AUTOMOTIVE GRADE. Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) 300

Similar documents
AUIRFR4105Z AUIRFU4105Z

AUIRFR540Z AUIRFU540Z

AUIRF1324S-7P AUTOMOTIVE GRADE

AUTOMOTIVE GRADE. Base part number Package Type Standard Pack Orderable Part Number

AUTOMOTIVE GRADE. Tube 50 AUIRFS4115-7P Tape and Reel Left 800 AUIRFS4115-7TRL

AUTOMOTIVE GRADE. Tube 50 AUIRFS3004-7P Tape and Reel Left 800 AUIRFS3004-7PTRL

AUTOMOTIVE GRADE. Orderable Part Number AUIRFZ44Z TO-220 Tube 50 AUIRFZ44Z AUIRFZ44ZS D 2 Tube 50 AUIRFZ44ZS Tape and Reel Left 800 AUIRFZ44ZSTRL

AUTOMOTIVE GRADE. Thermal Resistance Symbol Parameter Typ. Max. Units R JC Junction-to-Case 1.32 R JA Junction-to-Ambient ( PCB Mount) 50 C/W

AUIRLS3034-7P AUTOMOTIVE GRADE. HEXFET Power MOSFET

AUTOMOTIVE GRADE. Standard Pack Orderable Part Number AUIRL3705Z TO-220 Tube 50 AUIRL3705Z AUIRL3705ZL TO-262 Tube 50 AUIRL3705ZL AUIRL3705ZS D 2 -Pak

AUTOMOTIVE GRADE. Thermal Resistance Symbol Parameter Typ. Max. Units R JC Junction-to-Case 1.9 R JA Junction-to-Ambient ( PCB Mount) 50 C/W

AUIRLS3034 AUTOMOTIVE GRADE. HEXFET Power MOSFET

AUTOMOTIVE GRADE. A I DM Pulsed Drain Current -44 P A = 25 C Maximum Power Dissipation 3.8 P C = 25 C Maximum Power Dissipation 110

Orderable Part Number IRFP4768PbF TO-247AC Tube 25 IRFP4768PbF

AUTOMOTIVE GRADE. Thermal Resistance Symbol Parameter Typ. Max. Units R JC Junction-to-Case 2.2 R JA Junction-to-Ambient ( PCB Mount) 50 C/W

Base Part Number Package Type Standard Pack Orderable Part Number

IR MOSFET StrongIRFET IRF60R217

AUTOMOTIVE GRADE. Thermal Resistance Symbol Parameter Typ. Max. Units R JC Junction-to-Case 1.4 R JA Junction-to-Ambient ( PCB Mount) 50 C/W

IR MOSFET StrongIRFET IRL40SC228

IR MOSFET StrongIRFET IRFP7718PbF

AUTOMOTIVE GRADE C T STG

IRFR3710ZPbF IRFU3710ZPbF HEXFET Power MOSFET

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

Orderable Part Number Form Quantity IRFHM8334PbF PQFN 3.3 mm x 3.3 mm Tape and Reel 4000 IRFHM8334TRPbF

IRLR3915PbF IRLU3915PbF

IR MOSFET StrongIRFET IRF60B217

IRFZ46ZPbF IRFZ46ZSPbF IRFZ46ZLPbF

AUTOMOTIVE MOSFET. 30 Pulsed Drain Current c. I DM P C = 25 C Maximum Power Dissipation 120 Linear Derating Factor

IRFR540ZPbF IRFU540ZPbF

IRFR3710ZPbF IRFU3710ZPbF IRFU3710Z-701PbF HEXFET Power MOSFET

IRFR4105ZPbF IRFU4105ZPbF

IRFHM8326PbF. HEXFET Power MOSFET. V DSS 30 V V GS max ±20 V R DS(on) max 4.7 V GS = 10V)

AUTOMOTIVE MOSFET TO-220AB IRL3705Z. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) W/ C V GS Gate-to-Source Voltage ± 16

AUTOMOTIVE MOSFET TO-220AB IRL1404Z. Absolute Maximum Ratings Max. I T C = 25 C Continuous Drain Current, V 10V (Silicon Limited)

Base part number Package Type Standard Pack Orderable Part Number. IRFP7530PbF TO-247 Tube 25 IRFP7530PbF I D, T J = 25 C 50

