A 500 Broadband Power Amplifier

Similar documents
3100LA Broadband Power Amplifier

2100L Broadband Power Amplifier

1140LA Broadband Power Amplifier

PI-10 Broadband Power Indicator

PI-150 Broadband Power Indicator

2200L Broadband and Power Amplifier

A 075 Broadband Power Amplifier

1040L Broadband Power Amplifier

Broadband Power Amplifier

411LA Broadband Power Amplifier

GT-1050A 2 GHz to 50 GHz Microwave Power Amplifier

COM-POWER OPERATION MANUAL ACS W

Model 7000 Low Noise Differential Preamplifier

BLAX2500. RF Power Amplifier MHz Operating & Service Manual BRUKER. Version

Model Hz to 10MHz Precision Phasemeter. Operating Manual

Model 4007DDS. 7 MHz Sweep Function Generator

Model 5100F. Advanced Test Equipment Rentals ATEC (2832) OWNER S MANUAL RF POWER AMPLIFIER

CBA 400M MHZ to 400 MHZ

INSTRUMENTS, INC. Models 2960AR and 2965AR Disciplined Rubidium Frequency Standards. Section Page Contents

1 FUNCTIONAL DESCRIPTION WAY SPLITTER/INPUT BOARD FET RF AMPLIFIERS WAY POWER COMBINER VSWR CONTROL BOARD...

LPF-100 Composite Low Pass Filter

CALIBRATED IMPULSE GENERATOR MODEL CIG khz 1 GHz

Installation & Service Manual

EO Modulator Driver and Source Models 3363-A, 3363-B, and 3363-C

Model 4402B. Ultra-Pure Sinewave Oscillator 1Hz to 110kHz Typical Distortion of % Serial No. Operating Manual

SDI SPECTRADYNAMICS, INC. LOW NOISE FREQUENCY REFERENCE OPERATING MANUAL

INSTRUCTION MANUAL LKG 601 Electrical Safety Analyzer

Model 1791 VHF Radio User's Manual

INSTRUCTION SHEET WIDEBAND POWER SENSOR MODEL Copyright 2008 by Bird Electronic Corporation Instruction Book P/N Rev.

100W Wide Band Power Amplifier 6GHz~18GHz. Parameter Min. Typ. Max. Min. Typ. Max. Units. Frequency Range GHz Gain db

Technical Datasheet GT-1000B Microwave Power Amplifier. 100 MHz to 20 GHz. Broadband High-Power Instrumentation Amplifier Rev.

INSTRUMENTS, INC. Model 2960AX Disciplined Quartz Frequency Standard 2960AX. Section Page Contents

QNP Accessory. For BLAXH300/ MHz Operating & Service Manual. Version

CIRCUIT-TEST ELECTRONICS

dbm Supply Current (Idd) (Vdd=+36V)

DEPARTMENT OF THE ARMY TECHNICAL BULLETIN CALIBRATION PROCEDURE FOR SHF SIGNAL GENERATOR AN/USM-47 (HEWLETT-PACKARD MODEL 626A) (NSN )

CMP-300 Composite Mixer/ Distribution Amplifier

WiMo Antennen und Elektronik GmbH Am Gäxwald 14, D Herxheim Tel. (07276) FAX 6978

Broadcast Concepts Inc NW 102 Road Suite 4 Medley FL Tel: : Fax Model P50FM42MH-SMA2 FM Pallet Amplifier Module

2W Ultra Wide Band Power Amplifier 0.2GHz~35GHz. Parameter Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Units. Frequency Range

Current Probe Fixture Instruction Manual

OPERATING MANUAL CAVITY DUMPER / PULSE PICKER DRIVER MODEL NUMBER: 643ZZ.ZZZ-SYN-Y-X

EC Declaration of Conformity

Parameter Min. Typ. Max. Units. Frequency Range 8-11 GHz. Saturated Output Power (Psat) 52 dbm. Input Max Power (No Damage) Psat Gain dbm

R-Series R235LS 2-Channel Power Amplifier with Local Source Switching

SIGNAL GENERATORS. MG3633A 10 khz to 2700 MHz SYNTHESIZED SIGNAL GENERATOR GPIB

Model 3210C. 100 Ampere AC Current Standard. Operating Manual

Mirage B-320-G FEATURES

GT-1000A Microwave Power Amplifier 2 GHz to 20 GHz. Broadband High-Power Instrumentation Amplifier. Preliminary Technical Datasheet

Amplifier HF MHz

INSTRUCTION MANUAL LKG

OPERATING MANUAL VOLTAGE CONTROLLED OSCILLATOR MODEL NUMBER: 21XXX-YYY-ZASVCO DOCUMENT NUMBER: 51A18410

Model Operating Manual

SDI SPECTRADYNAMICS, INC GHZ RUBIDIUM FREQUENCY SYNTHESIZER OPERATING MANUAL

Thruline RF Directional Wattmeters

MODEL 3 MONO AMPLIFIER OWNER S MANUAL

PA FAN PLATE ASSEMBLY 188D6127G1 SYMBOL PART NO. DESCRIPTION. 4 SBS /10 Spring nut. 5 19A702339P510 Screw, thread forming, flat head.

