Design of RF and Microwave Filters

Similar documents
DIMENSIONAL SYNTHESIS FOR WIDE-BAND BAND- PASS FILTERS WITH QUARTER-WAVELENGTH RES- ONATORS

EE 508 Lecture 6. Degrees of Freedom The Approximation Problem

Chapter 13. Filters Introduction Ideal Filter

Atlanta RF Services, Software & Designs

Passive Filters. References: Barbow (pp ), Hayes & Horowitz (pp 32-60), Rizzoni (Chap. 6)

EKT 356 MICROWAVE COMMUNICATIONS CHAPTER 4: MICROWAVE FILTERS

Lowpass Filters. Microwave Filter Design. Chp5. Lowpass Filters. Prof. Tzong-Lin Wu. Department of Electrical Engineering National Taiwan University

Microwave Circuits Design. Microwave Filters. high pass

Walsh Function Based Synthesis Method of PWM Pattern for Full-Bridge Inverter

Uncertainty in measurements of power and energy on power networks

Transfer function: a mathematical description of network response characteristics.

Design of Duplexers for Microwave Communication Systems Using Open-loop Square Microstrip Resonators

Bandpass Filters Using Capacitively Coupled Series Resonators

antenna antenna (4.139)

ECEN 5014, Spring 2013 Special Topics: Active Microwave Circuits and MMICs Zoya Popovic, University of Colorado, Boulder

TABEL OF CONTENTS CHAPTER TITLE PAGE ABSTRAKT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS

Number of Sections. Contact factory for specific requirements not listed above.

Optimization of Microstrip Ring UWB filter using ANN- PSO

Microelectronic Circuits

ELC 4396 RF/Microwave Circuits I Fall 2011 Final Exam December 9, 2011 Open Book/Open Notes 2 hours

Lecture 17 Date: Parallel Resonance Active and Passive Filters

Transformation of Generalized Chebyshev Lowpass Filter Prototype to Suspended Stripline Structure Highpass Filter for Wideband Communication Systems

Atlanta RF Services, Software & Designs

New Configurations for RF/Microwave Filters

Experiment 3 - Printed Filters.

Filters occur so frequently in the instrumentation and

TECHNICAL NOTE TERMINATION FOR POINT- TO-POINT SYSTEMS TN TERMINATON FOR POINT-TO-POINT SYSTEMS. Zo = L C. ω - angular frequency = 2πf

Shunt Active Filters (SAF)

QUASI-ELLIPTIC MICROSTRIP BANDSTOP FILTER USING TAP COUPLED OPEN-LOOP RESONATORS

A NOVEL DUAL-BAND BANDPASS FILTER USING GENERALIZED TRISECTION STEPPED IMPEDANCE RESONATOR WITH IMPROVED OUT-OF-BAND PER- FORMANCE

Compact microstrip stepped-impedance lowpass filter with wide stopband using SICMRC

Commercially available GaAs MMIC processes allow the realisation of components that can be used to implement passive filters, these include:

PHYS225 Lecture 15. Electronic Circuits

Microstrip Dual-Band Bandpass Filter Using U-Shaped Resonators

Chebyshev Filters for Microwave Frequency Applications A Literature Review Sanjay Mishra 1 Dr. Agya Mishra 2

Lowpass and Bandpass Filters

Design of Microstrip Parallel-Coupled Line Band Pass Filters for the Application in Fifth-Generation Wireless Communication

NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia SPECTRAL PROCESSOR MEMO NO. 25. MEMORANDUM February 13, 1985

CHAPTER-4 WIDE BAND PASS FILTER DESIGN 4.1 INTRODUCTION

LECTURER NOTE SMJE3163 DSP

Jurnal Teknologi. Generalized Chebyshev Highpass Filter based on Suspended Stripline Structure (SSS) for Wideband Applications.

