SO8, MiniSO8 & DFN 3x3mm DESCRIPTION The TS486/7 is a dual audio power amplifier capable of driving, in single-ended mode, either a 6 or a 32Ω stereo headset. Capable of descending to low voltages, it delivers up to 9mW per channel (into 6Ω loads) of continuous average power with.3% THD+N in the audio bandwitdth from a 5V power supply. An externally-controlled standby mode reduces the supply current to na (typ.). The unity gain stable TS486/7 can be configured by external gain-setting resistors or used in a fixed gain version. APPLICATIONS Headphone Amplifier Mobile phone, PDA, computer motherboard High end TV, portable audio player ORDER CODE Part Temperature Package Number Range: I D S Q Gain Marking TS486 external TS486I TS487 external TS487I TS486 external K86A TS486- tba tba x/db K86B TS486-2 tba tba x2/6db K86C -4, +85 C TS486-4 tba tba x4/2db K86D TS487 external K87A TS487- tba tba x/db K87B TS487-2 tba tba x2/6db K87C TS487-4 tba tba x4/2db K87D MiniSO & DFN only available in Tape & Reel with T suffix, SO is available in Tube (D) and in Tape & Reel (DT) PIN CONNECTIONS (top view) TS486IDT: SO8, TS486IST, TS486-IST, TS486-2IST, TS486-4IST: MiniSO8 OUT () VIN () BYPASS GND TS486-IQT, TS486-IQT, TS486-2IQT, TS486-4IQT: DFN8 OUT () VIN () BYPASS GND 2 3 4 8 7 6 5 Vcc OUT (2) VIN (2) SHUTDOWN TS487IDT: SO8, TS487IST, TS487-IST, TS487-2IST, TS487-4IST: MiniSO8 OUT () VIN () BYPASS GND TS487-IQT, TS487-IQT, TS487-2IQT, TS487-4IQT: DFN8 OUT () VIN () BYPASS GND 2 3 4 2 3 4 8 7 6 5 8 7 6 5 VCC OUT (2) VIN (2) SHUTDOWN VCC OUT (2) VIN (2) SHUTDOWN 2 3 4 8 7 6 5 Vcc OUT (2) VIN (2) SHUTDOWN June 3 /3

ABSOLUTE MAXIMUM RATINGS Symbol Parameter Value Unit V CC Supply voltage ) 6 V V i Input Voltage -.3v to V CC +.3v V T stg Storage Temperature -65 to +5 C T j Maximum Junction Temperature 5 C R thja Pd Thermal Resistance Junction to Ambient SO8 MiniSO8 DFN8 Power Dissipation 2) SO8 MiniSO8 DFN8 ESD Human Body Model (pin to pin): TS486, TS487 3).5 kv ESD Machine Model - 2pF - 24pF (pin to pin) V Latch-up Latch-up Immunity (All pins) ma Lead Temperature (soldering, sec) 25 C Output Short-Circuit to Vcc or GND continous 4). All voltage values are measured with respect to the ground pin. 2. Pd has been calculated with, Tjunction = 5 C. 3. TS487 stands.5kv on all pins except standby pin which stands KV. 4. Attention must be paid to continous power dissipation (V DD x 3mA). Exposure of the IC to a short circuit for an extended time period is dramatically reducing product life expectancy. OPERATING CONDITIONS Symbol Parameter Value Unit V CC Supply Voltage 2 to 5.5 V R L Load Resistor 6 Ω T oper Operating Free Air Temperature Range -4 to + 85 C C L Load Capacitor R L = 6 to Ω R L > Ω 4 pf V STB Standby Voltage Input TS486 ACTIVE / TS487 in STANDBY TS486 in STANDBY / TS487 ACTIVE 75 25 7.7.58.79.5 V STB V CC GND V STB.4 ) R THJA Thermal Resistance Junction to Ambient SO8 MiniSO8 DFN8 2). The minimum current consumption (I STANDBY ) is guaranteed at GND (TS486) or V CC (TS487) for the whole temperature range. 2. When mounted on a 4-layer PCB. 5 9 4 C/W W V C/W 2/3

FIXED GAIN VERSION SPECIFIC ELECTRICAL CHARACTERISTICS V CC from +5V to +2V, GND = V, T amb = 25 C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit R IN,2 Input Resistance ) kω G Gain value for Gain TS486/TS487- Gain value for Gain TS486/TS487-2 Gain value for Gain TS486/TS487-4 db 6dB 2dB db. See figure 3 to establish the value of Cin vs. -3dB cut off frequency. APPLICATION COMPONENTS INFORMATION Components R IN,2 TYPICAL APPLICATION SCHEMATICS Functional Description Inverting input resistor which sets the closed loop gain in conjunction with R FEED. This resistor also forms a high pass filter with C IN (fc = / (2 x Pi x R IN x C IN )). Not needed in fixed gain versions. C IN,2 Input coupling capacitor which blocks the DC voltage at the amplifier s input terminal. Feedback resistor which sets the closed loop gain in conjunction with R IN. R FEED,2 A V = Closed Loop Gain= -R FEED /R IN. Not needed in fixed gain versions. C S C B C OUT,2 Supply Bypass capacitor which provides power supply filtering. Bypass capacitor which provides half supply filtering. Output coupling capacitor which blocks the DC voltage at the load input terminal. This capacitor also forms a high pass filter with RL (fc = / (2 x Pi x R L x C OUT )). 3/3