IRF3808S IRF3808L HEXFET Power MOSFET

TO-220AB. IRF2807ZPbF. 350 P C = 25 C Maximum Power Dissipation 170 Linear Derating Factor

TO-220AB. IRF3205ZPbF. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

-280 P C = 25 C Power Dissipation 170 Linear Derating Factor. W/ C V GS Gate-to-Source Voltage ± 20

AUTOMOTIVE MOSFET. 240 P C = 25 C Power Dissipation 110 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

TO-220AB. IRF540ZPbF A I DM. 140 P C = 25 C Power Dissipation 92 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

IRF2804PbF IRF2804SPbF IRF2804LPbF HEXFET Power MOSFET

IRFR1018EPbF IRFU1018EPbF

IRLR3110ZPbF IRLU3110ZPbF

C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting Torque, 6-32 or M3 screw 1.1 (10) N m (lbf in)

IRFR3806PbF IRFU3806PbF

StrongIRFET IRFB7546PbF

TO-220AB. IRF3710ZPbF. 240 P C = 25 C Maximum Power Dissipation 160 Linear Derating Factor

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 23. V/ns T J. mj I AR

FASTIRFET IRFHE4250DPbF

TO-220AB. IRF4104PbF. A I T C = 25 C Continuous Drain Current, V 10V (Package limited)

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

V DSS R DS(on) max (mw)

IRF2204SPbF IRF2204LPbF HEXFET Power MOSFET

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

StrongIRFET IRFB7740PbF

StrongIRFET IRL60B216

AUTOMOTIVE MOSFET TO-220AB IRFZ44VZ A I DM. 230 P C = 25 C Power Dissipation 92 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

Absolute Maximum Ratings Max. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

StrongIRFET IRL40B215

TO-220AB IRFB4410. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 19

IRF3CMS17N80. POWER MOSFET THRU-HOLE (Low-Ohmic TO-254AA) 800V, N-CHANNEL PD Product Summary Part Number RDS(on) I D.

IRLS3036PbF IRLSL3036PbF HEXFET Power MOSFET

AUTOMOTIVE MOSFET. I D = 140A Fast Switching

AUTOMOTIVE MOSFET TO-220AB IRF I DM. 890 P C = 25 C Power Dissipation 330 Linear Derating Factor. 2.2 V GS Gate-to-Source Voltage ± 20

AUTOMOTIVE MOSFET IRLZ44Z A I DM. 204 P C = 25 C Power Dissipation 80 Linear Derating Factor V GS Gate-to-Source Voltage ± 16

A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) 560 P C = 25 C Power Dissipation 330 Linear Derating Factor

Base Part Number Package Type Standard Pack Orderable Part Number. IRFP3006PbF TO-247 Tube 25 IRFP3006PbF

IRLS3034PbF IRLSL3034PbF

IRFB4020PbF. Key Parameters V DS 200 V R DS(ON) 10V 80 m: Q g typ. 18 nc Q sw typ. 6.7 nc R G(int) typ. 3.2 Ω T J max 175 C

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

T J = 25 C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V (BR)DSS DraintoSource Breakdown Voltage 24 V V (BR)DSS / T J

IRFP2907PbF. HEXFET Power MOSFET V DSS = 75V. R DS(on) = 4.5mΩ I D = 209A. Typical Applications. Benefits

V DSS R DS(on) max Qg

TO-220AB IRF1404Z. Max. I T C = 25 C Continuous Drain Current, V 10V (Silicon Limited)

IRLR8729PbF IRLU8729PbF HEXFET Power MOSFET

IRFB3507PbF IRFS3507PbF IRFSL3507PbF

IRFR24N15DPbF IRFU24N15DPbF

V DSS V GS R DS(on) Q g tot Q gd Q gs2 Q rr Q oss V gs(th)

SMPS MOSFET. V DSS R DS(on) max I D

IRFS4127PbF IRFSL4127PbF

TO-220AB IRFB3307. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 11. V/ns T J Operating Junction and -55 to

SMPS MOSFET. V DSS R DS(on) max I D

IRFF230 JANTX2N6798 JANTXV2N6798

IRFR3709ZPbF IRFU3709ZPbF

IRF7MS V, N-CHANNEL HEXFET MOSFET TECHNOLOGY. POWER MOSFET THRU-HOLE (Low-Ohmic TO-254AA) PD-94609A

AUTOMOTIVE MOSFET TO-220AB IRF P C = 25 C Maximum Power Dissipation 330 Linear Derating Factor

