AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

Similar documents
IRFR3710ZPbF IRFU3710ZPbF HEXFET Power MOSFET

AUTOMOTIVE MOSFET TO-220AB IRL3705Z. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) W/ C V GS Gate-to-Source Voltage ± 16

IRFR3710ZPbF IRFU3710ZPbF IRFU3710Z-701PbF HEXFET Power MOSFET

AUTOMOTIVE MOSFET TO-220AB IRL1404Z. Absolute Maximum Ratings Max. I T C = 25 C Continuous Drain Current, V 10V (Silicon Limited)

AUTOMOTIVE MOSFET. 240 P C = 25 C Power Dissipation 110 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

IRFR540ZPbF IRFU540ZPbF

IRFR4105ZPbF IRFU4105ZPbF

IRFZ46ZPbF IRFZ46ZSPbF IRFZ46ZLPbF

IRLR3110ZPbF IRLU3110ZPbF

-280 P C = 25 C Power Dissipation 170 Linear Derating Factor. W/ C V GS Gate-to-Source Voltage ± 20

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) 560 P C = 25 C Power Dissipation 330 Linear Derating Factor

Absolute Maximum Ratings Max. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

TO-220AB. IRF3205ZPbF. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

TO-220AB. IRF540ZPbF A I DM. 140 P C = 25 C Power Dissipation 92 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

AUTOMOTIVE MOSFET TO-220AB IRFZ44VZ A I DM. 230 P C = 25 C Power Dissipation 92 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

IRLR3915PbF IRLU3915PbF

IRF2804PbF IRF2804SPbF IRF2804LPbF HEXFET Power MOSFET

AUTOMOTIVE MOSFET. 30 Pulsed Drain Current c. I DM P C = 25 C Maximum Power Dissipation 120 Linear Derating Factor

TO-220AB. IRF4104PbF. A I T C = 25 C Continuous Drain Current, V 10V (Package limited)

AUTOMOTIVE MOSFET TO-220AB IRF I DM. 890 P C = 25 C Power Dissipation 330 Linear Derating Factor. 2.2 V GS Gate-to-Source Voltage ± 20

TO-220AB. IRF2807ZPbF. 350 P C = 25 C Maximum Power Dissipation 170 Linear Derating Factor

AUTOMOTIVE MOSFET IRLZ44Z A I DM. 204 P C = 25 C Power Dissipation 80 Linear Derating Factor V GS Gate-to-Source Voltage ± 16

IRFR3806PbF IRFU3806PbF

IRF3808S IRF3808L HEXFET Power MOSFET

C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting Torque, 6-32 or M3 screw 1.1 (10) N m (lbf in)

TO-220AB IRFB4410. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 19

TO-220AB. IRF3710ZPbF. 240 P C = 25 C Maximum Power Dissipation 160 Linear Derating Factor

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

TO-220AB IRF1404Z. Max. I T C = 25 C Continuous Drain Current, V 10V (Silicon Limited)

IRF2204SPbF IRF2204LPbF HEXFET Power MOSFET

IRFB3507PbF IRFS3507PbF IRFSL3507PbF

AUTOMOTIVE MOSFET. I D = 140A Fast Switching

IRFR1018EPbF IRFU1018EPbF

T J = 25 C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V (BR)DSS DraintoSource Breakdown Voltage 24 V V (BR)DSS / T J

V DSS R DS(on) max Qg. 30V 4.8m: 15nC

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

IRLS3034PbF IRLSL3034PbF

IRLS3036PbF IRLSL3036PbF HEXFET Power MOSFET

IRFP2907PbF. HEXFET Power MOSFET V DSS = 75V. R DS(on) = 4.5mΩ I D = 209A. Typical Applications. Benefits

AUTOMOTIVE MOSFET TO-220AB IRF P C = 25 C Maximum Power Dissipation 330 Linear Derating Factor

Approved (Not Released) V DSS R DS(on) max Qg. 30V 3.5mΩ 36nC

V DSS R DS(on) max (mw)

