CCD ADVANCES IN EARTH SCIENCE CCD TM CCD CCD 0. 05% A TP732 ETM + Enhanced Thematic Mapper Plus. 4 CCD Charge Coupled Device

Similar documents
Data Quality Evaluation of ZY-1 02C Satellite

Global Land Survey 2005

NORMALIZING ASTER DATA USING MODIS PRODUCTS FOR LAND COVER CLASSIFICATION

The availability of cloud free Landsat TM and ETM+ land observations and implications for global Landsat data production

Introduction to Remote Sensing

Sources of Geographic Information

Lecture 13: Remotely Sensed Geospatial Data

MRLC 2001 IMAGE PREPROCESSING PROCEDURE

Remote Sensing for Rangeland Applications

AT-SATELLITE REFLECTANCE: A FIRST ORDER NORMALIZATION OF LANDSAT 7 ETM+ IMAGES

sensors ISSN

University of Texas at San Antonio EES 5053 Term Project CORRELATION BETWEEN NDVI AND SURFACE TEMPERATURES USING LANDSAT ETM + IMAGERY NEWFEL MAZARI

On the use of synthetic images for change detection accuracy assessment

An Introduction to Remote Sensing & GIS. Introduction

CCD Automatic Gain Algorithm Design of Noncontact Measurement System Based on High-speed Circuit Breaker

Comparing of Landsat 8 and Sentinel 2A using Water Extraction Indexes over Volta River

Important Missions. weather forecasting and monitoring communication navigation military earth resource observation LANDSAT SEASAT SPOT IRS

TEMPORAL ANALYSIS OF MULTI EPOCH LANDSAT GEOCOVER IMAGES IN ZONGULDAK TESTFIELD

Final Examination Introduction to Remote Sensing. Time: 1.5 hrs Max. Marks: 50. Section-I (50 x 1 = 50 Marks)

At-Satellite Reflectance: A First Order Normalization Of Landsat 7 ETM+ Images

A COMPARATIVE ANALYSIS OF CBERS-2 CCD AND LANDSAT-TM SATELLITE IMAGES IN VEGETATION MAPPING

An Introduction to Geomatics. Prepared by: Dr. Maher A. El-Hallaq خاص بطلبة مساق مقدمة في علم. Associate Professor of Surveying IUG

Update on Landsat Program and Landsat Data Continuity Mission

NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS

OVERVIEW OF KOMPSAT-3A CALIBRATION AND VALIDATION

High Resolution Sensor Test Comparison with SPOT, KFA1000, KVR1000, IRS-1C and DPA in Lower Saxony

Data acquisition and access for the Congo Basin

Water Body Extraction Research Based on S Band SAR Satellite of HJ-1-C

NASA Missions and Products: Update. Garik Gutman, LCLUC Program Manager NASA Headquarters Washington, DC

Satellite Remote Sensing: Earth System Observations

Several Different Remote Sensing Image Classification Technology Analysis

Sommersemester Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Fernerkundung und Waldinventur.

Separation of crop and vegetation based on Digital Image Processing

RGB colours: Display onscreen = RGB

Global Land Survey Update. Jeff Masek, NASA GSFC Rachel Headley, USGS EROS

Graphic User Interface To Preprocess Landsat TM, ETM+ And OLI Images For Hydrological Applications

Remote Sensing. Measuring an object from a distance. For GIS, that means using photographic or satellite images to gather spatial data

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011

RADIOMETRIC CALIBRATION

Introduction to image processing for remote sensing: Practical examples

REMOTE SENSING. Topic 10 Fundamentals of Digital Multispectral Remote Sensing MULTISPECTRAL SCANNERS MULTISPECTRAL SCANNERS

366 Glossary. Popular method for scale drawings in a computer similar to GIS but without the necessity for spatial referencing CEP

Remote sensing image correction

THE DECISION TREE ALGORITHM OF URBAN EXTRACTION FROM MULTI- SOURCE IMAGE DATA

Remote sensing in archaeology from optical to lidar. Krištof Oštir ModeLTER Scientific Research Centre of the Slovenian Academy of Sciences and Arts

Using IRS Products to Recover 7ETM + Defective Images

A Study on Retrieval Algorithm of Black Water Aggregation in Taihu Lake Based on HJ-1 Satellite Images

A self-adaptive Contrast Enhancement Method Based on Gradient and Intensity Histogram for Remote Sensing Images

remote sensing? What are the remote sensing principles behind these Definition

Geometric Quality Assessment of CBERS-2. Julio d Alge Ricardo Cartaxo Guaraci Erthal

Geometry perfect Radiometry unknown?