ELECTRICAL CHARACTERISTICS V CC = +5V, GND = V, T amb = 25 C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit I CC I STANDBY Supply Current No input signal, no load.8 2.5 Standby Current No input signal, V STANDBY =GND for TS486, R L =32Ω No input signal, V STANDBY =Vcc for TS487, R L =32Ω ma na V IO Input Offset Voltage (V ICM = V CC /2) mv I IB Input Bias Current (V ICM = V CC /2) ) P O THD + N Output Power THD+N =.% Max, F = khz, R L = 32Ω THD+N = % Max, F = khz, R L = 32Ω THD+N =.% Max, F = khz, R L = 6Ω THD+N = % Max, F = khz, R L = 6Ω Total Harmonic Distortion + Noise (A v =-) R L = 32Ω, P out = 6mW, Hz F khz R L = 6Ω, P out = 9mW, Hz F khz 9 na PSRR Power Supply Rejection Ratio, inputs grounded 2) (A v =-), RL>=6Ω, C B =µf, F = khz, Vripple = mvpp 53 58 db I O Max Output Current THD +N %, R L = 6Ω connected between out and V CC /2 6 5 ma V O SNR Crosstalk Output Swing V OL : R L = 32Ω V OH : R L = 32Ω V OL : R L = 6Ω V OH : R L = 6Ω Signal-to-Noise Ratio (A weighted, A v =-) 2) (R L = 32Ω, THD +N <.4%, Hz F khz) Channel Separation, R L = 32Ω, A v =- F = khz F = Hz to khz Channel Separation, R L = 6Ω, A v =- F = khz F = Hz to khz C I Input Capacitance pf GBP Gain Bandwidth Product (R L = 32Ω). MHz SR Slew Rate, Unity Gain Inverting (R L = 6Ω).4 V/µs. Only for external gain version. 2. Guaranteed by design and evaluation. 6 95 4.45 4.2 64 65 2 8.3.3.45 4.52.6 4.35.5.7 mw % 8 3 db 83 79 db 8 72 V 4/3

ELECTRICAL CHARACTERISTICS V CC = +3.3V, GND = V, T amb = 25 C (unless otherwise specified) ) Symbol Parameter Min. Typ. Max. Unit I CC I STANDBY Supply Current No input signal, no load.8 2.5 Standby Current No input signal, V STANDBY =GND for TS486, R L =32Ω No input signal, V STANDBY =Vcc for TS487, R L =32Ω ma na V IO Input Offset Voltage (V ICM = V CC /2) mv I IB Input Bias Current (V ICM = V CC /2) 2) P O THD + N PSRR I O V O SNR Crosstalk Output Power THD+N =.% Max, F = khz, R L = 32Ω THD+N = % Max, F = khz, R L = 32Ω THD+N =.% Max, F = khz, R L = 6Ω THD+N = % Max, F = khz, R L = 6Ω Total Harmonic Distortion + Noise (A v =-) R L = 32Ω, P out = 6mW, Hz F khz R L = 6Ω, P out = 35mW, Hz F khz Power Supply Rejection Ratio, inputs grounded 3) (A v =-), RL>=6Ω, C B =µf, F = khz, Vripple = mvpp Max Output Current THD +N %, R L = 6Ω connected between out and V CC /2 Output Swing V OL : R L = 32Ω V OH : R L = 32Ω V OL : R L = 6Ω V OH : R L = 6Ω Signal-to-Noise Ratio (A weighted, A v =-) 3) (R L = 32Ω, THD +N <.4%, Hz F khz) Channel Separation, R L = 32Ω, A v =- F = khz F = Hz to khz Channel Separation, R L = 6Ω, A v =- F = khz F = Hz to khz. All electrical values are guaranted with correlation measurements at 2V and 5V. 2. Only for external gain version. 3. Guaranteed by design and evaluation. 23 36 9 na 26 28 38 42.3.3 mw % 53 58 db 64 75 ma 2.85 2.68.3 3.45 2.85.38.52 8 98 db C I Input Capacitance pf GBP Gain Bandwidth Product (R L = 32Ω). MHz SR Slew Rate, Unity Gain Inverting (R L = 6Ω).4 V/µs 8 76 77 69 V db 5/3

