Narrowband Combline Filter Design with ANSYS HFSS

Size: px
Start display at page:

Download "Narrowband Combline Filter Design with ANSYS HFSS"

Transcription

1 Narrowband Combline Filter Design with ANSYS HFSS Daniel G. Swanson, Jr. DGS Associates, LLC Boulder, CO

2 Introduction N = 6 Inline, Cover Loaded, Combline Filter Single combline filters and combline multiplexers can be found in many wireless systems. Today we will introduce a simple design flow for narrowband combline filters using ANSYS HFSS. This material is suitable for the non-specialist who wants a better understanding of narrowband filter design. Combline Filter Design 2

3 Combline Filter Examples Combline Triplexer Combline Filter Design 3

4 Combline Resonator Loading Tuning screw Tuning screw Typical Resonator Resonator Lumped Loading Resonator Loading Cover Loading We have resonators that are less than 90 long that we resonate with capacitance off the end. Resonator loading is perhaps the most flexible. Lumped loading is used at higher frequencies. Cover loading is typically used at lower frequencies. Combline Filter Design 4

5 Input / Output Coupling Options Metal Disk Tapped Resonator Inductive Loop Capacitive Probe Tapping into the resonator works over a broad range of bandwidths and is quite common. Coupling with an inductive loop near the base of the resonator is another option. Using a capacitive probe is a third option. Combline Filter Design 5

6 Combline Filter Design Flow Estimate order of filter and stopband rejection Build a model of the proposed resonator: Compute available unloaded Q Estimate insertion loss Build Kij design curve Build Qex design curve Build a model of complete filter and apply port tuning Use port tuning corrections to refine filter dimensions Do final simulation of filter with loss: Verify insertion loss in passband Verify rejection in stopbands Combline Filter Design 6

7 Wimax Filter Example Center Frequency: Equal Ripple BW: Rejection: Insertion Loss: Return Loss: Temperature Range: Power Handling: f 0 = 3440 MHz BW = 70 MHz (add 10 MHz for temp) >30 f 0 +/- 80 MHz <1 db at band edges RL > 20 db (should add margin) -30 to +70 deg C < 20 dbm Morten Hagensen, Narrowband Microwave Bandpass Filter Design by Coupling Matrix Synthesis, Guided Wave Technology, April 26, Combline Filter Design 7

8 Wimax Filter Example Combline Filter Design 8

9 Combline Filter Asymmetry or Skewing Combline Filter Design 9

10 Estimating Filter Order N Rejection (db) Rejection RtnLoss S 20log 10 ( S RtnLoss (db) 6 S 1) Stopband Insertion Loss Passband Return Loss Reject Bandwidth Filter Bandwidth 2 Any simple formula that estimates filter order, N assumes the filter is symmetrical. Our 2% bandwidth filter is almost symmetrical and this estimate is probably good enough. For broader band combline filters, we may want to generate a circuit theory model to get a better estimate of stopband performance. Combline Filter Design 10

11 Estimating Filter Order 80 MHz 160 MHz N 20log ( ) 5.33 Combline Filter Design 11

12 Qc of Infinitely Long Coaxial Line For a given dominant dimension D, maximum K and hence maximum realizable Q c is achieved when D/d = 3.6, or is about 77 ohms. r Z 0 Q K f D Collect K data from measured filters [1] Combline Filter Design 12

13 Resonator Design: Zo Wave port defined on top surface Outer: 35 x 35 mm Inner: 10 mm dia Height: Don t care Use HFSS as a 2D cross-section solver 80.5 ohms is close enough to ideal Zo. Combline Filter Design 13

14 Resonator Design: Freq and Qu HFSS Eigensolver No Ports 6mm 20 mm 10 mm 12 mm 35 mm Resonator length = 50 deg Surface of box, resonator and screw assumed to be silver plated. Use 80% of ideal conductivity as a starting point. Use measured data from filters to adjust conductivity in the future. Combline Filter Design 14

15 Chebyshev Lowpass Prototype Chebyshev Lowpass Prototype: db ripple, 20 db return loss, 1.22 VSWR N g 0 g 1 g 2 g 3 g 4 g 5 g 6 g 7 g 8 g 9 g 10 g 1 -g N N is the lowpass or bandpass filter order. The g i s are frequency and impedance scaled values for a lowpass filter with a cutoff frequency of = 1 radian and a return loss of 20 db. Any given passband ripple / return loss level requires a unique table. Other tables are available in the literature or the g i s can be computed. Combline Filter Design 15

16 Midband Insertion Loss Chebyshev Lowpass Prototype: db ripple, 20 db return loss, 1.22 VSWR N g 0 g 1 g 2 g 3 g 4 g 5 g 6 g 7 g 8 g 9 g 10 g 1 -g N Loss( N gi f0 i f0) f Q u 0.27 db Q u is a little optimistic, at the high end of what is possible. Loss will be higher at the band edges. Combline Filter Design 16