International Journal of Advance Engineering and Research Development DESIGN OF DUPLEXER USING MICROSTRIP FILTERS FOR LOW POWER GSM APPLICATIONS

Chapter 19. Basic Filters

AC-DC CONVERTER FIRING ERROR DETECTION

Harmonic Balance of Nonlinear RF Circuits

STUDY OF MATRIX CONVERTER BASED UNIFIED POWER FLOW CONTROLLER APPLIED PI-D CONTROLLER

A Simple Method of Designing Dualband and Multi- Bandpass Filters

[Makrariya* et al., 5(8): August, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

Design and Analysis of Parallel-Coupled Line Bandpass Filter

Keysight EEsof EDA Microwave Discrete and Microstrip Filter Design. Demo Guide

VHF lumped-element reconfigurable filters design and applications in field-programmable filter array

A Simple Bandpass Filter with Independently Tunable Center Frequency and Bandwidth

RECOMMENDATION ITU-R P Multipath propagation and parameterization of its characteristics

Chapter 7 RF Filters

COMPACT DESIGN AND SIMULATION OF LOW PASS MICROWAVE FILTER ON MICROSTRIP TRANSMISSION LINE AT 2.4 GHz

APPENDIX A to VOLUME A1 TIMS FILTER RESPONSES

IEE Electronics Letters, vol 34, no 17, August 1998, pp ESTIMATING STARTING POINT OF CONDUCTION OF CMOS GATES

Recent Advances in Mathematical and Computational Methods

Network Theory. EC / EE / IN. for

Multi-pole Microstrip Directional Filters for Multiplexing Applications

SLOTTED GROUND STRUCTURES AND THEIR APPLICATIONS TO VARIOUS MICROWAVE COMPONENTS. A Thesis DONG JIN JUNG

Design of an FPGA based TV-tuner test bench using MFIR structures

Design of Microstrip Coupled Line Bandpass Filter Using Synthesis Technique

A New MATLAB based Microstrip Filter Design Tool

Australian Journal of Basic and Applied Sciences

A study of turbo codes for multilevel modulations in Gaussian and mobile channels

29. Network Functions for Circuits Containing Op Amps

Narrowband Combline Filter Design with ANSYS HFSS

A NOVEL G-SHAPED SLOT ULTRA-WIDEBAND BAND- PASS FILTER WITH NARROW NOTCHED BAND

Thank you Carmina. Welcome all to our presentation of Direct Filter Synthesis for Customized Response

EE 201 Lab Lab 9. AC analysis. This week we look at some (relatively) simple AC circuits.

An Application of Bandpass Filters. Jeff Crawford - K ZR October 15, 2016

Tunable Microstrip Low Pass Filter with Modified Open Circuited Stubs

Introduction to Amplifiers

DESIGN OF DUAL-BAND BANDPASS FILTERS WITH CONTROLLABLE BANDWIDTHS USING NEW MAP- PING FUNCTION

A Spreading Sequence Allocation Procedure for MC-CDMA Transmission Systems

Fractional Base Station Cooperation Cellular Network

TUNABLE MICROWAVE BANDPASS FILTER DESIGN USING THE SEQUENTIAL METHOD

Multipath Propagation. Outline. What is OFDM? (OFDM) for Broadband Communications and. Orthogonal Frequency Division Multiplexing

Design of Radial Microstrip Band Pass Filter with Wide Stop-Band Characteristics for GPS Application

WIDE BAND AGC AMPLIFIER GaAs MMIC

DESIGN OF COMPACT MICROSTRIP LOW-PASS FIL- TER WITH ULTRA-WIDE STOPBAND USING SIRS

Biomedical Instrumentation

ECE 2133 Electronic Circuits. Dept. of Electrical and Computer Engineering International Islamic University Malaysia

AN ABSTRACT OF THE THESIS OF

Analog Lowpass Filter Specifications

GENESYS 2003 Enterprise. Synthesis

Downloaded from

Cavity Filters. Waveguide Filters

Design And Implementation Of Microstrip Bandpass Filter Using Parallel Coupled Line For ISM Band