Ordering Information Base part number Package Type Standard Pack Complete Part Form Quantity Number IRFB7437PbF TO-220 Tube 50 IRFB7437PbF

IRFS3004-7PPbF HEXFET Power MOSFET

AUTOMOTIVE MOSFET. HEXFET Power MOSFET Wiper Control

SMPS MOSFET. V DSS R DS(on) max I D

IRLR8726PbF IRLU8726PbF

AUTOMOTIVE MOSFET. C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

TO-220AB IRFB4610. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 7.6

AUTOMOTIVE GRADE. 56 I T C = 100 C Continuous Drain Current, V 10V. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

SMPS MOSFET. V DSS R DS(on) max I D

R 7 IRHLNA N7604U2 60V, N-CHANNEL RADIATION HARDENED LOGIC LEVEL POWER MOSFET SURFACE MOUNT (SMD-2) PD-97177C TECHNOLOGY

SMPS MOSFET. V DSS R DS(on) max I D

IRL5NJ V, P-CHANNEL LOGIC LEVEL POWER MOSFET SURFACE MOUNT (SMD-0.5) PD-94052C. Product Summary

Transcription:

Features Advanced Process Technology Ultra Low On-Resistance 175 C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free, RoHS Compliant Automotive Qualified * AUTOMOTIVE GRADE V DSS HEXFET Power MOSFET V R DS(on) max. 18m I D (Silicon Limited) I D (Package Limited) 56A 42A Description Specifically designed for Automotive applications, this HEXFET Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175 C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. D G D-Pak G D S Gate Drain Source S Base part number Package Type D-Pak Standard Pack Form Quantity Orderable Part Number Tube 75 Tape and Reel Left 3000 TRL Absolute Maximum Ratings Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25 C, unless otherwise specified. Symbol Parameter Max. Units I D @ T C = 25 C Continuous Drain Current, V GS @ V (Silicon Limited) 56 I D @ T C = C Continuous Drain Current, V GS @ V (Silicon Limited) 39 I D @ T C = 25 C Continuous Drain Current, V GS @ V (Package Limited) 42 A I DM Pulsed Drain Current 220 P D @T C = 25 C Maximum Power Dissipation 140 W Linear Derating Factor 0.95 W/ C V GS Gate-to-Source Voltage ± 20 V E AS Single Pulse Avalanche Energy (Thermally Limited) 150 E AS (Tested) Single Pulse Avalanche Energy Tested Value 200 mj I AR Avalanche Current See Fig.15,16, 12a, 12b A E AR Repetitive Avalanche Energy mj T J Operating Junction and -55 to + 175 T STG Storage Temperature Range Soldering Temperature, for seconds (1.6mm from case) 300 C Thermal Resistance Symbol Parameter Typ. Max. Units R JC Junction-to-Case 1.05 R JA Junction-to-Ambient ( PCB Mount) 50 C/W R JA Junction-to-Ambient 1 HEXFET is a registered trademark of Infineon. *Qualification standards can be found at www.infineon.com 1 2015-11-23

