SiC di/dt. High di/dt Switching Characteristics of a SiC Schottky Barrier Diode. Kazuto Takao, Member, Tsutomu Yatsuo, Member, Kazuo Arai, Non-member

Similar documents
Numerical study on very high speed silicon PiN diode possibility for power ICs in comparison with SiC-SBD

Lecture Notes. Uncontrolled PSDs. Prepared by Dr. Oday A Ahmed Website:

Diodes (non-linear devices)

High voltage and large current dynamic test of SiC diodes and hybrid module

SiC Power Schottky Diodes in Power Factor Correction Circuits

Turn-Off Characteristics of SiC JBS Diodes

Some Key Researches on SiC Device Technologies and their Predicted Advantages

provide excellent noise immunity, short delay times and simple gate drive. The intrinsic chip gate resistance and capacitance of the APT80GA60LD40

STGW40S120DF3, STGWA40S120DF3

Super Junction MOSFET

Lecture 23 Review of Emerging and Traditional Solid State Switches

1200 V SiC Super Junction Transistors operating at 250 C with extremely low energy losses for power conversion applications

600 V, 1-40 A, Schottky Diodes in SiC and Their Applications

STGW25H120DF2, STGWA25H120DF2

APT50GS60BRDQ2(G) APT50GS60SRDQ2(G)

IXBX25N250 = 2500V = 25A 3.3V. High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor. Symbol Test Conditions Maximum Ratings

10-PZ126PA080ME-M909F18Y. Maximum Ratings

IGBT Module Sixpack MWI 15-12A7. I C25 = 30 A V CES = 1200 V V CE(sat) typ. = 2.0 V. Short Circuit SOA Capability Square RBSOA

Trench gate field-stop IGBT M series, 650 V, 15 A low-loss in a TO-220FP package. Features. Description

STGW15H120DF2, STGWA15H120DF2

Performance Comparison of SiC Schottky Diodes and Silicon Ultra Fast Recovery Diodes

Fuji SiC Hybrid Module Application Note

A SiC JFET Driver for a 5 kw, 150 khz Three-Phase Sinusoidal-Input, Sinusoidal-Output PWM Converter

Super Junction MOSFET

Features. Description. Table 1: Device summary. Order code Marking Package Packing STGW10M65DF2 G10M65DF2 TO-247 Tube

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

HiRel TM INT-A-Pak 2, PLASTIC HALF-BRIDGE IGBT MODULE

V CES = 1200V I C = Tc = 80 C. T c = 25 C 1050 T c = 80 C 875

= 25 C = 100 C = 150 C. Watts T J = 0V, I C. = 500µA, T j = 25 C) = 25 C) = 100A, T j = 15V, I C = 125 C) = 0V, T j = 25 C) 2 = 125 C) 2 = ±20V)

Hard-Switched Silicon IGBTs?

Trench gate field-stop IGBT, HB series 650 V, 40 A high speed. Features. Description

= 25 C = 110 C = 150 C. Watts T J = 0V, I C. = 1mA, T j = 25 C) = 25 C) = 35A, T j = 15V, I C = 125 C) = 0V, T j = 25 C) 2 = 125 C) 2 = ±20V)

SiC Schottky Diodes and Polyphase Buck Converters

1200 V CoolSiC Schottky Diode Generation 5: New level of system efficiency and reliability. May 2016

Symbol Parameters Test Conditions Min Typ Max Unit R thjc. Per IGBT 0.09 K/W R thjcd

ACEPACK 2 sixpack topology, 1200 V, 75 A trench gate field-stop IGBT M series, soft diode and NTC

IGBT Module Sixpack MWI 25-12A7(T) I C25 = 50 A V CES = 1200 V V CE(sat) typ. = 2.2 V. Short Circuit SOA Capability Square RBSOA

Comparison of SiC and Si Power Semiconductor Devices to Be Used in 2.5 kw DC/DC Converter

Trench gate field-stop IGBT, HB series 650 V, 40 A high speed. Features. Description

Experimental Verification of Rectifiers with SiC/GaN for Wireless Power Transfer Using a Magnetic Resonance Coupling

EXPERIMENT 5 : THE DIODE

GA200TD120U PD D. Ultra-Fast TM Speed IGBT "HALF-BRIDGE" IGBT DUAL INT-A-PAK. Features V CES = 1200V. V CE(on) typ. = 2.3V.