Rejection of PSK Interference in DS-SS/PSK System Using Adaptive Transversal Filter with Conditional Response Recalculation

Design of Switched Filter Bank using Chebyshev Low pass Filter Response for Harmonic Rejection Filter Design

AM0350A QUADRATURE MODULATOR MHz

Design of Band-pass Filters Using Parallel Coupled Lines and. Discrete-Time Domain Techniques

Lecture 12: Bandpass Ladder Filters. Quartz Crystals

Parameter Free Iterative Decoding Metrics for Non-Coherent Orthogonal Modulation

Design, Optimization, Fabrication, and Measurement of an Edge Coupled Filter

ytivac Cavity Filters

THE DESIGN of microwave filters is based on

This is a repository copy of Microwave bandpass filters using re-entrant resonators..

Transcription:

Desn of RF and Mcrowave Flters

차례. Introducton ; types of Flters --------------------------------------. Characterzaton of Flters ------------------------------------------ 3. Approxmate Desn Methods -------------------------------------- 4. Lowpass Prototype Network --------------------------------------- 5.. Impedance Scaln ------------------------------------------------ 5.. frequency Expanson ---------------------------------------------- 5.3. Lowpass to hhpass transformaton ----------------------------- 5.4. Lowpass to bandpass transformaton ---------------------------- 5.5. Lowpass to bandstop transformaton ----------------------------- 5.6. Immtance Inverters ---------------------------------------------- 5.7. Bandpass flters usn J-, K- nverters --------------------------- 6.. LC flters ----------------------------------------------------------- 6.. Dstrbute flters --------------------------------------------------- 3 4 8 5 8 9 5 7 8 33 4 Mcrowave & Mllmeter-wave Lab.

. Introducton Types of Flters A. Lowpass Flters B. Hhpass Flters attenuaton attenuaton passband transton band stopband stopband transton band passband freq c ; cutoff cutoff C. Bandpass Flters D. Bandstop Flters freq atten transton band transton band atten transton band transton band stopband stopband passband passband passband stopband freq freq f f f f Mcrowave & Mllmeter-wave Lab. 3

. Flter Characterzaton Two-port Network ; Input H( ) Output H( ) H( ) e ( ) F. Two-port Network Mcrowave & Mllmeter-wave Lab. 4

Characterstcs of deal bandpass flters ; H( ) for for f f f f, f f f and ( ) d lh()l () Freq. F. Characterstcs of deal bandpass flter not realzable approxmaton requred Mcrowave & Mllmeter-wave Lab. 5

Practcal specfcatons ; ) Passband ; lower cutoff frequency - upper cutoff frequency ) Inserton loss lo H( ) ( db) ; must be as small as possble 3) Return Loss lo ( db) ; deree of mpedance matchn 4) Rpple f f ; varaton of nserton loss wthn the passband Mcrowave & Mllmeter-wave Lab. 6

d ( ) 5) Group delay d d ; tme to requred to pass the flter 6) Skrt frequency characterstcs ; depends on the system specfcatons 7) Power handln capablty Mcrowave & Mllmeter-wave Lab. 7

3. Approxmate Desn Methods ) based on Ampltude characterstcs A. Imae parameter method B. Inserton loss method a) J-K nverters b) Unt element - Kuroda dentty ) based on Lnear Phase characterstcs Mcrowave & Mllmeter-wave Lab. 8

3. Flter Desn based on the nserton loss Defnton of Power Loss Rato (P LR ) ; mpedance matchn as well as frequency selectvty P n [S ] P ref l P trans F. 3 General flter network P refl P n S P n P trans T P n S P n P LR P P n tran N( ) D( ) network synthess procedures are requred Mcrowave & Mllmeter-wave Lab. 9

Approxmaton methods : ) Maxmally Flat (Butterworth) response ) Chebyshev response 3) Ellptc Functon response Mcrowave & Mllmeter-wave Lab.