ELECTRICAL CHARACTERISTICS V CC = +2.5V, GND = V, T amb = 25 C (unless otherwise specified) ) Symbol Parameter Min. Typ. Max. Unit I CC I STANDBY Supply Current No input signal, no load.7 2.5 Standby Current No input signal, V STANDBY =GND for TS486, R L =32Ω No input signal, V STANDBY =Vcc for TS487, R L =32Ω ma na V IO Input Offset Voltage (V ICM = V CC /2) mv I IB Input Bias Current (V ICM = V CC /2) 2) P O THD + N PSRR I O V O SNR Crosstalk Output Power THD+N =.% Max, F = khz, R L = 32Ω THD+N = % Max, F = khz, R L = 32Ω THD+N =.% Max, F = khz, R L = 6Ω THD+N = % Max, F = khz, R L = 6Ω Total Harmonic Distortion + Noise (A v =-) R L = 32Ω, P out = mw, Hz F khz R L = 6Ω, P out = 6mW, Hz F khz Power Supply Rejection Ratio, inputs grounded 3) (A v =-), RL>=6Ω, C B =µf, F = khz, Vripple = mvpp Max Output Current THD +N %, R L = 6Ω connected between out and V CC /2 Output Swing V OL : R L = 32Ω V OH : R L = 32Ω V OL : R L = 6Ω V OH : R L = 6Ω Signal-to-Noise Ratio (A weighted, A v =-) 3) (R L = 32Ω, THD +N <.4%, Hz F khz) Channel Separation, R L = 32Ω, A v =- F = khz F = Hz to khz Channel Separation, R L = 6Ω, A v =- F = khz F = Hz to khz. All electrical values are guaranted with correlation measurements at 2V and 5V. 2. Only for external gain version. 3. Guaranteed by design and evaluation. 2.5 7.5 9 na 3 4 2 22.3.3 mw % 53 58 db 45 56 ma 2.4.97.25 2.25.35 2.5.32.45 8 95 db C I Input Capacitance pf GBP Gain Bandwidth Product (R L = 32Ω). MHz SR Slew Rate, Unity Gain Inverting (R L = 6Ω).4 V/µs 8 76 77 69 V db 6/3

ELECTRICAL CHARACTERISTICS V CC = +2V, GND = V, T amb = 25 C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit I CC I STANDBY Supply Current No input signal, no load.7 2.5 Standby Current No input signal, V STANDBY =GND for TS486, R L =32Ω No input signal, V STANDBY =Vcc for TS487, R L =32Ω ma na V IO Input Offset Voltage (V ICM = V CC /2) mv I IB Input Bias Current (V ICM = V CC /2) ) P O THD + N Output Power THD+N =.% Max, F = khz, R L = 32Ω THD+N = % Max, F = khz, R L = 32Ω THD+N =.3% Max, F = khz, R L = 6Ω THD+N = % Max, F = khz, R L = 6Ω Total Harmonic Distortion + Noise (A v =-) R L = 32Ω, P out = 6.5mW, Hz F khz R L = 6Ω, P out = 8mW, Hz F khz 9 na PSRR Power Supply Rejection Ratio, inputs grounded 2) (A v =-), RL>=6Ω, C B =µf, F = khz, Vripple = mvpp 52 57 db I O Max Output Current THD +N %, R L = 6Ω connected between out and V CC /2 33 4 ma V O SNR Crosstalk Output Swing V OL : R L = 32Ω V OH : R L = 32Ω V OL : R L = 6Ω V OH : R L = 6Ω Signal-to-Noise Ratio (A weighted, A v =-) 2) (R L = 32Ω, THD +N <.4%, Hz F khz) Channel Separation, R L = 32Ω, A v =- F = khz F = Hz to khz Channel Separation, R L = 6Ω, A v =- F = khz F = Hz to khz C I Input Capacitance pf GBP Gain Bandwidth Product (R L = 32Ω). MHz SR Slew Rate, Unity Gain Inverting (R L = 6Ω).4 V/µs. Only for external gain version. 2. Guaranteed by design and evaluation. 7 9.5.67.53 8 9 2 3.3.3.24.73.33.63.29.4 mw % 8 93 db 8 76 db 77 69 V 7/3

Index of Graphs Description Figure Page Common Curves Open Loop Gain and Phase vs Frequency to 9 to Current Consumption vs Power Supply Voltage Current Consumption vs Standby Voltage 2 to 7 to Output Power vs Power Supply Voltage 8 to9 to 2 Output Power vs Load Resistor to 23 2 Power Dissipation vs Output Power 24 to 27 2 to 3 Power Derating vs Ambiant Temperature 28 3 Output Voltage Swing vs Supply Voltage 29 3 Low Frequency Cut Off vs Input Capacitor for fixed gain versions 3 3 Curves With db Gain Setting (Av=-) THD + N vs Output Power 3 to 39 4 to 5 THD + N vs Frequency 4 to 42 5 Crosstalk vs Frequency 43 to 48 6 Signal to Noise Ratio vs Power Supply Voltage 49 to 5 7 PSRR vs Frequency 5 to 56 7 to 8 Curves With 6dB Gain Setting (Av=-2) THD + N vs Output Power 57 to 65 9 to THD + N vs Frequency 66 to 68 Crosstalk vs Frequency 69 to 72 2 Signal to Noise Ratio vs Power Supply Voltage 73 to 74 2 PSRR vs Frequency 75 to 79 22 Curves With 2dB Gain Setting (Av=-4) THD + N vs Output Power 8 to 88 22 to 24 THD + N vs Frequency 89 to 9 24 Crosstalk vs Frequency 92 to 95 24 Signal to Noise Ratio vs Power Supply Voltage 96 to 97 25 PSRR vs Frequency 98 to 2 26 8/3