GEOMETRIC RECTIFICATION OF EUROPEAN HISTORICAL ARCHIVES OF LANDSAT 1-3 MSS IMAGERY

EXAMPLES OF TOPOGRAPHIC MAPS PRODUCED FROM SPACE AND ACHIEVED ACCURACY CARAVAN Workshop on Mapping from Space, Phnom Penh, June 2000

Introduction to Remote Sensing Part 1

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011

Using Ground Targets for Sensor On orbit Calibration Support

Earth Observations from Space U.S. Geological Survey

Airborne hyperspectral data over Chikusei

Textbook, Chapter 15 Textbook, Chapter 10 (only 10.6)

An Approach To Correct The Raw FCC Satellite Image

AN ASSESSMENT OF SHADOW ENHANCED URBAN REMOTE SENSING IMAGERY OF A COMPLEX CITY - HONG KONG

REMOTE SENSING INTERPRETATION

Landsat Products, Algorithms and Processing (MSS, TM & ETM+)

Texture Feature Extraction for Land-cover Classification of Remote Sensing Data in Land Consolidation District Using Semi-variogram

In-flight absolute calibration of an airborne wide-view multispectral imager using a reflectance-based method and its validation

Orbit Determination for CE5T Based upon GPS Data

IMAGE QUATY ASSESSMENT FOR VHR REMOTE SENSING IMAGE CLASSIFICATION

29 th Annual Louisiana RS/GIS Workshop April 23, 2013 Cajundome Convention Center Lafayette, Louisiana

Image Fusion. Pan Sharpening. Pan Sharpening. Pan Sharpening: ENVI. Multi-spectral and PAN. Magsud Mehdiyev Geoinfomatics Center, AIT

Global Land Survey Activities and Land Cover Analysis from Landsat

National Aeronautics and Space Administration. Landsat Update. Jeff Masek, NASA GSFC Jim Irons, NASA GSFC. April 3, 2012 LCLUC Meeting.

USING MULTISPECTRAL SATELLITE IMAGES FOR UP-DATING VECTOR DATA IN A GEODATABASE

Land Cover Analysis to Determine Areas of Clear-cut and Forest Cover in Olney, Montana. Geob 373 Remote Sensing. Dr Andreas Varhola, Kathry De Rego

The Principle and Simulation of Moving-coil Velocity Detector. Yong-hui ZHAO, Li-ming WANG and Xiao-ling YAN

ESTIMATION OF RADIOMETRIC CALIBRATION COEFFICIENTS OF EGYPTSAT-1 SENSOR

Introduction to Remote Sensing

2. DATA AND METHOD Data and Research Sites

GEOMETRIC PERFORMANCE COMPARISON BETWEEN THE OLI AND THE ETM+ INTRODUCTION

Comprehensive Application on Extraction of Mineral Alteration and Mapping from ETM+ Sensors and ASTER Sensors Data in Ethiopia

Improving Spatial Resolution Of Satellite Image Using Data Fusion Method

Application of Remote Sensing in the Monitoring of Marine pollution. By Atif Shahzad Institute of Environmental Studies University of Karachi

Remote Sensing. The following figure is grey scale display of SPOT Panchromatic without stretching.

REMOTE SENSING FOR FLOOD HAZARD STUDIES.