3. Approxmaton Methods A. Maxmally flat response P LR Chebyshev Maxmally flat.5.5 c P LR k c N Where, k ;passband tolerance N ; order of flter Usually k deree of freedom= (order N) F. 4 Comparson Between Maxmally Flat and Chebyshev response Mcrowave & Mllmeter-wave Lab.

Mcrowave & Mllmeter-wave Lab. B. Chebyshev response : equal rpple response n the passband : Chebyshev Polynomal of order LR T N k P N T N ) ( ) ( ) ( 3 4 ) (,, ) ( 3 3 x T x xt x T x x x T x T x x T n n n ; rpple (. db,. db, etc.) ; order of flter deree of freedom= (rpple and order) k N

attenuaton P LR s +k - c Chebyshev Response, N=4 p s Ellptc functon response N=5 F. 5 Chebyshev and Ellptc Functon response Mcrowave & Mllmeter-wave Lab. 3

C. Ellptc Functon response equal rpple passband n both passband and stopband s s : stopband mnmum attenuaton : transmsson zero at stopband deree of freedom=3 (order N, rpple, transmsson zero at stopband s ) Mcrowave & Mllmeter-wave Lab. 4

4. Lowpass Prototype Flter R L, rad / s c ; normalzed to R a N... 6 4 5 3 =... a' R a... 7 5 3 6 4 N = a'... F. 5 Lowpass prototype Mcrowave & Mllmeter-wave Lab. 5

Mcrowave & Mllmeter-wave Lab. 6 Maxmally Flat response ; Equal Rpple response ; R P L N LR ), (,...,,, sn F H N N even odd, ) ( N k k k N R T k P L N LR ln, snh, sn, 4 k k N b N a b a a

Table. Element values for Butterworth and chebyshev flters (n=5) Element No Type Butterworth. db rpple Chebyshev.5 db rpple Chebyshev.68.468.758.68.37.96 3..975.548 4.68.37.96 5.68.468.758 Mcrowave & Mllmeter-wave Lab. 7

5. Impedance Scaln and Frequency Mappn 5. Impedance Scaln R L RL 5 Impedance level 5 ; same reflecton coeffcent mantaned seres branch (mpedance) elements ; 5 5 shunt branch (admttance) elements ; r r / 5 r r /5 Mcrowave & Mllmeter-wave Lab. 8

5. Frequency Expanson cutoff frequency lowpass cutoff frequency c mappn functon ; f ( seres and shunt branch elements ; ) c c c Mcrowave & Mllmeter-wave Lab. 9

P LR P LR ' - (a) Lowpass Prototype response - c c (b) Frequency expanson P LR P LR - c c (c) Lowpass to Hhpass transformaton - (d) Lowpass to Bandpass Transformaton F. 6 Varous mappn relatons derved from lowpass prototype network Mcrowave & Mllmeter-wave Lab.

5.3 Lowpass to Hhpass transformaton (lowpass cutoff freq. hhpass cutoff freq. ) mappn functon ; f ( ) c / seres branch (mpedance) elements ; c ( c / ) /( c shunt branch (admttance) elements ; r ( c / ) r r /( cr ) ) R... 5 ' 3 ' ' N ' 4 ' ' R L =... F. 7 Hhpass flter derved from lowpass prototype Mcrowave & Mllmeter-wave Lab.

Mcrowave & Mllmeter-wave Lab. 5.4 Lowpass to bandpass transformaton (low cutoff freq., hh cutoff freq. ) mappn functon ; ) ( f and, ' '

Mcrowave & Mllmeter-wave Lab. 3 seres branch element : mpedance shunt branch element : admttance s s C L ; p p r r r r r L C ;...... R C N R L = C L L 3 L 5 C 4 L 4 C 5 C C 3 L L N F. 8 Bandpass flter derved from the lowpass prototype