Fig. : Open Loop Gain and Phase vs Frequency Fig. 2: Open Loop Gain and Phase vs Frequency Gain (db) 8 6 4 - Phase Gain Vcc = 5V ZL = 6Ω -4 -. Frequency (khz) Fig. 3: Open Loop Gain and Phase vs Frequency Gain (db) 8 6 4 - Fig. 5: Open Loop Gain and Phase vs Frequency Gain (db) 8 6 4-4 -. Frequency (khz) 8 6 4 - Phase Phase Gain Gain Vcc = 2V ZL = 6Ω Vcc = 5V ZL = 32Ω 8 6 4 8 6 4-4 -. Frequency (khz) 8 6 4 8 6 4 8 6 4 Phase (Deg) Phase (Deg) Phase (Deg) Gain (db) 8 6 4 - -4 -. Frequency (khz) Fig. 4: Open Loop Gain and Phase vs Frequency Gain (db) 8 6 4 - Phase Gain Vcc = 5V ZL = 6Ω+4pF Vcc = 2V ZL = 6Ω+4pF Fig. 6: Open Loop Gain and Phase vs Frequency 8 6 4-4 -. Frequency (khz) Gain (db) 8 6 4 - Phase Phase Gain Gain Vcc = 5V ZL = 32Ω+4pF 8 6 4 8 6 4-4 -. Frequency (khz) 8 6 4 8 6 4 8 6 4 Phase (Deg) Phase (Deg) Phase (Deg) 9/3

Fig. 7: Open Loop Gain and Phase vs Frequency Fig. 8: Open Loop Gain and Phase vs Frequency Gain (db) 8 6 4 - Phase Gain Vcc = 2V ZL = 32Ω -4 -. Frequency (khz) Fig. 9: Open Loop Gain and Phase vs Frequency Gain (db) 8 6 4 - Fig. : Current Consumption vs Power Supply Voltage 8 6 4-4 -. Frequency (khz) Current Consumption (ma) 2..5..5 Phase No load Ta=85 C Gain Ta=25 C Vcc = 5V RL = 6Ω Ta=-4 C 8 6 4 8 6 4. 2 3 4 5 Power Supply Voltage (V) 8 6 4 Phase (Deg) Phase (Deg) Gain (db) 8 6 4 - -4 -. Frequency (khz) Fig. : Open Loop Gain and Phase vs Frequency Gain (db) 8 6 4 - Phase Gain Vcc = 2V ZL = 32Ω+4pF Vcc = 2V RL = 6Ω Fig. 2: Current Consumption vs Standby Voltage 8 6 4-4 -. Frequency (khz) Current Consumption (ma) 2..5. Phase Gain Ta=-4 C Ta=25 C 8 6 4 8 6 4.5 TS486 Vcc = 5V No load. 2 3 4 5 Standby Voltage (V) Ta=85 C 8 6 4 Phase (Deg) Phase (Deg) /3

Fig. 3: Current Consumption vs Standby Voltage Fig. 4: Current Consumption vs Standby Voltage 2. 2. Ta=85 C Current Consumption (ma).5. Ta=-4 C Ta=25 C Ta=85 C.5 TS486 Vcc = 3.3V No load. 2 3 Standby Voltage (V) Fig. 5: Current Consumption vs Standby Voltage Current Consumption (ma) 2.5 2..5. Ta=85 C Ta=25 C Ta=-4 C.5 TS487 Vcc = 5V No load. 2 3 4 5 Standby Voltage (V) Fig. 7: Current Consumption vs Standby Voltage Current Consumption (ma) 2..5. Ta=85 C Ta=25 C.5 Ta=-4 C TS487 Vcc = 2V No load. 2 Standby Voltage (V) Current Consumption (ma).5. Ta=25 C.5 Ta=-4 C TS486 Vcc = 2V No load. 2 Standby Voltage (V) Fig. 6: Current Consumption vs Standby Voltage Current Consumption (ma) 2..5. Ta=85 C Ta=25 C Ta=-4 C.5 TS487 Vcc = 3.3V No load. 2 3 Standby Voltage (V) Fig. 8: Output Power vs Power Supply Voltage Output power (mw) 75 5 25 75 5 25 RL = 6Ω F = khz BW < 25kHz THD+N=% THD+N=% THD+N=.% 2. 2.5 3. 3.5 4. 4.5 5. 5.5 Vcc (V) /3