AUTOMOTIVE MOSFET. HEXFET Power MOSFET Wiper Control

IRFS4127PbF IRFSL4127PbF

AUTOMOTIVE MOSFET. C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

IRLR8729PbF IRLU8729PbF HEXFET Power MOSFET

SMPS MOSFET. V DS 200 V V DS (Avalanche) min. 260 V R DS(ON) 10V 54 m: T J max 175 C TO-220AB. IRFB38N20DPbF

IRFR24N15DPbF IRFU24N15DPbF

TO-220AB IRFB3307. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 11. V/ns T J Operating Junction and -55 to

IRFB4020PbF. Key Parameters V DS 200 V R DS(ON) 10V 80 m: Q g typ. 18 nc Q sw typ. 6.7 nc R G(int) typ. 3.2 Ω T J max 175 C

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 5.3

1412 P C = 25 C Maximum Power Dissipation 300 Linear Derating Factor. V/ns T J. Thermal Resistance Symbol Parameter Typ. Max.

SMPS MOSFET. V DSS R DS(on) max I D

V DSS R DS(on) max Qg (typ.) 30V GS = 10V 57nC

SMPS MOSFET. V DSS R DS(on) max I D

IRLR8721PbF IRLU8721PbF

IRFR3709ZPbF IRFU3709ZPbF

IRFS3004-7PPbF HEXFET Power MOSFET

TO-220AB IRFB4610. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 7.6

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 23. V/ns T J. mj I AR

SMPS MOSFET. V DSS R DS(on) max I D

IRLR8726PbF IRLU8726PbF

IRFR3704Z IRFU3704Z HEXFET Power MOSFET

V DSS R DS(on) max I D

IRLR3717 IRLU3717 HEXFET Power MOSFET

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

V DSS. W/ C V GS Gate-to-Source Voltage ±30 E AS (Thermally limited) mj T J Operating Junction and -55 to + 175

SMPS MOSFET. V DSS R DS(on) typ. Trr typ. I D. 600V 385mΩ 130ns 15A

SMPS MOSFET HEXFET Power MOSFET. V DSS R DS(on) max I D. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor.

SMPS MOSFET. V DSS R DS(on) max I D A I DM. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor. V/ns T J

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 13

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 26

IRFR24N15D IRFU24N15D

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 27

SMPS MOSFET. V DSS R DS(on) max (mω) I D

IRF3205S/L. HEXFET Power MOSFET V DSS = 55V. R DS(on) = 8.0mΩ I D = 110A

AUTOMOTIVE GRADE. Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) 300

TO-220AB IRFB4310. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 14

W/ C V GS Gate-to-Source Voltage ±20 dv/dt Peak Diode Recovery f 4.6. V/ns T J. mj I AR. Avalanche Current d A See Fig. 14, 15, 22a, 22b, E AR

V DSS R DS(on) max Qg. 560 P C = 25 C Maximum Power Dissipation g 140 P C = 100 C Maximum Power Dissipation g Linear Derating Factor

W/ C V GS Gate-to-Source Voltage ±16 dv/dt Peak Diode Recovery f 8.0. V/ns T J. mj I AR. Avalanche Current d A See Fig. 14, 15, 22a, 22b E AR

l Advanced Process Technology TO-220AB IRF640NPbF

IRFZ48NS IRFZ48NL HEXFET Power MOSFET

V DSS R DS(on) max Qg

SMPS MOSFET. V DSS R DS(on) max I D

IRF3709ZCS IRF3709ZCL

V DSS R DS(on) max I D

IRLB8721PbF. V DSS R DS(on) max Qg (typ.) 30V GS = 10V 7.6nC. HEXFET Power MOSFET. Applications. Benefits. Absolute Maximum Ratings

AUTOMOTIVE GRADE. 56 I T C = 100 C Continuous Drain Current, V 10V. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 11. V/ns T J. mj I AR

IRFI4212H-117P. Description. Key Parameters g V DS 100 V R DS(ON) 10V 58 m: Q g typ. 12 nc Q sw typ. 6.9 nc R G(int) typ. 3.