Model 34A. 3Hz to 2MHz 2-Channel Butterworth/Bessel HP, LP, BP, BR Plug-In Filter Card for Model 3905/3916 Chassis.

Advanced Test Equipment Rentals ATEC (2832)

PULSE DISTRIBUTION AMPLIFIER OPERATING MANUAL

Model 9305 Fast Preamplifier Operating and Service Manual

OPERATING MANUAL DIGITALLY CONTROLLED FREQUENCY SYNTHESIZED OSCILLATOR MODEL NUMBER: ADSDFS-A DOCUMENT NUMBER: 51A19937C

20W Solid State Power Amplifier 6-18GHz. Parameter Min. Typ. Max. Min. Typ. Max. Units

MICROTUBE 100. OWNER S MANUAL (version 1)

MQH0XX-YYDS3-ZZZ-2S. High Power 2 Channel RF Driver: For 2 Acousto-optic Q-Switches. Description: Key Features: Applications:

Model 9302 Amplifier-Discriminator Operating and Service Manual

DANFYSIK A/S - DK-4040 JYLLINGE - DENMARK

APPLICATION NOTE LZY-2 ULTRA LINEAR RF AMPLIFIER. 500 MHz MHz 20 WATTS MIN., 1 db COMPRESSION (40 db MIN. GAIN)

Harris IRT Enterprises Multi-Channel Digital Resistance Tester Model XR

OPERATING AND MAINTENANCE MANUAL

100U1000. Features. 100 watts CW 100kHz 1000MHz Class A Portable Full VSWR tolerant CE & RoHS Compliant High Efficiency

Setup of Gain Control System (MGC/AGC)

20W Solid State Power Amplifier 26.2GHz~34GHz. Parameter Min. Typ. Max. Min. Typ. Max. Units. Frequency Range GHz.

DSTS-5A/2C User's Manual

RF Generators. Requirements:

TECHNICAL SPECIFICATIONS OF STORES AND DRAWINGS.

2.9GHz SPECTRUM ANALYZER

Model 533 Dual Sum and Invert Amplifier Operating and Service Manual

CT-2 and CT-3 Channel Taggers OPERATION MANUAL

2 GHz to 6 GHz, 500 W Power Amplifier HMC8113

COUPLING DECOUPLING NETWORK MODEL CDN-AF4

PA8HF power amplifier Operating guide

LCM100 USER GUIDE. Line Carrier Modem INDUSTRIAL DATA COMMUNICATIONS

OPERATION & SERVICE MANUAL FOR FC 110 AC POWER SOURCE

FREQUENCY AGILE FM MODULATOR INSTRUCTION BOOK IB

OM1006 Solid State 50 MHz Power Amplifier

Base model features 1.0Vpp, 50ohm modulation input level and 24/28Vdc supply. L : +15V supply operation

Bulk Current Injection Probe Test Procedure

FREQUENCY SYNTHESIZERS, SIGNAL GENERATORS

Amplifier Series BASIC. Installation & Operations Manual

Revision 1.b Release Date July 29, 2007 This data sheet covers models 4379, 4472 Revision Notes Repl 0.d (Rev p/n 250W, B version of Comb)

INSTRUCTION MANUAL For LINE IMPEDANCE STABILIZATION NETWORK. Model LI khz to 10 MHz

INSTRUCTION MANUAL. March 11, 2003, Revision 3

Power Meter. Measurement Guide. for Anritsu RF and Microwave Handheld Instruments BTS Master Site Master Spectrum Master Cell Master

INSTRUMENTS, INC. INSTRUCTION MANUAL Precision 350 MHz Synthesizer. Model 425A. Table of Contents. Section Page Contents

Current Probes. User Manual

SOUTHERN AVIONICS COMPANY. SE125 Transmitter. SE125 Transmitter 1-1

SI-125 Power Amplifier Manual 6205 Kestrel Road; Mississauga, Ontario; Canada; L5T 2A1 November 2016, Rev 0.5

MC450/MC650 (MC750) OPERATING INSTRUCTIONS

WE-525T Antenna Analyzer Manual and Specification

Transcription:

A 500 Broadband Power Amplifier HIGH RF VOLTAGES MAY BE PRESENT AT THE OUTPUT OF THIS UNIT. All operating personnel should use extreme caution in handling these voltages and be thoroughly familiar with this manual. Do not attempt to operate this unit prior to reading this manual. subject to change without notice. March 2016 1 Revision C

Warranty Electronics & Innovation Ltd., (hereafter E&I) warrants for the period of three years from the date of original delivery, each unit to be free of defects in materials and workmanship. For the period of 36 months E&I will, at its option, repair or replace defective parts so as to render the unit fully operational such that it performs according to the original specifications; free of charge to the original purchaser. Should warranty service be required, the unit must be returned to E&I, freight cost to be borne by the owner. If, in our opinion, the unit has been damaged by use outside the limits prescribed in this manual or by accident, then the warranty shall not be honored. In such a case E&I will provide an estimate for repair, assuming repair is possible and provide a quote at standard service rates. Contents Chapter 1 General Information 3 Chapter 2 Operation..4 Chapter 3 Technical Information.7 Chapter 4 Maintenance 8 Chapter 5 Safety 12 subject to change without notice. March 2016 2 Revision C

Chapter 1 Introduction The A 500 is a broadband solid state amplifier covering the frequency spectrum from 300 KHz to 35 MHz. It is rated at 500 watts of RF power with low harmonic and intermodulation distortion. Over 700 watts of saturated power can be produced with increased distortion products from. A linear Class A design, the A500 will amplify inputs of AM, FM, SSB, pulse and any complex modulation signals. The amplifier has 60 db gain, it is unconditionally stable and will not oscillate even with combinations of mismatched source and load impedance. It is protected against failure due to output load mismatch and/or overdrive. RMS forward and reverse powers are monitored by a front panel meter. An integral power supply permits operation from 200-240VAC VAC 47-63 Hz. 1.2 INSTRUMENTATION IDENTIFICATION Each amplifier is identified by a serial number tag on the back panel of the unit. Both the model number and the serial number should be quoted to identify specific unit. 1.3 SPECIFICATIONS Physical and electrical specifications are listed in Table 1-1 below subject to change without notice. March 2016 3 Revision C

Table 1-1. SPECIFICATIONS FREQUENCY COVERAGE: GAIN: CLASS A LINEAR OUTPUT: SATURATED RF POWER OUTPUT: INPUT IMPEDANCE OUTPUT IMPEDANCE: STABILITY: PROTECTION: POWER OUTPUT METER: POWER REQUIREMENTS: SIZE: WEIGHT: CONNECTORS: OPERATING TEMPERATURE: RACK MOUNTING: 300 khz to 35 MHz. 60 db min, ±1.5 variation. 500 watts P1 db 700 Watts min 50 ohms, VSWR, 1.5:1 Maximum. 50 ohms, VSWR, 2.5:1 Maximum Continuous operation into any load or source impedance. Unit will withstand a + 16dBm input signal (1.0 Volts RMS) for all output load conditions, without damage. True RMS power detection. ±5% of full scale accuracy. 200-240VAC VAC 47-63 Hz. 30 Amps Max 24 X 16.75 X 20 inches 330 X 425 x 508 mm. 180 pounds 82 kg N 0 40 C Chapter 2 Operation 2.1 INTRODUCTION The A500 RF amplifier is used to amplify the RF level of signal sources in the 300 KHz to 35 MHz range. No tuning or any other form of adjustment is required. The A500 produces rated power output at its output connector, regardless of load impedance. Any power reflected due to output load mismatch is absorbed in the amplifier. Therefore, although the output impedance is 50 ohms (maximum VSWR: 2.5:1), the amplifier will work into any load impedance. March 2016 4 Revision C

2.2 RACK INSTALLATION This unit is 14U high, 16.75 width. With the handles removed it will fit into a standard rack. 2.2.1 Mains Voltage The unit runs of 200-240VAC VAC 47-63 Hz. 30 Amps Max 2.3 OPERATION A fixed line cord is supplied to form a connection between the mains supply and the rear of the unit. This is configured from the factory with a 30A plug. Plug this into the AC mains outlet. 2.3.1 Proceed as follows: (i) (ii) (iii) (iv) (v) Ensure that there is at least 3 or 7.5 cm clearance at the rear of the unit for air flow. Ensure RF input voltage is not excessive a. The 1 V rms indicated maximum input voltage is 5 times the level of the input signal required to achieve maximum output. Input voltages in excess of 2 volts peak may permanently damage the instrument. Connect the output via a 50 ohm coaxial lead and N plug to the load. Turn on signal generator before connecting to the A500 Connect the input signal via a 50 ohm coaxial lead and N plug to the input connector. 2.3.2 Front Panel Display The A500 front panel has a passive LCD display designed for simplicity and ease of use. During initialization, the LCD shows the software revision. After the amplifier is initialized, the LCD indicates Forward Power, Reflected Power, and amplifier status (see figure 2.1). Figure 2.1 : Front Panel Display Pf: W Pr: W Status: Where Pf refers to forward power, Pr refers to reverse power, and Status indicates OK unless there is a fault condition, such as: Overheat (heat-sink temperature is too high for reliable operation) March 2016 5 Revision C