Blacksburg, VA July 24 th 30 th, 2010 Remote Sensing Page 1. A condensed overview. For our purposes

DIGITAL EARTH: BRIDGING THE SCALES FROM GLOBAL TO LOCAL FOR SUSTAINABLE DEVELOPMENT

CHAPTER 7: Multispectral Remote Sensing

Geo/SAT 2 INTRODUCTION TO REMOTE SENSING

ROSCOSMOS Agency Report. 36 th CEOS WGCV Plenary May 2013, Shanghai, China

Atmospheric Correction of SPOT5 Land Surface Imagery

White Paper. Medium Resolution Images and Clutter From Landsat 7 Sources. Pierre Missud

Remote sensing monitoring of coastline change in Pearl River estuary

Atmospheric Correction (including ATCOR)

Introduction to Remote Sensing

Module 11 Digital image processing

WGISS-42 USGS Agency Report

GE 113 REMOTE SENSING

Remote Sensing Exam 2 Study Guide

MULTI-SENSOR DATA FUSION OF VNIR AND TIR SATELLITE IMAGERY

Satellite-based Spatio-temporal Data Fusion: Current Status and its Implications. Khaled Hazaymeh, Quazi K. Hassan, and Khan R. Rahaman.

Remote Sensing of the Environment An Earth Resource Perspective John R. Jensen Second Edition

Transcription:

26 9 2011 9 ADVANCES IN EARTH SCIENCE Vol. 26 No. 9 Sep. 2011. CCD J. 2011 26 9 971-979. Liu Rui Sun Jiulin Wang Juanle et al. Data quality evaluation of chinese HJ CCD sensor J. Advances in Earth Science 2011 26 9 971-979. * CCD 1 2 2 2 2 1. 400047 2. 100101 4 CCD TM 2 CCD 1 CCD 0. 05% 2CCD TM 3CCD 4 3 2 CCD / 4CCD 4 TM TP732 A 1001-8166 2011 09-0971-09 1 3 2008 9 6 A B 4 CCD Charge Coupled Device 2 Thomson 4 Arkon-2 Enhanced Thematic Mapper Plus 2 6 IRS-P6 LISS3 CCD ETM + 1 2 * 2010-12-11 2011-07-31. * ISO 40801180 SB2007FY442 201109075. 1983- GIS. E-mail liur@ lreis. ac. cn

972 26 CCD 80% 2 100% LandSat TM Thematic Mapper 2. 2 CCD 1 TM 2 2. 1 CCD 4 CCD 4 3 2 600 ~ 800 m 5 CCD 452 ~ 518 nm 528 ~ 609 nm 626 ~ 693 nm 776 ~ 904 nm 4 5 4 CCD 1a 8 1 2009 8 12 TM 1b TM 1 ~ 4 1 25 30 m CCD 6 360 kmtm 180 km 2 CCD 2 TM LPGS 1 ~ 4 700 km 1 1 Fig. 1 1 Study area and its vegetation cover a. b. 1 25 a. Study area b. Vegetation cover of study area 1 250 000 Land cover dataset Table l 1 Basic parameters of experimental images HJ1A-CCD2 HJ1A-CCD1 HJ1B-CCD2 HJ1B-CCD1 TM ID L20000154803 154803 L20000155266 155266 L20000156526 156526 L20000157070 157070 LT51240262009224 124026 2009-08-11 2009-08-12 2009-08-13 2009-08-14 2009-08-12 UTC 03 07 52 03 08 17 03 08 18 03 32 37 02 46 48

9 CCD 973 2. 3 1 CCD 13 4 4 CCD 4 8 1 2 2 2 m n 8 df /dx i = 1 α = 1 p = 2 m n m n df CCD dx 2. 4. 4 3 14 2005 USGS 3 GLS 2005 Global Land Survey H = - 7 TM n P i log 2 P i i = 1 3 9 CCD P i i TM 2. 4 2. 4. 1 i j H i H j 2 ρ 2 H = H i + H j 1 - ρ 11 m = i p i 2. 4. 5 d = i "m 2 p i 16 s = i "m 3 p i /d 3 k = i "m 4 p i /d 4 i p i i ^F 2. 4. 2 ^F u v 2 = ^F u v F * u v u v ^F u v 2 F * 12 CCD Sum = m-1 n-1 ^F u v 2 ΔuΔv 4 u = 0 v = 0 1 m n u = 0 1 m - 1 v SNR = m /d 1 = 0 1 n - 1 m d 2. 4. 3 u v 3 3. 1 CCD 22