17 Dishal s Method As early as 1951, Milton Dishal [2] recognized that any narrow band, lumped element or distributed bandpass filter could be described by three fundamental variables: the synchronous tuning frequency, f 0 the couplings between adjacent resonators, K r,r+1 the singly loaded or external Q, Q ex The K ij set the bandwidth of the filter and the Q ex sets the return loss level. For any narrowband filter (<10% bandwidth) we can compute the required K ij and Q ex from the Chebyshev lowpass prototype. The K and Q concept is universal and can be applied to any lumped element or distributed filter topology or technology [4,5]. Combline Filter Design 17

18 Combline Filter Design 18 Definition of Kij and Qex ) ( f f f BW f f f g g BW g g f f f K BW g g f f g g f Q j i j i ij ex f 1 = bandpass filter lower equal ripple frequency f 2 = bandpass filter upper equal ripple frequency f 0 = bandpass filter center frequency BW = percentage bandwidth g i = prototype element value for element i Note: Equations assume Qu is infinite.

19 Our Filter: N = 6, BW = 2.3% Chebyshev Lowpass Prototype: db ripple, 20 db return loss, 1.22 VSWR N g 0 g 1 g 2 g 3 g 4 g 5 g 6 g 7 g 8 g 9 g 10 g 1 -g N K K K Q 1,2 2,3 3,4 ex BW g g g g0 g BW g BW g 1 2 g BW Combline Filter Design 19

20 Computing Iris Widths and Tap Height Our resonator geometry is now fixed. We have enough Qu to meet the insertion loss goal. We have goals for the Kij s and Qex Now we need to compute the iris widths and the tap height. Combline Filter Design 20

21 Basic Two Resonator HFSS Project Distance between resonators is fixed Iris width controls coupling Some details ignored, like corner radii Lossless model Faster No corrections to Kij Make it parametric for future re-use Lumped ports for tuning in our circuit simulator FEM mesh is not perfectly symmetrical Faster than making geometry changes in the EM model Lumped port Combline Filter Design 21

22 Extracting Coupling Coefficents Port1 R1=50ohm R2=(ZR2) ohm Coupling Rev B 16mm 1_1 2_1 R1=50ohm R2=(ZR2) ohm Port2 1 2 C2 C3 2 1 Loosely couple with transformers. (C1) ff (C2) ff We want to force synchronous tuning. At resonance: mag( im( Y (1,1))) 0 mag( im( Y (2,2))) 0 Combline Filter Design 22

23 Extracting Coupling Coefficients -30 db min Coupling Coefficient Coupling Bandwidth f f 2 2 f 0 f f MHz Combline Filter Design 23

24 Dummy Elements Around The Iris There are many evanescent modes in the iris region. The FEM mesher uses energy balance to refine the mesh. The mesh may be too coarse in the iris region for highest accuracy. Add physical detail in the iris region to force a finer mesh. Only important if you are comparing this simulation to measured hardware. Combline Filter Design 24

25 Coupling With and Without Dummies No Coupling Screw / With Dummies No Coupling Screw +2.2% Coupling Coefficient % +3.1% +3.0% How significant is 3%? Iris Width (mm) Combline Filter Design 25

26 Add Coupling Screw We can include a coupling screw in our model set to a nominal depth. A longer screw increases coupling. Combline Filter Design 26

27 Coupling vs Screw Length & Iris Width % Coupling Coefficient % +31.3% Coupling Screw Len = 10 mm Coupling Screw Len = 5 mm Coupling Screw Len = 0 All With Dummies % +25.8% % +22.8% +20.8% 0.01 We can achieve at least +/- 20% tuning around a nominal 5 mm deep screw Iris Width (mm) Combline Filter Design 27

28 Coupling Curve For 2 mm Thick Wall 2 mm wall 6 mm screw 5 mm deep 2 nd order polynomial coefficients Iris Width K 4103 K 2 Combline Filter Design 28

29 Coupling Curve For 5 mm Thick Wall 5 mm wall 6 mm screw 5 mm deep 2 nd order polynomial coefficients Iris Width K 7273 K 2 Combline Filter Design 29

30 Coupling Coefficients vs Iris Thickness Iris Thickness = 5 mm Iris Thickness = 2 mm Coupling Coefficient Coupling is a function of iris width, height and thickness Iris Width (mm) Combline Filter Design 30

31 HFSS Project for Qex Port 2 Port 1 Port1 1 2 Make the model parametric for future re-use. Tune to center frequency at Port 2. Measure reflected group delay at Port 1. Tap height sets the return loss level of our filter. C2 (C1) ff Combline Filter Design 31