PSU fault (internal fault in the main switching power supply) In the event of a fault, the unit may be reset by cycling the power. In the case over an over temp fault, ensure that the air inlet and out let are not restricted. If the fault persists, please contact Field Service. 2.3.3 RS 232 Interface The A500 features a standard RS-232 serial interface suitable for connection to a PC or host system. The communication protocol is extremely simple to facilitate readback and control with readily available terminal programs such as Hyperterm. The RS-232 link has the following parameters: Baud rate: 19200 Data bits: 8 Parity: Stop bits: 1 none Flow control: none An example configuration using HyperTerminal on a PC is shown in figure 2.2. Figure 2.2: Example RS-232 setup using Hyper Terminal March 2016 6 Revision C

In the default state, the RS-232 port will echo the same information sent to the front panel LCD display, allowing a running datalog to be stored to disk using the capture feature of the terminal program. Single character commands can be sent to the amplifier to achieve the following: "1" key enables telemetry (readback similar to LCD display) - this is the default mode at power up 2 key clears any faults and tries to start the supply. 0 key disables telemetry (Complement to 1 key) Custom commands and display lists can be implemented upon customer request. Chapter 3 Technical Description 3.1 GENERAL DESCRIPTION The A500 is designed to amplify signals by 55 db in the frequency band of 300 KHz to 35 MHz. The signal from the front panel N connector is fed via a length of 50 ohm coaxial cable into the input of the pre-amp splitter module. The signal from the output of the splitter is coupled to the input drivers 1) - 4) the first stage of each is the MMIC front end. The output signal of the MMIC is coupled to the gate of transistor Q1. The further amplified signal appearing at the drain of Q1 is coupled to the input of Q2. This is transformed to 50 and fed to the driver output BNC port. The driver output signal are fed through a length of coaxial cable to the input of a power splitter, the outputs of this are fed to the power amplifier modules. In each PA module the signal is split into two equal phase and amplitude signals. These signals are fed to the inputs of transistors Q1 and Q2. The amplified signals appearing at the drains of Q1 and Q2 are then fed to the output BNC port via the impedance matching network. The output of the modules is then fed to a combiner to produce a single signal. The power signal is then fed into a length of 50 ohm coaxial cable to the RF bidirectional coupler. The output of the coupler is then fed directly to the N connector on the front panel, this is the unit output. The forward and reverse coupled ports of the bi-directional coupler are fed to the RF detector which is situated on the main control board. The RF detector feeds a voltage, which is representative of the true RMS power to the control board proper. The control board in turn drives the front panel display. March 2016 7 Revision C

There are four switch mode power supply units three provide a 42 VDC 35 ampere source. The other provides 24 VDC outputs and provides 10 amps. The main power supply also has a 5 VDC output which feeds the control board. 42 Volt To Page 2 b To Page 2 a 24 Volt Driver 1 Driver 1 Splitter Splitter 42 Volt Combiner To Page 2 b RF IN RF Detect 42 Volt To Page 2 b Combiner Coupler To Page 2 a 24 Volt Driver 1 Driver 1 Splitter Splitter 42 Volt To Page 2 b Combiner To Page 2 c RF OUT A500 RF Amplifier A500 SCH-01 March 2016 8 Revision C

AC IN Line Filter CKT BRK Front Panel LCD SMPS 42 Volt SMPS 42 Volt Controller SMPS 42 Volt TTL Control SMPS 42/24 Volt To page 1 b 24 Volt To page 1 a To page 1 c To Rear Panel RS232 Fans Chapter 4 Maintenance 4.1 INTRODUCTION The E&I A500 RF amplifier requires no periodic maintenance. The instrument is unconditionally stable and is fail-safe under all load conditions. Damage can only be externally caused by the incorrect selection of the AC supply voltage or by an input signal in excess of the specified 1 volt rms equivalent to a power level of 16dBm. This chapter therefore, deals only with certain fundamental procedures for fault location. March 2016 9 Revision C