EMIPAK-1B PressFit Power Module Neutral Point Clamp Topology, 30 A

EXPERIMENT 5 : THE DIODE

Cree SiC Power White Paper: The Characterization of dv/dt Capabilities of Cree SiC Schottky diodes using an Avalanche Transistor Pulser

HiPerFAST TM IGBT with Diode

Diode Reverse Recovery and its Effect on Switching Losses

Enhancement Mode N-Channel Power MOSFET

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

GT50J325 GT50J325. High Power Switching Applications Fast Switching Applications. Maximum Ratings (Ta = 25 C) Thermal Characteristics

CMF20120D-Silicon Carbide Power MOSFET 1200V 80 mω Z-FeT TM MOSFET

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 27, NO. 11, NOVEMBER

GT60M323 GT60M323. Voltage Resonance Inverter Switching Application Unit: mm. Maximum Ratings (Ta = 25 C) Thermal Characteristics. Equivalent Circuit

Blocking Maximum rated values 1) Parameter Symbol Conditions 5STP 07D1800 Unit Max repetitive peak forward and reverse blocking voltage

(anode) (also: I D, I F, I T )

SKM200GAH123DKL 1200V 200A CHOPPER Module August 2011 PRELIMINARY RoHS Compliant

Analysis of Current Source PWM Inverter for Different Levels with No-Insulating Switching Device

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 12, 2017

Temperature-Dependent Characterization of SiC Power Electronic Devices

Unleash SiC MOSFETs Extract the Best Performance

IRG4PC50KD PD B INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE. Short Circuit Rated UltraFast IGBT.

IGBT with Diode IXSN 52N60AU1 V CES

Advanced Silicon Devices Applications and Technology Trends

TO-247AC Absolute Maximum Ratings

IRG4BC30FD-SPbF. Fast CoPack IGBT. n-channel. Absolute Maximum Ratings Parameter Max. Units INSULATED GATE BIPOLAR TRANSISTOR WITH HYPERFAST DIODE

Z-FeT TM Silicon Carbide MOSFET

IRG4IBC10UD INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE. UltraFast Co-Pack IGBT V CES = 600V. Features. V CE(on) typ. = 2.

10 A, 600 V short-circuit rugged IGBT

6. Explain control characteristics of GTO, MCT, SITH with the help of waveforms and circuit diagrams.

STGW60H65DFB, STGWA60H65DFB STGWT60H65DFB

Application Note AN-10B: Driving SiC Junction Transistors (SJT): Two-Level Gate Drive Concept

MG400V2YS60A MG400V2YS60A. High Power Switching Applications Motor Control Applications. Equivalent Circuit

Application Note AN-10A: Driving SiC Junction Transistors (SJT) with Off-the-Shelf Silicon IGBT Gate Drivers: Single-Level Drive Concept

Dynamic Characterization Platform

S.Tiwari, O.-M. Midtgård and T. M. Undeland Norwegian University of Science and Technology 7491 Trondheim, Norway

Analysis of circuit and operation for DC DC converter based on silicon carbide

Data Sheet GHIS040A060S A2

A Study on EMI Noise Reduction in Boost-Type PFC Circuit

Blocking Maximum rated values 1) Parameter Symbol Conditions 5STP 17H5200 Unit Max. surge peak forward and reverse blocking voltage

Resonance Analysis Focusing on Stray Inductance and Capacitance of Laminated Bus Bars

Note: The product(s) described herein should not be used for any other application.