Fig. 9: Output Power vs Power Supply Voltage Fig. : Output Power vs Load Resistor Output power (mw) 75 5 25 RL = 32Ω F = khz BW < 25kHz THD+N=% THD+N=% THD+N=.% 2. 2.5 3. 3.5 4. 4.5 5. 5.5 Vcc (V) Fig. 2: Output Power vs Load Resistor Output power (mw) 7 6 5 4 3 THD+N=.% THD+N=% Vcc = 3.3V F = khz BW < 25kHz THD+N=% 8 6 24 32 4 48 56 64 Load Resistance ( ) Fig. 23: Output Power vs Load Resistor Output power (mw) 25 5 5 THD+N=.% THD+N=% Vcc = 2V F = khz BW < 25kHz THD+N=% 8 6 24 32 4 48 56 64 Load Resistance ( ) Output power (mw) 8 6 4 8 6 4 THD+N=.% THD+N=% Vcc = 5V F = khz BW < 25kHz THD+N=% 8 6 24 32 4 48 56 64 Load Resistance ( ) Fig. 22: Output Power vs Load Resistor Output power (mw) 5 45 4 35 3 25 5 5 THD+N=.% THD+N=% Vcc = 2.5V F = khz BW < 25kHz THD+N=% 8 6 24 32 4 48 56 64 Load Resistance ( ) Fig. 24: Power Dissipation vs Output Power Power Dissipation (mw) 8 F=kHz THD+N<% 6 4 RL=6Ω 4 6 8 2/3

Fig. 25: Power Dissipation vs Output Power Fig. 26: Power Dissipation vs Output Power Power Dissipation (mw) 4 3 F=kHz THD+N<% RL=6Ω 3 4 Fig. 27: Power Dissipation vs Output Power Power Dissipation (mw) 5 5 F=kHz THD+N<% RL=6Ω 2 4 6 8 2 Fig. 29: Output Voltage Swing vs Power Supply Voltage VOH & VOL (V) 5. 4.5 4. 3.5 3. 2.5 2..5..5 RL=6Ω. 2. 2.5 3. 3.5 4. 4.5 5. Power Supply Voltage (V) Power Dissipation (mw) F=kHz THD+N<% 5 5 Fig. 28: Power Derating vs Ambiant Temperature RL=6Ω Fig. 3: Low Frequency Cut Off vs Input Capacitor for fixed gain versions. Ω Ω Ω 3/3

Fig. 3: THD + N vs Output Power Fig. 32: THD + N vs Output Power.. RL = 6Ω F = Hz Av = - BW < 22kHz Fig. 33: THD + N vs Output Power.. RL = 6Ω, F = Hz Av = -, BW < 22kHz E-3.. Output Voltage (Vrms) Fig. 35: THD + N vs Output Power RL = 32Ω F = khz Av = - BW < 25kHz... RL = 32Ω F = Hz Av = - BW < 22kHz Fig. 34: THD + N vs Output Power.. RL = 6Ω F = khz Av = - BW < 25kHz Fig. 36: THD + N vs Output Power.. E-3. RL = 6Ω, F = khz Av = -, BW < 25kHz, E-3.. Output Voltage (Vrms) 4/3

Fig. 37: THD + N vs Output Power Fig. 38: THD + N vs Output Power. RL = 6Ω F = khz Av = - BW < 25kHz Fig. 39: THD + N vs Output Power. Fig. 4: THD + N vs Frequency. RL = 6Ω, F = khz Av = -, BW < 25kHz, E-3.. Output Voltage (Vrms).. Av=- Bw < 25kHz, Po=55mW, Po=6mW. RL = 32Ω F = khz Av = - BW < 25kHz Fig. 4: THD + N vs Frequency.. RL=6Ω Av=- Bw < 25kHz, Po=85mW Fig. 42: THD + N vs Frequency.. RL=6Ω Av=- Bw < 25kHz, Po=7.5mW k, Vo=.5Vrms, Vo=.3Vrms k E-3 k 5/3

Fig. 43: Crosstalk vs Frequency Fig. 44: Crosstalk vs Frequency 8 8 ChB to ChA Crosstalk (db) 6 4 ChB to ChA ChA to ChB k Fig. 45: Crosstalk vs Frequency Crosstalk (db) 8 6 4 ChB to ChA ChA to ChB Fig. 47: Crosstalk vs Frequency Crosstalk (db) 8 6 4 RL=6Ω Pout=85mW Av=- Bw < 25kHz Pout=55mW Av=- Bw < 25kHz k Cb = 4.7µF RL=6Ω Pout=85mW Av=- ChB to ChA Bw < 25kHz k Crosstalk (db) 6 4 ChA to ChB k Fig. 46: Crosstalk vs Frequency Crosstalk (db) 8 6 4 ChB to ChA ChA to ChB Fig. 48: Crosstalk vs Frequency 8 6 4 RL=6Ω Pout=7.5mW Av=- Bw < 25kHz Pout=6mW Av=- Bw < 25kHz k Crosstalk (db) Cb = 4.7µF Pout=55mW Av=- ChB to ChA Bw < 25kHz k 6/3