974 26 2 18 3. 2. 1 2 ~ 4 2 CCD TM CCD DN 2 10 m 0. 33 4 TM CCD CCD TM HJ1A-CCD1 155266 TM 124026 3 CCD TM 22 min 3 CCD GLS CCD TM 2005 0. 05% TM CCD HJ1A - CCD1 26. 80% 0. TM GLS2005 54 129. 41% 11. 66 TM 0 0. 00% CCD TM 0. 05% 4 CCD 4 HJ1A - CCD1 TM 2 300 600 m 10 20 4 ~ 269. 24% - 0. 18% ~ 113. TM 60 m2 34% - 3. 58% ~ 46. 00% TM - 1. 76% ~ 32. 05% CCD CCD 3. 2 CCD CCD TM HJ1A - CCD2 3-19. 07% - 45. 43% - 61. 75% - 83. 47% 1 3. 2. 2 e-science 5 4 0. 14% + 0. 06 1. 50% + 0. 15 4 6. 22% 4 CCD 6 2 /m1 Table 2 Analysis of inter - band displacement /m 154803 155266 156526 157070 124026 1 2 1 3 1 4 1 2 1 3 1 4 1 2 1 3 1 4 1 2 1 3 1 4 1 2 1 3 1 4 ΔX ΔY ΔX ΔY ΔX ΔY ΔX ΔY ΔX ΔY ΔX ΔY ΔX ΔY ΔX ΔY ΔX ΔY ΔX ΔY ΔX ΔY ΔX ΔY ΔX ΔY ΔX ΔY ΔX ΔY 36. 74-127. 82-46. 64-7. 70-41. 36 30. 58 22. 44 217. 80-20. 24 198. 66-55. 22 71. 28 65. 66 71. 73 35. 74 143. 68-15. 33 132. 03-1. 76 112. 47 31. 30 92. 14 55. 98-37. 30-1. 32-1. 30-10. 34-43. 78 73. 70 11. 88 1. 67-5. 81-2. 12-0. 35-1. 88 1. 39 1. 02 9. 90-0. 92 9. 03-2. 51 3. 24 2. 98 3. 26 1. 62 6. 53-0. 70 6. 00-0. 08 5. 11 1. 42 4. 19 2. 54-1. 70-0. 06-0. 06-0. 47-1. 99 3. 35 0. 54 RMS 9. 45 10. 06 3. 65 3. 61 5. 37 6. 37 5. 58 6. 87 9. 33 7. 74 7. 86 10. 83 6. 44 9. 79 4. 57 9. 23 7. 40 6. 79 5. 32 12. 63 3. 04 3. 86 5. 33 7. 03 6. 02 5. 88 3. 67 4. 31 5. 20 7. 46 RMS 13. 81 5. 14 8. 33 8. 85 12. 12 13. 38 11. 57 9. 39 8. 70 12. 71 2. 75 8. 29 8. 41 5. 66 9. 09 1 CCD www. cresda. com TM NASA2009 17.