UNISONIC TECHNOLOGIES CO., LTD

Evaluation Board for CoolSiC Easy1B half-bridge modules

C3D10065I Silicon Carbide Schottky Diode Z-Rec Rectifier

TOSHIBA Insulated Gate Bipolar Transistor Silicon N Channel IGBT GT60J323H

600V APT75GN60BDQ2 APT75GN60SDQ2 APT75GN60BDQ2G* APT75GN60SDQ2G*

Generalized Multilevel Current-Source PWM Inverter with No-Isolated Switching Devices

A study on the self turn-on phenomenon of power MOSFET induced by the turn-off operation of body diodes

IXTA02N450HV IXTT02N450HV

Research Article Silicon Carbide Emitter Turn-Off Thyristor

V CE I C (T C =100 C) V CE(sat) (T J =25 C) 1.95V. Symbol V GE I C I CM I LM I F I FM P D T L. R θ JA R θ JC

Lec (03) Diodes and Applications

Features. n-channel TO-220AB. 1

Features. n-channel TO-247AC. 1

APPLICATION NOTE ANxxxx. Understanding the Datasheet of a SiC Power Schottky Diode

V CE I C (T C =100 C) V CE(sat) (T J =25 C) 1.95V. Symbol V GE I C I CM I LM. I F to 150 I FM P D T J, T STG T L

doi: info:doi/ /ispsd

Performance Evaluation of Full SiC Switching Cell in an Interleaved Boost Converter for PV Applications

STGW30NC60WD. N-CHANNEL 30A - 600V - TO-247 Ultra FAST Switching PowerMESH IGBT. General features. Description. Internal schematic diagram

Primary MTP IGBT Power Module

Transcription:

SiC di/dt High di/dt Switching Characteristics of a SiC Schottky Barrier Diode Kazuto Takao, Member, Tsutomu Yatsuo, Member, Kazuo Arai, Non-member High di/dt switching characteristics of a commercially available silicon carbide schottky barrier diode (SiC-SBD) has been experimentally evaluated in the various di/dt values of 300 A/µs to 2500 A/µs range. Diode voltage waveforms, diode current waveforms, diode stored charges, and diode turn-off losses have been theoretically analyzed. The stored charge and the diode turn-off loss are independent ofthe forward current value, thedi/dt value, and the junction temperature. It is shown that the switching behavior of the SiC-SBD can be expressed a simple variable capacitor, the capacitance of which depends on the reverse bias voltage. The switching characteristics of the SiC-SBD also have been compared to those of a commercially available ultra-fast silicon pn diode (Si-PND). The SiC-SBD has extremely low reverse current and low stored charge compared to those of the Si-PND. The SiC-SBD can reduce the IGBT turn-on loss compared to the Si-PND especially in the high di/dt operation. pn di/dt Keywords: silicon carbide schottky barrier diode, silicon pn diode, high di/dt switching characteristics, junction capacitance 1. 21 (1) (2) W/cm 3 (3) Si Si Si SiCSi 3 10 305-8568 1-1-1 National Institute of Advanced Industrial Science and Technology, Power Electronics Research Center AIST Tsukuba Central 2, Tsukuba 305-8568 3 Si 2 SiC Si SiC (4) (5) 2 300 V 1200 V 4A 20A SiC SiC- SBD (6) (7) SiC-SBD Si-pn Si-PND (6) (7) di/dt SiC 2MHz 1MW 50 W/cm 3 (8) di/dt Si-PND di/dt L di/dt D 124 9 2004 917