Fig. 49: Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (Hz to khz) Fig. 5: Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A Signal to Noise Ratio (db) 4 Av = - 2 THD+N <.4% 98 96 94 92 RL=6Ω RL=6Ω 9 2. 2.5 3. 3.5 4. 4.5 5. Power Supply Voltage (V) Fig. 5: PSRR vs Power Supply Voltage - - -3-4 -5-6 -7-8 Vripple = mvpp Av = - Input = grounded RL >= 6Ω Vcc = 5V, 3.3V & 2.5V Vcc = 2V Fig. 53: PSRR vs Input Capacitor - - -3-4 -5-6 -7 Cin = µf, 2nF Cin = nf Vripple = mvpp Av = -, Vcc = 5V Input = grounded, Rin = kω RL >= 6Ω Signal to Noise Ratio (db) 4 Av = - 2 THD+N <.4% 98 96 94 92 RL=6Ω RL=6Ω 9 2. 2.5 3. 3.5 4. 4.5 5. Power Supply Voltage (V) Fig. 52: PSRR vs Bypass Capacitor - - -3-4 -5-6 -7-8 Cb = 4.7µF Vripple = mvpp Av = - Input = grounded Vcc = 5V RL >= 6Ω Cb = 2.2µF Fig. 54: PSRR vs Output Capacitor - - -3-4 -5-6 -7-8 Cout = 47µF Cout = 2µF Vripple = mvpp Av = -, Vcc = 5V Input = grounded, RL = 6Ω RL >= 6Ω 7/3

Fig. 55: PSRR vs Output Capacitor Fig. 56: PSRR vs Power Supply Voltage - - -3-4 -5 Cout = 47µF Vripple = mvpp Av = -, Vcc = 5V Input = grounded, RL = 32Ω RL >= 6Ω - - -3-4 -5 Vripple = mvpp Av = - Input = floating RL >= 6Ω Vcc = 2V -6 Cout = µf -6-7 -7-8 -8 Vcc = 5V, 3.3V & 2.5V 8/3

Fig. 57: THD + N vs Output Power Fig. 58: THD + N vs Output Power. RL = 6Ω F = Hz Av = -2 BW < 22kHz. RL = 32Ω F = Hz Av = -2 BW < 22kHz. Fig. 59: THD + N vs Output Power.. RL = 6Ω, F = Hz Av = -2, BW < 22kHz E-3.. Output Voltage (Vrms) Fig. 6: THD + N vs Output Power RL = 32Ω F = khz Av = -2 BW < 25kHz.. Fig. 6: THD + N vs Output Power.. RL = 6Ω F = khz Av = -2 BW < 25kHz Fig. 62: THD + N vs Output Power... RL = 6Ω, F = khz Av = -2, BW < 25kHz, E-3.. Output Voltage (Vrms) 9/3

Fig. 63: THD + N vs Output Power Fig. 64: THD + N vs Output Power RL = 6Ω F = khz Av = -2 BW < 25kHz RL = 32Ω F = khz Av = -2 BW < 25kHz.. Fig. 65: THD + N vs Output Power.. RL = 6Ω, F = khz Av = -2, BW < 25kHz, E-3.. Output Voltage (Vrms) Fig. 67: THD + N vs Frequency. Av=-2 Bw < 25kHz, Po=6mW Fig. 66: THD + N vs Frequency.. RL=6Ω Av=-2 Bw < 25kHz, Po=7.5mW Fig. 68: THD + N vs Frequency.., Po=85mW k RL=6Ω Av=-2 Bw < 25kHz, Vo=.3Vrms, Vo=.5Vrms., Po=55mW k E-3 k /3

Fig. 69: Crosstalk vs Frequency Fig. 7: Crosstalk vs Frequency 8 ChB to ChA 8 ChB to ChA Crosstalk (db) 6 4 ChA to ChB k Fig. 7: Crosstalk vs Frequency Crosstalk (db) 8 6 4 ChB to ChA ChA to ChB RL=6Ω Pout=85mW Av=-2 Bw < 25kHz Pout=55mW Av=-2 Bw < 25kHz k Fig. 73: Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (Hz to khz) Signal to Noise Ratio (db) 98 96 94 92 9 88 86 84 Av = -2 THD+N <.4% RL=6Ω RL=6Ω 82 2. 2.5 3. 3.5 4. 4.5 5. Power Supply Voltage (V) Crosstalk (db) 6 4 ChA to ChB k Fig. 72: Crosstalk vs Frequency Crosstalk (db) 8 6 4 ChB to ChA ChA to ChB RL=6Ω Pout=7.5mW Av=-2 Bw < 25kHz Pout=6mW Av=-2 Bw < 25kHz k Fig. 74: Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A 4 2 98 96 94 92 9 88 86 84 Av = -2 THD+N <.4% Signal to Noise Ratio (db) RL=6Ω RL=6Ω 82 2. 2.5 3. 3.5 4. 4.5 5. Power Supply Voltage (V) 2/3

