Terrain Reflection and Diffraction, Part One

Similar documents
Groundwave Propagation, Part One

Rec. ITU-R P RECOMMENDATION ITU-R P PROPAGATION BY DIFFRACTION. (Question ITU-R 202/3)

UNIT Derive the fundamental equation for free space propagation?

RADIOWAVE PROPAGATION

Empirical Path Loss Models

Point to point Radiocommunication

RECOMMENDATION ITU-R P ATTENUATION IN VEGETATION. (Question ITU-R 202/3)

Radio Propagation Fundamentals

Propagation Mechanism

Rec. ITU-R P RECOMMENDATION ITU-R P *

Antennas and Propagation. Chapter 6a: Propagation Definitions, Path-based Modeling

Polarization orientation of the electric field vector with respect to the earth s surface (ground).

Propagation mechanisms

Information on the Evaluation of VHF and UHF Terrestrial Cross-Border Frequency Coordination Requests

Antennas and Propagation. Chapter 5

Antennas and Propagation. Chapter 5

Sw earth Dw Direct wave GRw Ground reflected wave Sw Surface wave

Supporting Network Planning Tools II

ITU-R P Aeronautical Propagation Model Guide

A Terrestrial Multiple-Receiver Radio Link Experiment at 10.7 GHz - Comparisons of Results with Parabolic Equation Calculations

Session2 Antennas and Propagation

Channel Modeling and Characteristics

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman

Noise and Propagation mechanisms

Study of Factors which affect the Calculation of Co- Channel Interference in a Radio Link

Antennas and Propagation

Topic 5: Radio wave propagation and safety issues

# DEFINITIONS TERMS. 2) Electrical energy that has escaped into free space. Electromagnetic wave

Channel Modelling ETIM10. Propagation mechanisms

Chapter 4. Propagation effects. Slides for Wireless Communications Edfors, Molisch, Tufvesson

Chapter 15: Radio-Wave Propagation

A Matlab-Based Virtual Propagation Tool: Surface Wave Mixed-path Calculator

RECOMMENDATION ITU-R P * Propagation by diffraction

Antennas and Propagation

RECOMMENDATION ITU-R P Prediction of sky-wave field strength at frequencies between about 150 and khz

EEG 816: Radiowave Propagation 2009

Propagation Channels. Chapter Path Loss

The MYTHOLOGIES OF WIRELESS COMMUNICATION. Tapan K Sarkar

PART 1 RECOMMENDATION ITU-R P.1144 GUIDE TO THE APPLICATION OF THE PROPAGATION METHODS OF RADIOCOMMUNICATION STUDY GROUP 3

Mobile Communications

Atmospheric Effects. Attenuation by Atmospheric Gases. Atmospheric Effects Page 1

Final Examination. 22 April 2013, 9:30 12:00. Examiner: Prof. Sean V. Hum. All non-programmable electronic calculators are allowed.

Amateur Radio License. Propagation and Antennas

Radiowave Propagation Prediction in a Wind Farm Environment and Wind Turbine Scattering Model

RADIOWAVE PROPAGATION: PHYSICS AND APPLICATIONS. Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, / 31

FM Transmission Systems Course

RECOMMENDATION ITU-R P Guide to the application of the propagation methods of Radiocommunication Study Group 3

Annex 5. Determination of the interference field strength in the Land Mobile Service

Introduction to Radar Systems. Radar Antennas. MIT Lincoln Laboratory. Radar Antennas - 1 PRH 6/18/02

Colubris Networks. Antenna Guide

EEM.Ant. Antennas and Propagation

RADIO WAVE PROPAGATION IN URBAN ENVIRONMENTS

Link Budget Calculation

Lecture 12: Curvature and Refraction Radar Equation for Point Targets (Rinehart Ch3-4)

Module contents. Antenna systems. RF propagation. RF prop. 1

Chapter 1: Telecommunication Fundamentals

RECOMMENDATION ITU-R S.1257

RECOMMENDATION ITU-R P Propagation effects relating to terrestrial land mobile and broadcasting services in the VHF and UHF bands

RVRUSA - DATA DE REFERENCIA PARA INGENIEROS

Propagation curves for aeronautical mobile and radionavigation services using the VHF, UHF and SHF bands

PROPAGATION MODELING 4C4

Antennas & wave Propagation ASSIGNMENT-I

This Antenna Basics reference guide includes basic information about antenna types, how antennas work, gain, and some installation examples.