SiC-SBD (6) (7) 10 A di/dt 1000 A/µs di/dt SiC-SBD di/dt SiC-SBD di/dt = 300 A/µs 2500 A/µs SiC-SBD SiC-SBD Si-PND SiC-SBD Si-PND SiC-SBD IGBT 2. SiC-SBD SDP06S60 SiC-SBD 6A 600 V Si-PND HFA08TB60 Si-PND 8A 600 V TO-220 1 SiC-SBD 1 C f L Load 80 µf 470 µh IGBT IXYS IXGH40N60C L S IGBT di/dt IGBT L S IGBT V CE Lecroy PPE2 kv I diode Pearson SiC-SBD 2877 Si-PND 2878 V diode Lecroy DXC 5100 Lecroy DA1855A Lecroy wavepro 950 I F 6A 12 A di/dt 300 A/µs 2500 A/µs C f V CC 300 VT j 25 C 150 C I F di/dt R G IGBT T j 150 C 1 Table 1. Si-PND. SiC-SBD Si-PND Basic characteristics of the SiC-SBD and the Fig. 1. 1 Schematic diagram of the experimental circuit. 918 IEEJ Trans. IA, Vol.124, No.9, 2004

SiC 3. 3 1 2 SiC-SBD I diode V diode V CE I F = 6A di/dt = 395 A/µs 1980 A/µs T j = 25 C I diode 1.0A di/dt = 395 A/µs 3.6A di/dt = 1980 A/µs di/dt V diode V CE di/dt dv/dt 3 Si-PND I diode, V diode, V CE I F = 6A di/dt = 437 A/µs 1640 A/µs T j = 25 C I diode I RRM 5.6A di/dt = 437 A/µs 19 A di/dt = 1640 A/µs SiC-SBD 5 t rr di/dt di/dt = 437 A/µs di/dt = 1640 A/µs V diode 300 V 70 V L S di/dt Si-PND di/dt I RRM SiC-SBD 2 C SBD I diode C SBD L S V diode I diode dv diode I diode = C SBD (1) dt (1) I diode V diode di/dt I diode C SBD SiC-SBD C SBD di/dt I diode V diode C SBD L S SiC Si SiC Si 2 SiC-SBD IGBT T j = 25 C Fig. 2. Waveforms of the turn off current and voltage of the SiC-SBD and the turn on voltage of the IGBT (T j = 25 C). 3 Si-PND IGBT T j = 25 C Fig. 3. Waveforms of the turn off current and voltage of the Si-PND and the turn on voltage of the IGBT (T j = 25 C). D 124 9 2004 919

(9) SiC Si I diode Si-PND 3 2 4 SiC-SBD I diode V diode V CE T j = 25 C 150 C I F = 6A di/dt = 2000 A/µs T j = 25 C T j = 150 C SiC-SBD 5 Si-PND I diode, V diode,v CE T j = 25 C 150 C I F = 6A,di/dt = 2000 A/µs T j 150 C I RRM t rr Si-PND T j = 150 C T j = 25 C V diode L S di/dt T j = 25 C 70 V T j = 150 C 50 V 3 3 6 Q C Q rr E diode IGBT E IGBT Si-PND Q rr E diode 2 SiC-SBD I diode V diode 2 4 2 SiC-SBD Q C Si-PND Q rr E diode 1 Q C SiC-SBD I diode I diode = 0 t 1 V diode = V CC t 2 SiC-SBD E diode V diode I diode t 1 t 2 7 Q C Q rr di/dt 8 E diode di/dt 7 8 Si-PND Q rr E diode di/dt I F T j SiC-SBD Q C E diode di/dt I F T j SiC-SBD Q C E diode Si-PND Q rr E diode 2 4 I diode V diode 7 8 Q C E diode Q C E diode C SBD 4 SiC-SBD IGBT T j = 25 C 150 C Fig. 4. Comparison of waveforms of the turn off current and voltage of the SiC-SBD and the turn on voltage of the IGBT at T j = 25 C and 150 C. 5 Si-PND IGBT T j = 25 C 150 C Fig. 5. Comparison of waveforms of the turn off current and voltage of the Si-PND and the turn on voltage of the IGBT at T j = 25 C and 150 C. 920 IEEJ Trans. IA, Vol.124, No.9, 2004