Fig. 75: PSRR vs Power Supply Voltage Fig. 76: PSRR vs Bypass Capacitor - - -3-4 -5-6 -7 Vripple = mvpp Av = -2 Input = grounded RL >= 6Ω Vcc = 5V, 3.3V & 2.5V Vcc = 2V Fig. 77: PSRR vs Input Capacitor - - -3-4 -5-6 -7 Cin = µf, 2nF Cin = nf Vripple = mvpp Av = -2, Vcc = 5V Input = grounded, Rin = kω RL >= 6Ω Fig. 79: PSRR vs Output Capacitor - - -3-4 -5 Cout = 47µF Vripple = mvpp Av = -2, Vcc = 5V Input = grounded, RL = 32Ω RL >= 6Ω - - -3-4 -5-6 -7 Cb = 4.7µF Vripple = mvpp Av = -2 Input = grounded Vcc = 5V RL >= 6Ω Cb = 2.2µF Fig. 78: PSRR vs Output Capacitor - - -3-4 -5-6 -7 Cout = 47µF Cout = 2µF Vripple = mvpp Av = -2, Vcc = 5V Input = grounded, RL = 6Ω RL >= 6Ω Fig. 8: THD + N vs Output Power RL = 6Ω F = Hz Av = -4 BW < 22kHz. -6-7 Cout = µf. 22/3

Fig. 8: THD + N vs Output Power Fig. 82: THD + N vs Output Power. RL = 32Ω F = Hz Av = -4 BW < 22kHz. Fig. 83: THD + N vs Output Power. RL = 6Ω F = khz Av = -4 BW < 25kHz. Fig. 85: THD + N vs Output Power... RL = 6Ω, F = Hz Av = -4, BW < 22kHz E-3.. Output Voltage (Vrms) Fig. 84: THD + N vs Output Power. RL = 32Ω F = khz Av = -4 BW < 25kHz. Fig. 86: THD + N vs Output Power RL = 6Ω F = khz Av = -4 BW < 25kHz. RL = 6Ω, F = khz Av = -4, BW < 25kHz, E-3.. Output Voltage (Vrms). 23/3

Fig. 87: THD + N vs Output Power Fig. 88: THD + N vs Output Power RL = 32Ω F = khz Av = -4 BW < 25kHz. Fig. 89: THD + N vs Frequency. RL=6Ω Av=-4 Bw < 25kHz, Po=85mW, Po=7.5mW k Fig. 9: THD + N vs Frequency.. E-3 RL=6Ω Av=-4 Bw < 25kHz, Vo=.5Vrms, Vo=.3Vrms k.. RL = 6Ω, F = khz Av = -4, BW < 25kHz, E-3.. Output Voltage (Vrms) Fig. 9: THD + N vs Frequency.. Av=-4 Bw < 25kHz, Po=55mW, Po=6mW k Fig. 92: Crosstalk vs Frequency 8 6 4 ChB to ChA Crosstalk (db) ChA to ChB RL=6Ω Pout=85mW Av=-4 Bw < 25kHz k 24/3

Fig. 93: Crosstalk vs Frequency Fig. 94: Crosstalk vs Frequency 8 ChB to ChA 8 Crosstalk (db) 6 4 ChA to ChB k Fig. 95: Crosstalk vs Frequency Crosstalk (db) 8 6 4 ChB to ChA ChA to ChB RL=6Ω Pout=7.5mW Av=-4 Bw < 25kHz Pout=6mW Av=-4 Bw < 25kHz k Fig. 97: Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A Signal to Noise Ratio (db) Av = -4 98 96 THD+N <.4% 94 92 9 88 86 84 82 RL=6Ω RL=6Ω 8 2. 2.5 3. 3.5 4. 4.5 5. Power Supply Voltage (V) Crosstalk (db) 6 4 ChB to ChA ChA to ChB Pout=55mW Av=-4 Bw < 25kHz k Fig. 96: Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (Hz to khz) Signal to Noise Ratio (db) 98 96 94 92 9 88 86 84 82 Av = -4 THD+N <.4% RL=6Ω RL=6Ω 8 2. 2.5 3. 3.5 4. 4.5 5. Power Supply Voltage (V) Fig. 98: PSRR vs Power Supply Voltage - - -3-4 -5-6 Vripple = mvpp Av = -4 Input = grounded RL >= 6Ω Vcc = 5V, 3.3V & 2.5V Vcc = 2V 25/3