Propagation curves and conditions of validity (homogeneous paths)

h max 20 TX Ionosphere d 1649 km Radio and Optical Wave Propagation Prof. L. Luini, July 1 st, 2016 SURNAME AND NAME ID NUMBER SIGNATURE

Structure of the Lecture

EC ANTENNA AND WAVE PROPAGATION

Use of dyadic Green s function for RCS estimation of large targets

Antennas and Propagation. Prelude to Chapter 4 Propagation

Propagation Modelling White Paper

Introduction to Basic Reflective Multipath In Short-Path Wireless Systems

Antennas and Propagation

Radio Network Planning & Optimization

Goodbye Rec. 370 Welcome Rec. 1546

Planning a Microwave Radio Link

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P.

Basic Propagation Theory

OBJECTIVES: PROPAGATION INTRO RADIO WAVES POLARIZATION LINE OF SIGHT, GROUND WAVE, SKY WAVE IONOSPHERE REGIONS PROPAGATION, HOPS, SKIPS ZONES THE

Antenna and Noise Concepts

Ionospheric Propagation

Protection Ratio Calculation Methods for Fixed Radiocommunications Links

Antenna Basics. Antennas. A guide to effective antenna use

Development of a Wireless Communications Planning Tool for Optimizing Indoor Coverage Areas

Unguided Media and Matched Filter After this lecture, you will be able to Example?

Research Article Calculation of Effective Earth Radius and Point Refractivity Gradient in UAE

Intro to Radio Propagation,Antennas and Link Budget

RECOMMENDATION ITU-R P The prediction of the time and the spatial profile for broadband land mobile services using UHF and SHF bands

Interpretation and Classification of P-Series Recommendations in ITU-R

Technical Note: Path Align-R Wireless Supporting Information

Rec. ITU-R F RECOMMENDATION ITU-R F *

RECOMMENDATION ITU-R P Attenuation in vegetation

RECOMMENDATION ITU-R P Propagation data and prediction methods required for the design of terrestrial line-of-sight systems

λ iso d 4 π watt (1) + L db (2)

Wave Propagation and Antenna Engineering

Antenna & Propagation. Basic Radio Wave Propagation

Technician License Course Chapter 4

Aperture Antennas. Reflectors, horns. High Gain Nearly real input impedance. Huygens Principle

RADIO WAVE PROPAGATION IN THE AMAZON JUNGLE. Mauro S. Assis MAY 2011

ECE Lecture 32

Building Optimal Statistical Models with the Parabolic Equation Method

Transcription:

Terrain Reflection and Diffraction, Part One 1 UHF and VHF paths near the ground 2 Propagation over a plane Earth 3 Fresnel zones Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 1 / 52

I. UHF and VHF paths near the ground In many applications communications are influenced by reflections from the Earth surface Particular problem when antenna gains are small and receivers are near the ground In Chapter 7 we will study the direct + Earth reflections mechanism and also terrain diffraction The Earth surface also plays a role in groundwave propagation (Chapter 9) but this applies mainly at lower than VHF frequencies Since ionospheric propagation is also negligible for VHF and higher freqencies, direct + Earth reflections and terrain diffraction are the main mechanism for these frequencies over medium distances Tropospheric scatter applies at very long distances Consideration of multipath environments in Chapter 8 Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 2 / 52

We will learn basic methods for predicting propagation over a specified terrain path Primarily applied to assess antenna heights needed to maintain communications for various values of κ Used in designing line-of-sight UHF and SHF point-to-point links Numerical methods are also now being applied here; we will learn a little about these as well Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 3 / 52

II. Propagation over a plane Earth Begin by assuming the Earth surface to be planar (valid approximation for short distances and smooth terrain), so that R 2 = R 2 + R 2 (1) tan ψ 2 = (h 1 + h 2 )/d (2) tan ψ 1 = (h 1 h 2 )/d (3) d = R 1 cos ψ 1 = R 2 cos ψ 2 (4) We know the power density in the direct ray in free space is from which we can find S dir = P T G T 4πR 2 1 (5) E dir 60PT G T = (6) R 1 60PT G T (7) d Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 4 / 52