Static @ T J = 25 C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions V (BR)DSS Drain-to-Source Breakdown Voltage V V GS = 0V, I D = 250µA V (BR)DSS / T J Breakdown Voltage Temp. Coefficient 0.088 V/ C Reference to 25 C, I D = 1mA R DS(on) Static Drain-to-Source On-Resistance 15 18 m V GS = V, I D = 33A V GS(th) Gate Threshold Voltage 2.0 4.0 V V DS = V GS, I D = 250µA gfs Forward Trans conductance 39 S V DS = 25V, I D = 33A I DSS Drain-to-Source Leakage Current 20 V µa DS = V, V GS = 0V 250 V DS = V,V GS = 0V,T J =125 C Gate-to-Source Forward Leakage 200 V I GSS na GS = 20V Gate-to-Source Reverse Leakage -200 V GS = -20V Dynamic Electrical Characteristics @ T J = 25 C (unless otherwise specified) Q g Total Gate Charge 69 I D = 33A Q gs Gate-to-Source Charge 15 nc V DS = 80V Q gd Gate-to-Drain Charge 25 V GS = V t d(on) Turn-On Delay Time 14 V DD = 50V t r Rise Time 43 I D = 33A ns t d(off) Turn-Off Delay Time 53 R G = 6.8 t f Fall Time 42 V GS = V Between lead, L D Internal Drain Inductance 4.5 6mm (0.25in.) nh from package L S Internal Source Inductance 7.5 and center of die contact C iss Input Capacitance 2930 V GS = 0V C oss Output Capacitance 290 V DS = 25V C rss Reverse Transfer Capacitance 180 ƒ = 1.0MHz pf C oss Output Capacitance 1200 V GS = 0V, V DS = 1.0V ƒ = 1.0MHz C oss Output Capacitance 180 V GS = 0V, V DS = 80V ƒ = 1.0MHz C oss eff. Effective Output Capacitance 430 V GS = 0V, V DS = 0V to 80V Diode Characteristics Parameter Min. Typ. Max. Units Conditions Continuous Source Current MOSFET symbol I S 56 (Body Diode) showing the A Pulsed Source Current integral reverse I SM 220 (Body Diode) p-n junction diode. V SD Diode Forward Voltage 1.3 V T J = 25 C,I S = 33A, V GS = 0V t rr Reverse Recovery Time 35 53 ns T J = 25 C,I F = 33A, V DD = 50V Q rr Reverse Recovery Charge 41 62 nc di/dt = A/µs t on Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by L S +L D ) Notes: Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11) Limited by T Jmax, starting T J = 25 C, L = 0.28mH, R G = 25, I AS = 33A, V GS =V. Part not recommended for use above this value. Pulse width 1.0ms; duty cycle 2%. C oss eff. is a fixed capacitance that gives the same charging time as C oss while V DS is rising from 0 to 80% V DSS Limited by T Jmax, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. This value determined from sample failure population, starting T J = 25 C, L = 0.28mH, R G = 25, I AS = 33A, V GS =V. When mounted on 1" square PCB (FR-4 or G- Material). For recommended footprint and soldering techniques refer to application note #AN-994 R is measured at T J approximately 90 C. 2 2015-11-23

I D, Drain-to-Source Current ) G fs, Forward Transconductance (S) I D, Drain-to-Source Current (A) I D, Drain-to-Source Current (A) 0 VGS TOP 15V V 6.0V 5.0V 4.8V 4.5V 4.3V BOTTOM 4.0V 0 VGS TOP 15V V 6.0V 5.0V 4.8V 4.5V 4.3V BOTTOM 4.0V 4.0V 4.0V 60µs PULSE WIDTH Tj = 25 C 1 0.1 1 V DS, Drain-to-Source Voltage (V) 1 60µs PULSE WIDTH Tj = 175 C 0.1 0.1 1 V DS, Drain-to-Source Voltage (V) Fig. 1 Typical Output Characteristics Fig. 2 Typical Output Characteristics 0 T J = 175 C 80 T J = 25 C 60 T J = 25 C 40 T J = 175 C 1.0 V DS = 25V 60µs PULSE WIDTH 2 3 4 5 6 7 8 9 11 12 13 14 15 16 V GS, Gate-to-Source Voltage (V) 20 0 0 20 30 40 50 60 70 80 I D,Drain-to-Source Current (A) V DS = V Fig. 3 Typical Transfer Characteristics Fig. 4 Typical Forward Trans conductance Vs. Drain Current 3 2015-11-23

I SD, Reverse Drain Current (A) I D, Drain-to-Source Current (A) C, Capacitance(pF) V GS, Gate-to-Source Voltage (V) 000 V GS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED 12.0 I D = 33A 00 C rss = C gd C oss = C ds + C gd C iss.0 8.0 V DS = 80V V DS = 50V V DS = 20V 0 6.0 C oss C rss 4.0 2.0 1 V DS, Drain-to-Source Voltage (V) 0.0 0 20 30 40 50 60 70 80 Q G Total Gate Charge (nc) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 0.00 0 OPERATION IN THIS AREA LIMITED BY R DS (on).00 T J = 175 C.00 µsec T J = 25 C 1.00 V GS = 0V 0. 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 V SD, Source-to-Drain Voltage (V) 1 0.1 Tc = 25 C Tj = 175 C Single Pulse 1msec msec 1 0 V DS, Drain-to-Source Voltage (V) Fig. 7 Typical Source-to-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 2015-11-23