9 CCD 975 Table 3 3 /m Comparison of side length error between image control points / m 154803 155266 156526 157070 124026 1-91. 09-0. 22% N /A N /A N /A N /A 3. 26 0. 01% - 0. 11 0. 00% 2-23. 04-0. 03% N /A N /A N /A N /A - 48. 81-0. 12% 37. 70 0. 05% 3 60. 44 0. 08% 118. 45 0. 16% 65. 92 0. 16% 91. 35 0. 22% 9. 44 0. 01% 4-14. 12-0. 02% N /A N /A N /A N /A - 57. 32-0. 14% - 7. 98-0. 01% 5-121. 24-0. 15% 23. 97 0. 03% - 9. 08-0. 02% 8. 14 0. 02% 3. 85 0. 00% 6 65. 25 0. 15% N /A N /A N /A N /A 34. 90 0. 08% - 3. 13-0. 01% 7-17. 75-0. 02% - 55. 97-0. 07% 23. 45 0. 06% 40. 42 0. 10% - 32. 62-0. 04% 8 34. 19 0. 03% N /A N /A N /A N /A - 12. 94-0. 03% 14. 29 0. 01% 9-69. 61-0. 20% 62. 24 0. 18% 39. 57 0. 09% 79. 57 0. 19% - 18. 56-0. 05% 10 97. 61 0. 11% - 34. 95-0. 04% - 49. 31-0. 12% - 39. 31-0. 09% - 3. 70 0. 00% 11 21. 53 0. 03% 15. 21 0. 02% 73. 62 0. 18% 93. 62 0. 22% 29. 57 0. 04% 12 44. 86 0. 05% - 31. 37-0. 03% 29. 59 0. 07% 29. 59 0. 07% 16. 31 0. 02% 13 45. 71 0. 04% 21. 59 0. 02% - 82. 11-0. 20% 82. 11 0. 20% - 13. 62-0. 01% 14 80. 12 0. 14% 64. 17 0. 11% 112. 37 0. 27% 76. 15 0. 18% 9. 59 0. 02% 112. 86 0. 01% 183. 35 0. 03% 204. 01 0. 03% 380. 73 0. 04% 41. 03 0. 00% 8. 06 0. 01% 20. 37 0. 03% 22. 67 0. 01% 27. 20 0. 04% 2. 93 0. 00% RMS 66. 54 55. 79 61. 25 53. 22 18. 65 Table 4 4 /m The overall image displacement / m 154803 155266 156526 157070 124026 ΔX ΔY ΔX ΔY ΔX ΔY ΔX ΔY ΔX ΔY - 13067. 56-6318. 73-7207. 20-15782. 34-6560. 98-11613. 55-8483. 58-14442. 33-993. 30-86. 24-768. 68-371. 69-343. 20-751. 54-385. 94-683. 15-403. 98-687. 73-45. 15-3. 92 RMS 95. 32 100. 17 45. 57 37. 71 63. 42 21. 42 30. 59 74. 33 15. 90 14. 63 RMS 138. 27 59. 15 44. 50 64. 50 21. 61

976 26 5 Table 5 Analysis of radiation accuracy 6 Table 6 Analysis of SNR DN 154803 155266 156526 157070 124026 1 30. 49 55. 50 14. 50 55. 50 14. 50 2 24. 73 48. 94 14. 31 48. 94 14. 31 3 28. 31 38. 90 14. 40 38. 90 14. 40 4 48. 75 56. 82 10. 57 56. 82 10. 57 1 22. 13 47. 72 9. 19 47. 72 9. 19 2 17. 93 42. 31 10. 68 42. 31 10. 68 3 17. 91 33. 75 11. 74 33. 75 11. 74 4 35. 93 53. 99 9. 07 53. 99 9. 07 1 29. 55 54. 56 12. 10 54. 56 12. 10 2 21. 19 47. 53 13. 27 47. 53 13. 27 3 23. 66 42. 68 13. 37 42. 68 13. 37 4 34. 05 61. 50 12. 03 61. 50 12. 03 1 27. 81 53. 80 20. 31 53. 80 20. 31 2 23. 26 47. 98 20. 63 47. 98 20. 63 3 25. 48 43. 42 19. 53 43. 42 19. 53 4 39. 38 57. 33 15. 32 57. 33 15. 32 1 70. 17 44. 92 7. 91 44. 92 7. 91 2 35. 20 42. 39 10. 34 42. 39 10. 34 3 38. 87 38. 37 12. 18 38. 37 12. 18 4 61. 91 51. 85 9. 65 51. 85 9. 65 1 3. 83 5. 19 4. 51 2. 65 5. 68 2 3. 42 3. 96 3. 58 2. 33 4. 10 3 2. 70 2. 87 3. 19 2. 22 3. 15 4 5. 38 5. 96 5. 11 3. 74 5. 37 5. 11 12 1 25 7 CCD TM Table 7 7 Analysis of SNR for different land cover types 154803 155266 156526 157070 124026 8. 54 7. 48 6. 93 5. 36 7. 71 2. 04 1. 90 2. 91 2. 62 2. 07 2. 79 2. 21 2. 69 2. 99 2. 25 10. 54 8. 73 6. 08 4. 82 11. 85 1. 43 1. 84 3. 04 1. 45 2. 09 3. 2. 3 8 4 CCD TM 55. 37% 154803 40. 71% 155266 50. 25% 156526 61. 48% 157070 CCD TM TM 4 TM 36. 60% 66. 13% 55. 81% 49. 26% 4 Fig. 4 Distribution map of image radiance 5 40. 21% HJ1A - CCD1 TM "1. 74% "0. 08 2 4 3 2 155266 124026 5 40% TM 4 CCD