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 52

We can re-write the direct field strength as where and E dir = E 0 d (8) E 0 = α 2P T (9) α = 30G T (10) E 0 is known as the unattenuated field intensity at unit distance Antenna type α for d in km α for d in mi isotropic 173 108 short dipole 212 132 λ/2 dipole 222 138 short monopole* 150 93.2 λ/4 monopole* 157 97.5 Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 6 / 52

The magnitude of the reflected ray can be found from E ref = E 0 Γ (11) d and the total field should be found by adding the direct and reflected fields in the proper phase relationship E tot = E 0 d e jk 0R 1 + Γe jk 0R 2, (12) Since distances are likely to be large in terms of λ, it is better to use E tot = E 0 d 1 + Γe jk 0(R 2 R 1 ) (13) Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 7 / 52

Examining the geometry, we can find and so that R 2 = [ d 2 + (h 1 + h 2 ) 2] 1/2 (14) d + 1 2d (h 1 + h 2 ) 2 (15) R 1 d + 1 2d (h 1 h 2 ) 2 (16) R 2 R 1 2h 1h 2, (17) d if we are near grazing, to obtain E tot = E 0 1 + Γe j2k 0h 1 h 2 /d (18) d If Γ 1 and h 1 h 2 < 12 d km f GHz, we obtain E tot = E 0 d 4πh 1 h 2 λd (19) Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 8 / 52

Example: 1 GHz source 10 m above a perfectly conducting plane, plot received power as a function of height relative to free space for varying receiver heights at 1 km range. PEC, horizontal polarization: Γ = 1 Thus, E tot = E 0 d 1 e j2k 0h 1 h 2 /d This will be zero when 2k 0 h 1 h 2 /d = 2nπ Solve to find h 2 = 15n m Field strength relative to free space is given by term in brackets Maximum value: 6 db, minimum: - db Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 9 / 52

40 1 GHz, 1 km distance, Transmitter height 10 m 35 30 Receiver Height (m) 25 20 15 Γ= 1 Γ= 0.5 Low antenna 10 5 0 20 15 10 5 0 5 10 Received power relative to free space (db) Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 10 / 52

Relative Received Power (db) 10 0 10 20 30 40 1 GHz, Transmitter/Receiver heights 10 m Γ= 1 Γ= 0.5 Low antenna 200 400 600 800 1000 1200 1400 1600 1800 2000 Distance (m) Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 11 / 52

III. Fresnel zones Fresnel zones are defined as the locus of points around a direct ray that produce a specified phase delay if a reflection occurs there Convention is to define the nth Fresnel zone as the set of points at which reflection would produce an excess path length of nλ/2 Analytic geometry shows that these are ellipsoids of revolution centered on the direct ray, axes increase with increasing n When considered in a two dimensional plane, these become ellipses Since Γ 1 at grazing incidence, a signal reflected from the first Fresnel zone will be received in phase with the direct signal Thus, odd Fresnel zone reflections produce constructive interference, even Fresnal zone reflections produce destructive interference Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 12 / 52

2 nd Fresnel zone 1 st Fresnel zone Direct Ray Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 13 / 52

To derive the Fresnel zone radii at a specified distance d 1 from one end of the path use Approximating yields r 1 + r 2 = d 1 + d 2 + nλ/2 (20) d1 2 + F n 2 + d2 2 + F n 2 = d 1 + d 2 + nλ/2 (21) and so d 1 + F 2 n 2d 1 + d 2 + F 2 n 2d 2 = d 1 + d 2 + nλ/2 (22) F 2 n 2 [ 1 + 1 ] = Fn 2 d 1 d 2 d 1 + d 2 2d 1 d 2 = nλ/2 (23) with F n in m nλd1 d 2 F n = (24) D nd 1,km d 2,km = 17.3 (25) f GHz D km Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 14 / 52

C r 1 r 2 F n A d 1 O d 2 B Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 15 / 52

Fresnel Zone Size (m) 0 20 0.6 F 1 F 1 F 2 F 3 F 4 40 0 5 10 15 20 Distance (km) Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 16 / 52