I D, Drain Current (A) R DS(on), Drain-to-Source On Resistance (Normalized) 60 50 Limited By Package 3.0 2.5 I D = 56A V GS = V 40 2.0 30 20 1.5 1.0 0 25 50 75 125 150 175 T C, Case Temperature ( C) 0.5-60 -40-20 0 20 40 60 80 120 140 160 180 T J, Junction Temperature ( C) Fig 9. Maximum Drain Current Vs. Case Temperature Fig. Normalized On-Resistance Vs. Temperature Thermal Response ( Z thjc ) 1 0.1 0.01 0.001 0.0001 D = 0.50 0.20 0. 0.05 0.02 0.01 R 1 R 1 R 2 R 2 R 3 R 3 J J 1 1 2 2 3 3 Ci= i Ri Ci= i Ri 0.224 0.007998 SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 1E-006 1E-005 0.0001 0.001 0.01 0.1 t 1, Rectangular Pulse Duration (sec) C C Ri ( C/W) i (sec) 0.576 0.000540 0.249 0.001424 Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 5 2015-11-23

V GS(th) Gate threshold Voltage (V) E AS, Single Pulse Avalanche Energy (mj) 15V V DS R G 20V tp L D.U.T I AS 0.01 DRIVER + - V DD A 700 600 500 400 300 I D TOP 3.4A 4.8A BOTTOM 33A Fig 12a. Unclamped Inductive Test Circuit 200 tp V (BR)DSS 0 25 50 75 125 150 175 Starting T J, Junction Temperature ( C) I AS Fig 12c. Maximum Avalanche Energy vs. Drain Current Fig 12b. Unclamped Inductive Waveforms 4.0 Vds Id Vgs 3.0 Vgs(th) I D = 250µA 2.0 Qgs1 Qgs2 Qgd Qgodr Fig 13a. Gate Charge Waveform 1.0-75 -50-25 0 25 50 75 125 150 175 200 T J, Temperature ( C ) Fig 14. Threshold Voltage Vs. Temperature Fig 13b. Gate Charge Test Circuit 6 2015-11-23

E AR, Avalanche Energy (mj) 0 Duty Cycle = Single Pulse Avalanche Current (A) 0.01 0.05 0. Allowed avalanche Current vs avalanche pulsewidth, tav assuming Tj = 25 C due to avalanche losses 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs. Pulse width 200 150 50 TOP Single Pulse BOTTOM 1% Duty Cycle I D = 33A 0 25 50 75 125 150 175 Starting T J, Junction Temperature ( C) Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-5 at www.infineon.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long as Tjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25 C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = tav f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) Fig 16. Maximum Avalanche Energy Vs. Temperature P D (ave) = 1/2 ( 1.3 BV I av ) = T/ Z thjc I av = 2 T/ [1.3 BV Z th ] E AS (AR) = P D (ave) t av 7 2015-11-23

Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET Power MOSFETs Fig 18a. Switching Time Test Circuit Fig 18b. Switching Time Waveforms 8 2015-11-23

D-Pak (TO-252AA) Package Outline (Dimensions are shown in millimeters (inches)) D-Pak (TO-252AA) Part Marking Information Part Number IR Logo AUFR37Z YWWA XX XX Date Code Y= Year WW= Work Week Lot Code Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 9 2015-11-23

D-Pak (TO-252AA) Tape & Reel Information (Dimensions are shown in millimeters (inches)) TR TRR TRL 16.3 (.641 ) 15.7 (.619 ) 16.3 (.641 ) 15.7 (.619 ) 12.1 (.476 ) 11.9 (.469 ) FEED DIRECTION 8.1 (.318 ) 7.9 (.312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH NOTES : 1. OUTLINE CONFORMS TO EIA-481. 16 mm Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 2015-11-23

Qualification Information Automotive (per AEC-Q1) Qualification Level Comments: This part number(s) passed Automotive qualification. Infineon s Industrial and Consumer qualification level is granted by extension of the higher Automotive level. Moisture Sensitivity Level D-Pak MSL1 Machine Model Class M4 AEC-Q1-002 ESD Human Body Model Class H1C AEC-Q1-001 Charged Device Model Class C3 AEC-Q1-005 RoHS Compliant Yes Highest passing voltage. Revision History Date Updated datasheet with corporate template 11/23/2015 Corrected ordering table on page 1. Comments Published by Infineon Technologies AG 81726 München, Germany Infineon Technologies AG 2015 All Rights Reserved. IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ( Beschaffenheitsgarantie ). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer s products and any use of the product of Infineon Technologies in customer s applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com). WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. 11 2015-11-23