SiC 6 SiC-SBD Si-PND IGBT Fig. 6. Definitions of turn off characteristics of 1 the SiC-SBD, 2 thesi-pnd, and 3 a turn on characteristics of the IGBT. 9 SiC-SBD C V Q C E diode Fig. 9. C V characteristic of the SiC-SBD and comparisons of Q C and E diode between calculated values and measured values. 7 SiC-SBD Q C Si-PND Q rr di/dt Fig. 7. Dependences of di/dt of Q C of the SiC-SBD and Q rr of the Si-PND. 8 SiC-SBD Si-PND E diode di/dt Fig. 8. Dependences of di/dt of E diode of the SiC-SBD and the Si-PND. SiC-SBD C V 7 8 Q C E diode Q C E diode = V CC 9 SiC-SBD C V C Q C E diode SiC-SBD V diode I diode Q C E diode C V C V Q C E diode C SBD Q C = C SBD (V R )dv R (2) E diode = V R dq C (3) V R SiC-SBD Q C E diode SiC-SBD Q C E diode C SBD SiC-SBD Q C E diode I F di/dt C V (2) (3) Si-PND E diode SiC-SBD E diode C SBD SiC-SBD 3 4 IGBT 10 IGBT E IGBT di/dt E IGBT 6 3 V CE I F 10 % V CE V CC 5% Si-PND SiC-SBD di/dt E IGBT di/dt E IGBT Si-PND T j E IGBT SiC-SBD D 124 9 2004 921

3 2 Si-PND T j I RRM t rr SiC-SBD T j 3 5 SiC-SBD E IGBT 10 SiC-SBD E IGBT 11 di/dt Si-PND E IGBT E IGBT (Si-PND) SiC-SBD E IGBT E IGBT (SiC-SBD) % di/dt = 400 A/µs T j = 150 C SiC-SBD E IGBT 45% di/dt T j Si-PND di/dt > 1000 A/µs E diode 11 di/dt > 1000 A/µs SiC-SBD E diode SiC-SBD di/dt > 1000 A/µs di/dt E IGBT 10 E IGBT di/dt Fig. 10. Dependences of di/dt of E IGBT. 4. SiC-SBD 600 V 6A di/dt = 300 A/µs 2500 A/µs Si-PND 1 SiC-SBD Q C E diode SiC-SBD SiC-SBD 2 SiC-SBD Q C E diode I F di/dt C V 3 SiC-SBD 4 SiC-SBD E IGBT Si-PND 45% I F = 6A T j = 150 C di/dt di/dt Si-IGBT SiC-SBD Si-IGBT SiC-SBD di/dt SiC-SBD di/dt 15 9 25 16 1 20 11 E IGBT (Si-PND) E IGBT (SiC-SBD) Fig. 11. Ratios of E IGBT (Si-PND) and E IGBT (SiC- SBD). 1 E. Masada: Power Electronics in Industrial Strategy for Modern Society, PCC-Osaka 2002 (2002) 2 (2002) 3 H. Ohashi: Recent Power Devices Trend, J. IEE Japan, Vol.122, No.3, 922 IEEJ Trans. IA, Vol.124, No.9, 2004

SiC pp.168 171 (2002-3) (in Japanese),, Vol.122, No.3, pp.168 171 (2002-3) 4 SiC, 1, (2003) 5, OHM, Vol.89, No.11, pp.1 5 (2002) 6 http://www.infineon.com/ 7 http://www.cree.com/ 8 I. Takahashi: Power Converter in Near Future, 2001 National Convention Record, IEE Japan, No.4-167 (2001-3) (in Japanese), 13, No. 4-167 (2001-3) 9 SiC, 5, (2003) 1974 8 9 1999 3 2002 3 PD 1941 1 2 1963 3 GTO IGBT IC 1992 1942 6 8 1966 3 1969 4 1998 10 2003 3 D 124 9 2004 923