Revisit our planar Earth direct plus reflected model in terms of Fresnel zones: transmit/receive heights h 1 & h 2, distance d First, write an equation for a line between transmitter image and receiver; intersection with plane is the reflection point Next, write an equation for a line between transmitter and receiver (the direct path ); we can determine the height of this line above the reflection point As derived in Section 7.3.1 of the book, this clearance h divided by the first Fresnel zone radius at the reflection point F 1 is h F 1 = 2 h1 h 2 λd When h/f 1 is unity, constructive interference occurs, when h/f 1 = 2 destructive interference occurs, etc. ( ) 2 Also it turns out that π h F1 is the phase difference between the direct and reflected rays at the receiver As the receiver height increases, the lowest height at which a free space equivalent power occurs is when h/f 1 = 0.577 (26) Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 17 / 52

Terrain Reflection and Diffraction, Part Two 1 Path profile construction 2 Calculation of Earth bulge 3 Height gain curves 4 Obstructed region 5 Reflection region Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 18 / 52

I. Path profile construction Predicting propagation over a particular path requires knowledge of the terrain between Tx and Rx Such information can be obtained from topographical maps or from mapping agencies, although accuracy may be questionable Ground or aerial surveys can be used to obtain more accurate information, but these can get expensive On longer paths, Earth curvature and refraction become more important and we need to consider these Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 19 / 52

We ll use our Chapter 6 models: either straight rays-modified Earth radius or curved rays-flat Earth The former is more useful if we want to consider several antenna heights for a given κ value, the latter if we want to consider several different refractive conditions for fixed antennas Note when we draw paths the horizontal scale will usually be much larger than the vertical; this makes angles appear incorrect Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 20 / 52

II. Calculation of Earth bulge Using the figure and a theorem for chords in a circle, we have AD DC = BD DE (27) AD d 1 (28) DC d 2 (29) BD b (30) ED 2R e = 2κa (31) so that d 1 d 2 = (2b)(κa) (32) and b = d 1d 2 2κa (33) Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 21 / 52

d 2 d B 1 b= BD A AD D DC C R e - b= DO R e= AO R e= CO O Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 22 / 52

If we use d in km and b in m we find b = d 1d 2 12.74κ (34) Maximum value occurs at center of path, where b = d2 4(12.7κ) Note that the Earth bulge becomes larger as the antennas are spread further apart Note this bulge is not relative to the horizon, it is relative to the direct ray (through the Earth) between Tx and Rx This occurs because as Rx moves further from Tx it decreases in height so that it appears the Earth surface is bulging Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 23 / 52

For ground based links: We want to minimize costs so we should minimize the number of stations by spacing them far apart If they are too far apart the Earth bulge will block the line of sight under certain refractive index variations Even if we are not blocked, reflections from the ground can produce nulls in our pattern that change as refractive indices vary This would require a reflection coefficient magnitude near unity The aim of microwave link design is to assure proper path clearance and to avoid interference due to reflections by choosing paths and antenna heights Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 24 / 52

Distance to the radio horizon : Given the Earth bulge, we can find the distance to the radio horizon by drawing lines between specified transmitters and receivers and trying to determine whether the Earth bulge is intersected Derivation in Sect. 7.5.1 of the book finds maximum distance at which line between transmitter and receiver transitions from not touching to touching Earth bulge: For a receiver on the ground this is: d max = 2κah 1 + 2κah 2 (35) d horizon = 2κah 1 = 2h 1,ft (36) if the distance is in miles in the last equation Propagation at this distance is not necessarily good! Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 25 / 52

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 26 / 52

III. Height gain curves Predictions are usually presented in terms of plots of excess propagation loss relative to free space versus one antenna height with all other variables held fixed, as in our planar Earth example These are known as height gain curves Using the straight ray-effective Earth radius model, we plot the path terrain height for a specified value of κ Note that topographical maps, surveys, etc. give heights relative to sea level; sea level is on the surface of a sphere! Thus we first plot a reference height above sea level as the modified radius curved earth surface (the bulge ) and then plot terrain heights relative to this This just amounts to adding the Earth bulge to terrain heights along the path Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 27 / 52

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 28 / 52

C Receiver height (m) B A E/E 0 (db) 0 Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 29 / 52