9 CCD 977 8 3. 2. 5 Table 8 Sharpness results of experimental images 154803 155266 156526 157070 124026 1 5. 01 3. 67 4. 89 5. 64 13. 12 2 5. 66 4. 28 4. 90 6. 40 8. 03 3 7. 00 5. 07 6. 50 7. 64 11. 74 4 6. 11 4. 41 5. 44 6. 68 11. 49 Fig. 5 5 4 3 2 Comparison of image Sharpness Standard false color composite of band 4 3 2 Δ = 1 2 m 4 6 10 CCD TM 4 TM 98. 59% 154803 98. 94% 155266 100. 30% 156526 100. 01% 157070 CCD TM 4 TM 95. 29% 101. 54% 100. 91% 100. 10% 4 TM 4. 3 db 3. 2. 4 9 4 TM 88. 92% 104. 80% 94. 83% 80. 30% CCD TM CCD 4 TM 81. 24% 96. 31% 95. 22% 91. 97% CCD TM 4 3 2 6 Table 9 9 Amount of information results 154803 155266 156526 157070 124026 1 4. 25 3. 82 4. 20 4. 14 5. 05 2 4. 30 3. 93 4. 26 4. 46 4. 40 3 5. 06 4. 57 4. 89 5. 02 5. 13 4 4. 84 4. 40 4. 72 4. 95 5. 14 18. 45 16. 73 18. 07 18. 57 19. 72 7. 22 8. 51 7. 70 6. 52 8. 12 Fig. 6 Comparison of power spectral analysis 10 /db Table 10 Summation of each component of image power spectral /db 154803 155266 156526 157070 124026 1 87. 34 86. 29 87. 19 87. 04 91. 26 2 86. 47 85. 34 86. 20 86. 04 84. 70 3 85. 66 84. 64 86. 70 86. 52 85. 10 4 87. 53 92. 18 93. 11 92. 59 91. 26

978 26 4 1 CCD 0. 05% 11-14. 2 10 20 2 CCD DN TM DN 4 Thomson G. Evaluation of Russian Arkon-2 Earth observation sat- TM ellite J. The Imaging Science Journal CCD CCD TM CCD 2009 6 37-42. DN 6 Zhang Zengxiang Wang Xiao Wang Changyao et al. National land cover mapping by remote sensing under the control of interpre- CCD ted data J 216-224. 7 Gutman G Byrnes R Masek J et al. Towards monitoring landcover and land-use changes at a global scale The global land sur- 3 CCD 4 3 2 11 2 216-224. CCD TM vey 2005 J / somg 2008 74 1 6-10. CCD 4 TM CCD 4 TM 5 CCD 4 2 by our landsat ground station and U. S. NOAA J References 1 Zhao Shuhe Feng Xuezhi Zhao Rui. Evaluation on data quality and geometric correction of China-Brazil resources satellite No. 1 data in Nanjing area J. Remote Sensing Technology and Application 2000 15 3 170-174.. 2000 15 3 170-174. 2 Wang Qinjun Tian Qingjiu. Quality evaluation of LISS3 image from IRS-P6 satellite J. Geography and Geo-Information Science 2007 23 3 11-14.. IRS-P6 LISS3 J. 2007 23 3 3 Yang Zhongdong Gu Songyan Qiu Hong et al. CBERS-1's CCD image quality evaluating and cross calibrating study J. Journal of Remote Sensing 2004 8 2 113-120.. CCD J. 2004 8 2 113-120. 2005 53 3 163-173. 5 Jia Fujuan Wu Yanlin Huang Ying et al. Design and on-orbit application of CCD camera on HJ-1A /1B Saterllites J. Spacecraft Engneering 2009 6 37-42.. -1A 1B CCD J.. Journal of Geo-Information Science 2009 11 2. J. 2009. Photog Rammetric Engineering and Remote Sem- 8 Franks S Masek J Headley R et al. Large Area Scene Selection Interface LASSI methodology of selecting landsat imagery for the global land survey 2005 J. Photogrammetric Engineering and Remote Sensing 2009 75 11 1 287-1 296. 9 Wang Xinmin Zhang Lei. Analysis of geometric fidelity of systematically corrected Landsat-5 TM image data J. Remote Sensing of Environment China 1989 4 4 293-299.. TM J. 1989 4 4 293-299. 10 Wang Xinmin Shao Beien Dai Zixin et al. An accuracy comparison between the geodetically corrected TM images produced. Remote Sensing of Environment China 1987 2 1 73-79.. NOAA TM J. 1987 2 1 73-79. 11 Zhang Xia Zhang Bing Zhao Yongchao et al. Image quality assessment for the infrared Multi-Spectral scanner of the Chinese- Brazil Earth resources satellite J. Journal of Image and Graphics 2002 7 A 6 581-586.. J. 2002 7 A 6 581-586. 12 Liu Jiangui Zheng Lanfen Tong Qingxi. Estimation of signal to J. noise ratio of remote sensing images J. Journal of Basic Science