SMPS MOSFET TO-220AB IRL3713. Symbol Parameter Max V DS Drain-Source Voltage 30 V GS Gate-to-Source Voltage ± 20

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

IRF530NSPbF IRF530NLPbF

IRFS3107PbF IRFSL3107PbF HEXFET Power MOSFET

V DSS R DS(on) max I D

Transcription:

Features l Advanced Process Technology l Ultra Low On-Resistance l 175 C Operating Temperature l Fast Switching l Repetitive Avalanche Allowed up to Tjmax AUTOMOTIVE MOSFET Description Specifically designed for Automotive applications, this HEXFET Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175 C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. Absolute Maximum Ratings I D @ T C = 25 C Parameter Continuous Drain Current, V GS @ V (Silicon Limited) IRFR37Z IRFU37Z HEXFET Power MOSFET V DSS = V R DS(on) = 18mΩ I D = 42A HEXFET is a registered trademark of International Rectifier. www.irf.com 1 G D S D-Pak IRFR37Z I-Pak IRFU37Z Units I D @ T C = C Continuous Drain Current, V GS @ V 39 A I D @ T C = 25 C Continuous Drain Current, V GS @ V (Package Limited) 42 I DM Pulsed Drain Current c 220 P D @T C = 25 C Power Dissipation 140 W Linear Derating Factor 0.95 W/ C V GS Gate-to-Source Voltage ± 20 V E AS (Thermally limited) Single Pulse Avalanche Energyd 150 mj E AS (Tested ) Single Pulse Avalanche Energy Tested Value h 200 I AR Avalanche Currentc See Fig.12a, 12b, 15, 16 A E AR Repetitive Avalanche Energy g mj T J Operating Junction and -55 to + 175 T STG Storage Temperature Range C Soldering Temperature, for seconds 300 (1.6mm from case ) lbfyin (1.1Nym) Mounting Torque, 6-32 or M3 screw Thermal Resistance Parameter Typ. Max. Units R θjc Junction-to-Case 1.05 R θja Junction-to-Ambient (PCB mount) i 40 C/W R θja Junction-to-Ambient 1 Max. 56 PD - 94740A 11/13/06

IRFR/U37Z Electrical Characteristics @ T J = 25 C (unless otherwise specified) Parameter Min. Typ. Max. Units V (BR)DSS Drain-to-Source Breakdown Voltage V Conditions V GS = 0V, I D = 250µA V (BR)DSS / T J Breakdown Voltage Temp. Coefficient 0.088 V/ C Reference to 25 C, I D = 1mA R DS(on) Static Drain-to-Source On-Resistance 15 18 mω V GS = V, I D = 33A e V GS(th) Gate Threshold Voltage 2.0 4.0 V V DS = V GS, I D = 250µA gfs Forward Transconductance 39 S V DS = 25V, I D = 33A I DSS Drain-to-Source Leakage Current 20 µa V DS = V, V GS = 0V 250 V DS = V, V GS = 0V, T J = 125 C I GSS Gate-to-Source Forward Leakage 200 na V GS = 20V Gate-to-Source Reverse Leakage -200 V GS = -20V Q g Total Gate Charge 69 I D = 33A Q gs Gate-to-Source Charge 15 nc V DS = 80V Q gd Gate-to-Drain ("Miller") Charge 25 V GS = V e t d(on) Turn-On Delay Time 14 V DD = 50V t r Rise Time 43 I D = 33A t d(off) Turn-Off Delay Time 53 ns R G = 6.8 Ω t f Fall Time 42 V GS = V e L D Internal Drain Inductance 4.5 Between lead, D nh 6mm (0.25in.) G L S Internal Source Inductance 7.5 from package and center of die contact S C iss Input Capacitance 2930 V GS = 0V C oss Output Capacitance 290 V DS = 25V C rss Reverse Transfer Capacitance 180 pf ƒ = 1.0MHz C oss Output Capacitance 1200 V GS = 0V, V DS = 1.0V, ƒ = 1.0MHz C oss Output Capacitance 180 V GS = 0V, V DS = 80V, ƒ = 1.0MHz C oss eff. Effective Output Capacitance 430 V GS = 0V, V DS = 0V to 80V f Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units Conditions I S Continuous Source Current 56 MOSFET symbol D (Body Diode) A showing the I SM Pulsed Source Current 220 integral reverse G (Body Diode)Ãc p-n junction diode. S V SD Diode Forward Voltage 1.3 V T J = 25 C, I S = 33A, V GS = 0V e t rr Reverse Recovery Time 35 53 ns T J = 25 C, I F = 33A, V DD = 50V Q rr Reverse Recovery Charge 41 62 nc di/dt = A/µs e t on Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) 2 www.irf.com