IV. Obstructed region (Terrain diffraction) If on our terrain plots we find rays that are blocked by the terrain, it is clear the path is obstructed However there must be some more gradual transition between the non-obstructed and obstructed cases as we will see It turns out that signals are still received when the path is obstructed: this is the terrain diffraction mechanism Solving a diffraction problem is usually difficult and possible analytically only for a few simple shapes; no solutions for exact terrain obstacles We will study the two canonical shape solutions to get some insight into expected field behaviors near obstruction Our two cases: a sphere and a knife edge Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 30 / 52

Spherical case: First find path clearances: either positive or negative Compute path clearance relative to F 1 vs distance; minimum value of this is a key parameter in propagation modeling Spherical earth difraction can be computed from Van der Pol and Bremmer solution we will use again in Chapter 9 Plotted vs. minimum h/f 1 ; curve depends on more than just this parameter but h/f 1 is primary influence Note that signal is still present even with obstructed path, although it falls off rapidly as the path becomes more obstructed Free space signal levels obtained when minimum h/f 1 0.6, i.e. the path clearance is 60% of the first Fresnel zone radius at the obstruction location As path clearance increases we see reflection region behavior with constructive and destructive interference; note Fresnel zones Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 31 / 52

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 32 / 52

10 5 0 E/E 0 (db) 5 10 15 20 25 A: Spherical Earth B: Knife Edge C: Reduced Reflection 30 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 h/f 1 Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 33 / 52

Knife edge case: Diffraction by an infinite PEC halfplane of zero thickness, first solved by Sommerfeld Solution available in terms of a universal curve versus h/f 1 Pure ray theory would give no field intensity in shadow zone, but diffraction produces fields Solution is curve B in Figure, note that again free space value is obtained at h 0.6F 1 This turns out to be true often for general propagation paths, so it is a useful rule of thumb: free space field strength values occur when obstacles are cleared by approximately 0.6F 1 Knife edge is a more appropriate model for sharp obstacles such as mountains Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 34 / 52

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 35 / 52

Summary of obstructed region: Paths which clear an obstacle by more than 0.6F 1 can be considered not obstructed; this will depend on the atmosphere! This requires higher antenna heights than just requiring rays not to be blocked; curves show that zero clearance gives 19 db for the sphere, 6 db for the knife edge. Some empirical formulas available from ITU-R as well. Subrefractive conditions κ < 1 give the worst problem so usually we design for a given clearance at the minimum expected κ value for a location In analyzing measurements, graphical methods based on the fact that free space values occur when obstacles are cleared by 0.6F 1 can be used to identify obstacles Codes exist for producing propagation predictions by combining the sphere and knife edge models Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 36 / 52

V. Reflection region When paths are not obstructed, it is possible to obtain interference between direct and reflected rays We want to avoid destructive interference! Note significant reflections are obtained only if Γ 1, this is often the case since we are near grazing However, large local terrain height variations on a wavelength scale reduce Γ (reflection from a rough surface), as do vegetation, so reflections can usually be neglected on these paths Determining reflection points from analysis can be difficult; instead we will focus on finding reflection points given measurements If we can locate reflection points, sometimes it is possible to do something about them and eliminate the possibility of destructive interference Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 37 / 52

Our direct + ground reflected formulas in terms of h/f 1 are E = E 2 0 h F 1 + Γe jπ 1 (37) d where h is the path clearance at the reflection point This fits the sphere result well for clearing paths, plot also includes a reduced Γ = 0.5 case To locate reflection points on paths from measurements, first plot rays for paths which result in transmission minima (these are usually sharper and easier to identify that maxima) For Γ = 1, it is clear from the formula that minima should be obtained when the reflection point is cleared by an even number Fresnel zone radius Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 38 / 52

In the planar Earth problem, finding the reflection point is easy; we can also solve the problem for a sphere, but it is more complicated Locating reflection points for real paths is often not easy because there can be several reflection points (or even reflection regions ) so that path intersections are not clear Changing terrain slopes can also cause variations in reflection point effects In practice, reflection points usually arise from particularly flat parts of the terrain on a path, for example ponds or asphalt surfaces It is therefore important to map these out if reflections are a problem Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 39 / 52

Terrain Reflection and Diffraction, Part Three 1 Path analysis examples 2 Numerical methods Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 40 / 52