Fig. 99: PSRR vs Input Capacitor Fig. : PSRR vs Bypass Capacitor - - -3-4 -5-6 Cin = µf, 2nF Cin = nf Vripple = mvpp Av = -4, Vcc = 5V Input = grounded, Rin = kω RL >= 6Ω Fig. : PSRR vs Output Capacitor - - -3-4 -5-6 Cout = 47µF Cout = 2µF Vripple = mvpp Av = -4, Vcc = 5V Input = grounded, RL = 6Ω RL >= 6Ω - - -3-4 -5-6 Cb = 4.7µF Vripple = mvpp Av = -4 Input = grounded Vcc = 5V RL >= 6Ω Cb = 2.2µF Fig. 2: PSRR vs Output Capacitor - - -3-4 -5-6 Cout = 47µF Cout = µf Vripple = mvpp Av = -4, Vcc = 5V Input = grounded, RL = 32Ω RL >= 6Ω 26/3

APPLICATION NOTE: TS486/487 GENERAL DESCRIPTION TS486/487 is a family of dual audio amplifiers able to drive 6Ω or 32Ω headsets. Working in the 2V to 5.5V supply voltage range, they deliver mw at 5V and 2mW at 2V in a 6Ω load. An internal output current limitation, offers protection against short-circuits at the output over a limited time period. Fixed gain versions of the TS486 and TS487 including the feedback resistor and the input resistors are also proposed to reduce the number of external parts. The TS486 and TS487 exhibit a low quiescent current of typically.8ma, allowing usage in portable applications. The standby mode is selected using the SHUTDOWN input. For TS486 (respectively TS487), the device is in sleep mode when PIN 5 is connected at GND (resp. V CC ). GAIN SETTING The gain of each inverter amplifier of the TS486 and TS487 is set by the resistors R IN and R FEED. Gain LINEAR = -(R FEED /R IN ) Gain db = Log(R FEED /R IN ) Fixed gain versions TS486-n and TS487-n including R IN and R FEED are proposed to reduce external parts. LOW FREQUENCY ROLL-OFF WITH INPUT CAPACITORS The low roll-off frequency of the headphone amplifiers depends on the input capacitors C IN and C IN2 and the input resistors R IN and R IN2. The C IN capacitor in series with the input resistor R IN of the amplifier is equivalent to a first order high pass filter. Assuming that F min is the lowest frequency to be amplified (with a 3dB attenuation), the minimum value of C IN is: C IN > / (2*π*F min *R IN ) The following curve gives directly the low frequency roll-off versus the input capacitor C IN 27/3

and for various values of the input resistor R IN. frequency versus the output capacitor C OUT in µf and for the two typical 6Ω and 32Ω impedances: Low roll off frequency (Hz) The input resistance of the fixed gain version is typically kω. The following curve shows the limits of the roll off frequency depending on the min. and max. values of Rin: LOW FREQUENCY ROLL OFF WITH OUTPUT CAPACITORS The DC voltage on the outputs of the TS486/487 is blocked by the output capacitors C OUT and C OUT2. Each output capacitor C OUT in series with the resistance of the load R L is equivalent to a first order high pass filter. Assuming that F min is the lowest frequency to be amplified (with a 3dB attenuation), the minimum value of C OUT is: C OUT > / (2*π*F min *R L ) The following curve gives directly the low roll-off 28/3 Rin = kω Rin = kω Rin = kω and fixed gain versions.. Cin (µf) Ω Ω Rin = kω Ω Low roll-off frequency (Hz) RL = 32Ω C OUT ( F) DECOUPLING CAPACITOR C B The internal bias voltage at Vcc/2 is decoupled with the external capacitor C B. The TS486 and TS487 have a specified Power Supply Rejection Ratio parameter with C B = µf. A higher value of C B improves the PSRR, for example, a 4.7µF improves the PSRR by 5dB at Hz (please, refer to fig. 76 "PSRR vs Bypass Capacitor"). POP PRECAUTIONS RL = 6Ω Generally headphones are connected using a connector as a jack. To prevent a pop in the headphones when plugged in the jack, a resistor should be connected in parallel with each headphone output. This allows the capacitors Cout to be charged even when no headphone is plugged. A resistor of kω is high enough to be a negligible load, and low enough to charge the capacitors Cout in less than one second.

PACKAGE MECHANICAL DATA SO-8 MECHANICAL DATA DIM. mm. inch MIN. TYP MAX. MIN. TYP. MAX. A.35.75.53.69 A..25.4. A2..65.43.65 B.33.5.3. C.9.25.7. D 4.8 5..89.97 E 3.8 4..5.57 e.27.5 H 5.8 6..228.244 h.25.5.. L.4.27.6.5 k 8 (max.) ddd..4 623/C 29/3

PACKAGE MECHANICAL DATA 3/3

PACKAGE MECHANICAL DATA Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics 3 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom http://www.st.com 3/3