9 CCD 979 and Engineering 1999 7 4 360-365. J. 2006 31 7. J. 569-572. 1999 7 4 360-365. 16 Balboa R Grzywacz N. Power spectra and distribution of contrasts 13 Wang Hongnan Zhong Wen Wang Jing et al. Research of measurement for digital image definition J. Journal of Image and Graphics 2004 9 7 829-831. 17 Chander G Markham B L Helder D L. Summary of current ra-. J. diometric calibration coefficients for Landsat MSS TM ETM + 2004 7 829-931. 14 Cheng Jicheng Guo Huadong Shi Wenzhong. Uncertainty of Remote Sensing Data M. Beijing Science Press 2004.. M. 2004. 15 Lin Zongjian Zhang Yonghong. Measurement of information and uncertainty of remote sensing and GIS data J. Geomatics and Information Science of Wuhan University 2006 31 7 569-572.. 2011 26 1 66-74. of natural images from different habitats J. Vision Research 2003 43 24 2 527-2 537. and EO-1 ALI sensors J. Remote Sensing of Environment 2009 113 5 893-903. 18 Zhu Yunqiang Sun Jiulin Song Jia et al. E-Geoscience research and practice A case show of north eastern Asia joint scientific exploration and cooperative research platform J. Advances in Earth Science 2011 26 1 66-74.. e-science J. Data Quality Evaluation of Chinese HJ CCD Sensor Liu Rui 1 2 Sun Jiulin 2 Wang Juanle 2 Liao Xiuying 2 1. College of Geographical Science Chongqing Normal University Chongqing 400047 China 2. State Key Laboratory of Resources and Environmental Information Systems Institute of Geographical Sciences and Natural Resources Research Chinese Academy of Sciences Beijing 100101 China Abstract The Chinese environmental mitigation HJ satellite CCD sensors are capable of large area and alltime monitoring and have a great advantage in coverage and frequency of repeated observations. However as a relative newly remote sensing sensor it is essential to evaluate the data quality for further applications. Based on the introduction of HJ CCD sensor and combined with LandSat TM data the geometry accuracy and radiance quality of HJ CCD data was quantitative evaluated in this paper. The results showed that 1There is no deviation between the 4 bands of HJ CCD and compared with TM very small geometric distortion is detected 0. 05%. However there's large geometric error in both X and Y direction. 2There is no obvious difference in radiation range and signal to noise ratio between the two sensors but the image sharpness of CCD data can only a- chieve about half of TM which leads to application limitation for object recognition and feature extraction etc. 3 The CCD data is rich in amount of information and standard false colour composition of band 4 3 2 is the best band combination choice. Meanwhile the power spectral of CCD data guaranteed the abundant texture feature which will ensure the application accuracy in studies such as classification. 4Near infrared and red band showed the best quality between the CCD bands and followed by green and blue band. Key words Geometric accuracy Radiance quality Image sharpness Information entropy Power Spectral.