Example : Desn a bandpass flter havn a.5db equal-rpple response, wth N=3. The f s GHz, bandwdth s %, and the nput and output mpedance 5Ω. step : from the element values of lowpass prototype (.5dB rpple Chebyshev).5963,.967, 3.5963, 4. step : apply mpedance scaln L Z.59635 79.85 H, C / Z. F, L 3Z 79.85 H step 3 : apply bandpass transformaton L ' L C L C ' C / 7 nh ' / L ' / C.99 pf C.76 nh / 34.9 pf ( ) / L 3 ' 3 ' R=5 L 3 '=7nH C 3 '=.99pF L '=.76nH C '=.99pF L '=7nH R L =5 C '=34.9pF Mcrowave & Mllmeter-wave Lab. 4

Mcrowave & Mllmeter-wave Lab. 5 5.5 Lowpass to bandstop transformaton (low cutoff freq., hh cutoff freq. ) mappn functon ; nverse of bandpass mappn functon ) ( f and, ' '

Mcrowave & Mllmeter-wave Lab. 6 seres branch element : admttance shunt branch element : mpedance s s L C ; - p p r r r r r C L ; - F. 9 Bandstop network derved from the lowpass prototype...... R C N R L = C L L 3 L 5 C4 L 4 C 5 C C 3 L L N

5.6 Immtance Inverters Z n (or Y n ) K(or J) Z L (or Y L ) mmttance nverter F. Immtance nverter K ; mpedance nverter J ; admttance nverter Z K / n Z L Y J / n Y L ex. smplest form of nverter : λ /4 transformer seres LC J-nverter + shunt LC shunt LC K-nverter + seres LC Mcrowave & Mllmeter-wave Lab. 7

5.7 Bandpass flters usn J-, K-nverters Lossless Lossless Z n () or Lowpass n+ R Bandpass R n+ low Network Network Z n '() or band F. Equvalent Network for lowpass prototype and bandpass network Reflecton coeffcent ; lowpass : Low Z Z n n ( ') / ( ') / bandpass : Band Z Z n n ( ) / R ( ) / R If Z n ( ') / Zn ( ) / R Low( ') Band ( ) (mappn relaton) Mcrowave & Mllmeter-wave Lab. 8

R a 4... n Z' n (') 3 5 n+... n- a' F. Lowpass network and bandpass network Mcrowave & Mllmeter-wave Lab. 9

Mcrowave & Mllmeter-wave Lab. 3 3 n n n Y 4 3 3 n n n Y Input admttance of LPF Prototype

Input admttance of BPF usn J-Inverter Y n B Y n r B r J B r 3 J J J J B / B J 3 rn / B J 34 J G n, n G B n, n B r / BrBr J 3 / Br Br 3 J 34 r 3 Br 4 / B rn J L C B r L Y G n A Y G n G B G bw A r A B B b b J W J r r, nn, b =ω C r G B G b W B rn B n n n Mcrowave & Mllmeter-wave Lab. 3

Mcrowave & Mllmeter-wave Lab. 3 From the partal fracton expanson ncludn bandpass mappn relaton : fractonal bandwdth, : center frequency In the same manner, J-nverter values are derved as,,,, n n n n n n L W R K L L W K L R W K,,,, n n n n n n C W G J C C W J C G W J W

Typcal mmttance nverters ; -C -C -L -L C L K / C K L Z X=neatve Z X=postve =postve =neatve F. 3 Impedance(K-) nverters Mcrowave & Mllmeter-wave Lab. 33

C L -C -C -L -L J C J / L / / / / Y B=postve Y B=neatve =neatve =postve F. 4 Admttance(J-) nverters Mcrowave & Mllmeter-wave Lab. 34

6.. LC flters A. C-coupled bandpass flters Y... L L C C J J J n,n+ L4... L n C n Y b F. 4 Bandpass flter network usn deal J-nverters Y C... J L L C C -C L n C n J n,n+ Y b J-nverter F. 5 Bandpass flter network contann practcal nverters... Mcrowave & Mllmeter-wave Lab. 35

Y n Y n C -C a ' Y a J Y a C L L C a ' C F. 6 Inverter of frst and last staes Y n J Y a C a ' Y n / Y a / C C C / Y C / Y / Y a a C a By equatn the real and manary part of C a ' C, J C f C Y a Yn and Y n Mcrowave & Mllmeter-wave Lab. 36