Performance limits quoted are for guidance only and should not be taken for guaranteed performance specifications unless they are also quoted in the Specification Section 1.2. 4.2 PERFORMANCE CHECKS To determine the amplifier s performance carry out the following procedure. 4.2.1 Initial Check The following check can be made after repair and adjustments or whenever the condition of the unit is in question. a. Connect AC power supply. Switch on power and observe that the display initializes. b. Connect a sweep generator (HP 8601 or similar) capable of sweeping the frequency range 300 KHz to 35 MHz, to the input connector. c. Adjust the output level of the sweep generator so that a 50 ohm video detector connected at the output of the unit will not be damaged by excessive power output. (Reference section 4.4.1 for set up.) d. Observe the gain versus frequency ripple on an oscilloscope calibrated in decibels. The gain variation must be not more than +/- 1.5 db over the frequency range. e. Connect a calorimetric power meter (HP435B or equivalent) through a 30 db 1000 watt attenuator to the output connector. Adjust the input CW signal to any frequency between 300 khz and 35 MHz for 500 watts output. f. Observe the harmonic distortion of the output, properly attenuated, on a spectrum analyzer. The harmonic components contributed by the amplifier should be better than 24 db down from the fundamental. March 2016 10 Revision C

4.3.1 Measurement of Gain 1. Equipment Required (or equivalent): a) Osilloscope - Tektronix T921 b) Sweep/Generator - HP8601A c) Signal Generator - Exact Model 7060 d) 50 ohm Detector - Wavetek D151 e) Attenuator, 30 db, 1000 Watts Bird Sweep Generator 300 KHz 35 MHz RF Output Sweep Signal Trigger Input RF Detector 50 db Attenuator Figure 4-1. Gain Measurement 2. Connect the equipment as shown in Figure 4-1, then proceed as follows: a) Set the oscilloscope to DC, Time/cm to Ext. X, and gain to l0mv/cm. b) Set the sweep generator to the video sweep mode with the start frequency at 300 khz and the sweep width to 35 MHz. c) Disconnect the A500 from the set-up and connect the sweep/generator RF output directly to the 50 db attenuator. March 2016 11 Revision C

d) Adjust the output level of the sweep/generator for full vertical deflection on the oscilloscope face. e) Calibrate the scope face to show 3 db in 1 db steps by attenuating the sweep/generator in 1 db. f) Return sweep/generator output level to full deflection. Rotate the step attenuator (CCW) so that the output is reduced by 50 db. g) Reconnect the A500 into the test set-up of Figure 4-1. h) Place the A500 power switch to the "ON" position. i) Observe the gain versus frequency sweep on the oscilloscope. The average gain should be greater 55 db The gain variation should be within the 3 db as shown on the oscilloscope. 4.4.2 Measurement of Harmonics Sweep Generator 300 KHz 35 MHz RF Output Power Meter 30 db coupler 50 db Attenuator Spectrum Analyzer Figure 4-2. 1.) Equipment Required: a) Sweep/Signal Generator b) Calorimetric Power Meter HP435B March 2016 12 Revision C

c) Spectrum Analyzer. d) Attenuator (30dB) e) Coupler (30 db) 2.) Connect the Equipment as shown in Figure 4-2, then proceed as follows: a) Adjust the signal generator to a CW center frequency of 300 khz, for an indicated output of 500 watts on the power meter. b) Using the spectrum analyzer, check that the level of the carrier harmonics is less than -24 db with respect to the carrier while manually scanning the frequency band of 300 KHz to 35 MHz. An indicated power output of 500W should be maintained during this operation. 4.5 PACKAGING FOR RESHIPMENT In the event of the equipment being returned for servicing it should be packed in the original shipping carton and packing material. If this is not available, wrap the instrument in heavy paper or plastic and place in a rigid outer box of wood, fiberboard or very strong corrugated cardboard. Use ample soft packing to prevent movement. Provide additional support for projecting parts to relieve these of unnecessary shock. Close the carton securely and seal with durable tape. Mark the shipping container FRAGILE to ensure careful handling. Chapter 5 Safety: Do not attempt to operate this unit with the cover removed. High AC and DC voltages are present. The cover protects against electrical shock due to AC line voltages, high DC and RF fields. Further the cover provides part of the cooling system design. Components, specifically on the RF driver board are prone to over-heat and eventual failure if the unit is operated without the cover in place. Ensure that the load is connected to the output prior to connecting the RF input to the unit. This will prevent high voltages being present and exposed at the output connector. Only use the AC cord provided or equivalent. Ensure that the mains outlet is properly grounded. March 2016 13 Revision C