I. Path analysis examples Consider the 36 km profile on the next frame. A 600 MHz Tx is located on the left side at height 20 m above terrain. What is the minimum receiver height required to avoid obstruction (i.e. lowest height that achieves free space propagation level)? First elevate profile by Earth bulge (given assumed κ = 4/3), then by 0.6F 1. Find line from transmitter that intersects terrain + bulge + 0.6F 1 in only one point. Line height at end of path determines required Rx height. If we assume that reflection point is located at same place as the last obstruction, a similar procedure raising terrain by bulge + F 2 can be used to predict height of first null Location of reflection points generally hard to predict a-priori. Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 41 / 52

Terrain height above sea level (m) 700 660 620 580 540 500 460 420 380 340 300 0 4 8 12 16 20 24 28 32 36 Distance (km) Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 42 / 52

Terrain height above sea level (m) 740 700 660 620 580 Terrain +b+0.6 F 1 +b+f 2 540 500 460 420 380 340 300 0 4 8 12 16 20 24 28 32 36 Distance (km) Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 43 / 52

Sometimes a-priori determination of primary obstructions can be difficult given absence of trees, buildings, etc. in many sources of topographic information If measurements at various transmitter and receiver altitudes are available (unusual), then paths providing a free space propagation level can be examined together Intersection points common among these paths likely indicate obstruction location. A similar procedure can be used to try to locate reflection points if datasets with varying transmit and receive heights are available When trying to locate reflection points, nulls in the height gain pattern are better points of reference as compared to maxima Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 44 / 52

Terrain height above sea level (m) 900 860 820 780 740 700 660 620 580 540 500 0 4 8 12 16 20 Distance (km) Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 45 / 52

Another example: propagation measurements performed by MIT Lincoln Laboratories at 167 MHz with a receiver on a helicopter (allows measurement of height-gain pattern.) 15.2 km profile example on next frame; transmitter is 18.3 m above local terrain at left. Using our procedure to locate the minimum receiver height for free space received power (i.e. elevate terrain by bulge + 0.6F 1 ), a receiver height of 25 m above the local terrain is determined Compared with data from experiment in next frame; not too far off! Measurement also shows local minima at 71.6 and 113 m height; use these to try to locate reflection point Using terrain elevated by F 2 and F 4 shows intersection around 13.2 km A much stronger minimum occurs around 490 m; a similar analysis for this minimum suggests a reflection point around 0.5 km Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 46 / 52

Terrain height above sea level (m) 1100 1000 900 Terrain +b+0.6 F 1 800 0 3 6 9 12 15 Distance (km) Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 47 / 52

600 500 Receiver height (m) 400 300 200 Measured Free space Point Refl 1 Refl 2 Numerical 100 0 20 15 10 5 0 5 10 Receiver power relative to free space (db) Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 48 / 52

Terrain height above sea level (m) 1100 1000 900 Terrain +b+f 2 +b+f 4 800 0 3 6 9 12 15 Distance (km) Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 49 / 52

II. Numerical methods for path loss analysis Our analysis of obstructed paths and reflections has been based on simple analytical models Real paths do not necessarily fit these models, so our insights may not apply Computers can be used to solve Maxwell s equations with general boundary conditions, allowing us to get more exact answers for path predictions However, numerical methods for electromagnetics usually require discretization on the scale of λ, if paths are very large this becomes a very large problem! Computers and numerical methods are improving to enable us to solve these problems! Advanced refractive effects prediction system (AREPS) code of US Navy is a good example. Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 50 / 52

Possible numerical methods: Method of moments (MOM): discretizes an integral equation for the boundary conditions into a matrix equation, requires sampling on scale of λ. Usually does not include atmosphere. Finite difference-time domain (FDTD): discretizes differential form of Maxwell s equations throughout space, also requires smapling on scale of λ but can run several frequencies simultaneously, could include atmosphere at higher discretization cost Parabolic wave equation (PWE): based on parabolic approximation to wave equation, does not require sampling on scale of λ and so is very efficient compared to MOM and FDTD. Easy to include atmosphere Each of these methods has its advantages and disadvantages - we also have our old analytical techniques as well that can be programmed and should be the most efficient of all Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 51 / 52

600 500 Receiver height (m) 400 300 200 MOM PE 100 0 20 15 10 5 0 5 10 Receiver power relative to free space (db) Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 52 / 52