C C C 3... C n+ Z a C p C p L p L p L pn C pn Z b F.7 C-coupled Bandpass flter B. L-coupled bandpass flter L L L 3... L n+ Z a C p C p L p L p L pn C pn Z b F.8 L-coupled Bandpass flter Mcrowave & Mllmeter-wave Lab. 37

Example : Desn a LC bandpass flter. The f s.8 GHz, bandwdth s 5 MHz, and the nput and output mpedance 5Ω. step : from the element values of lowpass prototype step : apply mpedance scaln step 3 : apply bandpass transformaton usn J-nverters Step 4 : smulaton Mcrowave & Mllmeter-wave Lab. 38

6.8 nh ar-col.7 nh chp 5 pf 6.8 nh ar-col.7 nh chp.5 pf pf 6.8 nh ar-col.7 nh chp.5 pf pf 6.8 nh ar-col.7 nh chp 5 pf.5 pf.5 pf Step 5 : Realzaton pf.5 pf pf.5 pf.5 pf pf.5 pf pf Inserton loss < 3. db Return loss > 5.5 db Attenuaton @ 3.3 GHz : 5 db Mcrowave & Mllmeter-wave Lab. 39

6.8 nh ar-col pf 6.8 nh ar-col pf 6.8 nh ar-col pf 6.8 nh ar-col.7 nh chp 6.8 nh ar-col.7 nh chp.5 pf.5 pf.5 pf pf 6.8 nh ar-col.7 nh chp Step 6. mprovement pf.5 pf.5 pf.5 pf.5 pf.5 pf pf 9.5 nh ar-col 9.5 nh ar-col 6.8 nh ar-col C-coupln LC flter + L-coupln = LC flter Mcrowave & Mllmeter-wave Lab. 4

7 db Mcrowave & Mllmeter-wave Lab. 4

6. Dstrbuted flters At mcrowave frequences : Resonators made of Lumped elements are lossy(low Q) or bulky Dstrbuted Resonators Dstrbuted resonators ; quarter-wavelenth or halfwavelenth transmsson lnes such as mcrostrp lnes, coaxal lnes and waveudes Mcrowave & Mllmeter-wave Lab. 4

A. Comblne flters : cellular base statons as well as handy phone conductor ar or ceramc a F. 9 (a) Top vew of Comblne Flter conductor F. 7(a) Top Vew of Comblne Flter tunn screw L F. 7(b) Sde Vew of Comblne Flter F. 9 (b) Sde vew of Comblne Flter Mcrowave & Mllmeter-wave Lab. 43

Instead of lumped element nductors dstrbuted nductors (L < λ/4) are used. In Y oe (Y oe -Y oo )/ out Y oe Y oo In Y oe Y oe Out F. 8 Coupled lne F. Coupled lne Overall equvalent crcut : F. Equvalent crcut of F. L c C C C 3 C 4 L c L c3 L c4 L c5 C c C c C c3 L L L 3 L 4 F. Equvalent crcut of F. 9 Mcrowave & Mllmeter-wave Lab. 44

B. Mcrostrp flters : Compact, lht weht and low cost F. Sde-couple mcrostrp flter F. 3 Sde-coupled Mcrostrp flter Mcrowave & Mllmeter-wave Lab. 45

Practcal specfcatons ; ) Passband ; lower cutoff frequency - upper cutoff frequency ) Inserton loss lo H( ) ( db) ; must be as small as possble 3) Return Loss lo ( db) ; deree of mpedance matchn 4) Rpple f f ; varaton of nserton loss wthn the passband Mcrowave & Mllmeter-wave Lab. 46

d ( ) 5) Group delay d d ; tme to requred to pass the flter 6) Skrt frequency characterstcs ; depends on the system specfcatons 7) Power handln capablty Mcrowave & Mllmeter-wave Lab. 47