I D, Drain-to-Source Current (Α) G fs, Forward Transconductance (S) I D, Drain-to-Source Current (A) I D, Drain-to-Source Current (A) IRFR/U37Z 0 VGS TOP 15V V 6.0V 5.0V 4.8V 4.5V 4.3V BOTTOM 4.0V 0 VGS TOP 15V V 6.0V 5.0V 4.8V 4.5V 4.3V BOTTOM 4.0V 4.0V 4.0V 60µs PULSE WIDTH Tj = 25 C 1 0.1 1 V DS, Drain-to-Source Voltage (V) 1 60µs PULSE WIDTH Tj = 175 C 0.1 0.1 1 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 0 T J = 175 C 80 T J = 25 C 60 T J = 25 C 40 T J = 175 C 20 1.0 V DS = 25V 60µs PULSE WIDTH 2 3 4 5 6 7 8 9 11 12 13 14 15 16 0 V DS = V 0 20 30 40 50 60 70 80 V GS, Gate-to-Source Voltage (V) I D,Drain-to-Source Current (A) Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance vs. Drain Current www.irf.com 3

I SD, Reverse Drain Current (A) I D, Drain-to-Source Current (A) C, Capacitance(pF) V GS, Gate-to-Source Voltage (V) IRFR/U37Z 000 00 V GS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd C iss 12.0.0 8.0 I D = 33A V DS = 80V V DS = 50V V DS = 20V 0 6.0 C oss C rss 4.0 2.0 1 0.0 0 20 30 40 50 60 70 80 V DS, Drain-to-Source Voltage (V) Q G Total Gate Charge (nc) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 0.00 0 OPERATION IN THIS AREA LIMITED BY R DS (on).00 T J = 175 C.00 µsec T J = 25 C 1.00 V GS = 0V 0. 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 V SD, Source-to-Drain Voltage (V) 1 0.1 Tc = 25 C Tj = 175 C Single Pulse 1msec msec 1 0 V DS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com

I D, Drain Current (A) R DS(on), Drain-to-Source On Resistance (Normalized) IRFR/U37Z 60 50 Limited By Package 3.0 2.5 I D = 56A V GS = V 40 2.0 30 20 1.5 1.0 0 25 50 75 125 150 175 T C, Case Temperature ( C) 0.5-60 -40-20 0 20 40 60 80 120 140 160 180 T J, Junction Temperature ( C) Fig 9. Maximum Drain Current vs. Case Temperature Fig. Normalized On-Resistance vs. Temperature Thermal Response ( Z thjc ) 1 0.1 0.01 0.001 0.0001 D = 0.50 0.20 0. 0.05 0.02 0.01 R 1 R 2 R 3 R 1 R 2 R 3 τ J τ J τ 1 τ τ 2 τ 3 1 τ 2 τ 3 Ci= τi/ri Ci i/ri SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 1E-006 1E-005 0.0001 0.001 0.01 0.1 t 1, Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case Ri ( C/W) τi (sec) 0.576 0.000540 0.249 0.001424 0.224 0.007998 www.irf.com 5 τ C τ

V GS(th) Gate threshold Voltage (V) E AS, Single Pulse Avalanche Energy (mj) IRFR/U37Z V DS L 15V DRIVER 700 600 500 I D TOP 3.4A 4.8A BOTTOM 33A R G 20V V GS tp D.U.T IAS 0.01Ω + - V DD A 400 300 Fig 12a. Unclamped Inductive Test Circuit tp V (BR)DSS 200 0 25 50 75 125 150 175 Starting T J, Junction Temperature ( C) I AS Fig 12b. Unclamped Inductive Waveforms Q G Fig 12c. Maximum Avalanche Energy vs. Drain Current V Q GS Q GD 4.0 V G Charge Fig 13a. Basic Gate Charge Waveform 3.0 I D = 250µA 2.0 0 1K DUT L VCC 1.0-75 -50-25 0 25 50 75 125 150 175 200 T J, Temperature ( C ) Fig 13b. Gate Charge Test Circuit Fig 14. Threshold Voltage vs. Temperature 6 www.irf.com

E AR, Avalanche Energy (mj) Avalanche Current (A) IRFR/U37Z 0 Duty Cycle = Single Pulse 0.01 0.05 Allowed avalanche Current vs avalanche pulsewidth, tav assuming Tj = 25 C due to avalanche losses 0. 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.pulsewidth 200 150 50 0 TOP Single Pulse BOTTOM 1% Duty Cycle I D = 33A 25 50 75 125 150 175 Starting T J, Junction Temperature ( C) Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-5 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long ast jmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. P D (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. I av = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed T jmax (assumed as 25 C in Figure 15, 16). t av = Average time in avalanche. D = Duty cycle in avalanche = t av f Z thjc (D, t av ) = Transient thermal resistance, see figure 11) P D (ave) = 1/2 ( 1.3 BV I av ) = DT/ Z thjc Fig 16. Maximum Avalanche Energy I av = 2DT/ [1.3 BV Z th ] vs. Temperature E AS (AR) = P D (ave) t av www.irf.com 7

IRFR/U37Z + - D.U.T + ƒ - Circuit Layout Considerations Low Stray Inductance Ground Plane Low Leakage Inductance Current Transformer - + Reverse Recovery Current Driver Gate Drive Period P.W. D.U.T. I SD Waveform Body Diode Forward Current di/dt D.U.T. V DS Waveform Diode Recovery dv/dt D = P.W. Period V GS =V V DD * R G dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD + - Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple 5% I SD * V GS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET Power MOSFETs V DS R D R G V GS D.U.T. + - V DD V Pulse Width 1 µs Duty Factor 0.1 % Fig 18a. Switching Time Test Circuit V DS 90% % V GS t d(on) t r t d(off) t f Fig 18b. Switching Time Waveforms 8 www.irf.com

D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) IRFR/U37Z D-Pak (TO-252AA) Part Marking Information (;$03/( 7+,6,6$1,5)5 :,7+$66(0%/< /27&2'( $66(0%/('21::,17+($66(0%/</,1($ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH 3LQDVVHPEO\OLQHSRVLWLRQLQGLFDWHV /HDG)UHHTXDOLILFDWLRQWRWKHFRQVXPHUOHYHO,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'(,5)5 $ 3$57180%(5 '$7(&2'( <($5 :((. /,1($ 25,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( '$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7237,21$/ 3 '(6,*1$7(6/($')5(( 352'8&748$/,),('727+( &21680(5/(9(/237,21$/ <($5 :((. $ $66(0%/<6,7(&2'( www.irf.com 9,5)5 3$57180%(5

IRFR/U37Z I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches) I-Pak (TO-251AA) Part Marking Information (;$03/( 7+,6,6$1,5)8 :,7+$66(0%/< /27&2'( $66(0%/('21::,17+($66(0%/</,1($ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'(,5)8 $ 3$57180%(5 '$7(&2'( <($5 :((. /,1($ 25,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'(,5)8 3$57180%(5 '$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7237,21$/ <($5 :((. $ $66(0%/<6,7(&2'( www.irf.com

IRFR/U37Z D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR TRL 16.3 (.641 ) 15.7 (.619 ) 16.3 (.641 ) 15.7 (.619 ) 12.1 (.476 ) 11.9 (.469 ) FEED DIRECTION 8.1 (.318 ) 7.9 (.312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH NOTES : 1. OUTLINE CONFORMS TO EIA-481. 16 mm Notes: Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11). Limited by T Jmax, starting T J = 25 C, L = 0.28mH R G = 25Ω, I AS = 33A, V GS =V. Part not recommended for use above this value. ƒ Pulse width 1.0ms; duty cycle 2%. C oss eff. is a fixed capacitance that gives the same charging time as C oss while V DS is rising from 0 to 80% V DSS. Limited by T Jmax, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. This value determined from sample failure population. % tested to this value in production. When mounted on 1" square PCB (FR-4 or G- Material). For recommended footprint and soldering techniques refer to application note #AN-994. Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q1] market. Qualification Standards can be found on IR s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (3) 252-75 TAC Fax: (3) 252-7903 Visit us at www.irf.com for sales contact information.11/06 www.irf.com 11

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/