32 Port Tuned Reflected Delay Tap_Height = 5 mm Q ex 2 f (GHz) td (ns) Delay Tap Combline Filter Design 32

33 Qex Data Curve Fit in MathCAD F(x) = a + bx + cx 2 Tap Height Delay Delay 2 Combline Filter Design 33

34 HFSS Model of Complete Filter Fully parametric model About 2 hours to build model Solve time: 2 min 7 sec Quad core i-7 notebook April 2014 ANSYS HFSS 2014 with HPC option Combline Filter Design 34

35 Initial Simulation No Tuning C1 = 0 C2 = 0 C3 = 0 (C1) ff (C2) ff (C3) ff Port Port User defined symbol for S-parameter data (C1) ff (C2) ff (C3) ff Combline Filter Design 35

36 Initial Simulation No Tuning Combline Filter Design 36

37 Symmetrical Tune of Resonators C1 = 30.0 C2 = -3.4 C3 = -5.8 (C1) ff (C2) ff (C3) ff Only tune the resonators, not the couplings. Use symmetry to reduce the number of variables. We can tune this manually, don t need an optimizer. Port1 Port (C1) ff (C2) ff (C3) ff Combline Filter Design 37

38 Symmetrical Tune of Resonators Combline Filter Design 38

39 Full Port Tune with EQR_OPT Note: Units are ff and ph C1 = 29.1 C2 = C3 = C4 = C5 = C6 = C12 = C23 = C34 = C45 = C56 = (C1) ff (C2) ff (C3) ff (C12) ff (C23) ff Port pH (C34) ff Port (C56) ff (C45) ff Dedicated optimizer for microwave filters. It finds an exact equal ripple response. It works on any Chebyshev filter that can be defined in your circuit simulator. (C6) ff (C5) ff (C4) ff Combline Filter Design 39

40 Full Port Tune of HFSS Model EQR_OPT finds a perfect equal ripple response. We are meeting our design goals. Combline Filter Design 40

41 Moving The Tuning Screws Note: Units are ff and ph The largest errors are the first and last resonator tunings. This is a well known characteristic of tapped resonators. We can move the tuning screws in the HFSS model to get a feel for the amount of correction needed. C1 = 29.1 C2 = C3 = C4 = C5 = C6 = Port1 Port2 C12 = C23 = C34 = C45 = C56 = pH (C1) ff (C2) ff (C3) ff (C12) ff 6 (C23) ff (C34) ff 5 (C56) ff (C45) ff (C6) ff (C5) ff (C4) ff Combline Filter Design 41

42 Tuning Results Variable Initial Screw Depths (mm) Initial Tunings (ff) Final Screw Depths (mm) Final Tunings (ff) C C C C C C C C C C C We see strong symmetry in the initial tunings. We see some numerical noise in the final tunings. Combline Filter Design 42

43 HFSS Simulation With Loss Combline Filter Design 43

44 Computing Average Qu Q Q u u 27.3 f (GHz) T Loss(dB) d (nsec) 4878 Combline Filter Design 44

45 Summary Dishal s K and Q method leads us to a simple design flow for narrowband filters. We can modernize the method by using HFSS to build the Kij and Qex design curves that we need. We can then build a complete model of our filter in HFSS, port tune it and get a very good prediction of performance. These virtual prototypes in HFSS avoid the time and expense of multiple hardware prototypes. Experience has shown that we can rely on the HFSS filter model. Combline Filter Design 45

46 References [1] R. Levy, R. Snyder and G. Matthaei, Design of Microwave Filters, IEEE Trans. Microwave Theory Tech., vol. MTT-50, pp , March [2] M. Dishal, Alignment and adjustment of synchronously tuned multiple resonate circuit filters, Proc IRE, vol. 30, pp , Nov [3] M. Dishal, A simple design procedure for small percentage bandwidth round-rod interdigital filters, IEEE Trans. Microwave Theory Tech., vol. MTT-13, pp , Sept [4] J. Wong, Microstrip tapped-line filter design, IEEE Trans. Microwave Theory Tech., vol. MTT-27, pp , Jan [5] D. G. Swanson, Jr., Narrow-Band Microwave Filter Design, IEEE Microwave Magazine, vol. 8, no. 5, pp , Oct [6] D. G. Swanson, Jr., Corrections to Narrow-Band Microwave Filter Design, IEEE Microwave Magazine, vol. 9, no. 1, p. 116, Feb Combline Filter Design 48

Narrowband Microstrip Filter Design With NI AWR Microwave Office

Narrowband Microstrip Filter Design With NI AWR Microwave Office Narrowband Microstrip Filter Design With NI AWR Microwave Office Daniel G. Swanson, Jr. DGS Associates, LLC Boulder, CO dan@dgsboulder.com www.dgsboulder.com Narrowband Microstrip Filters There are many

More information

Designing a Narrowband 28 GHz Bandpass Filter for 5G Applications. Presented by David Vye technical marketing director NI, AWR Groups

Designing a Narrowband 28 GHz Bandpass Filter for 5G Applications. Presented by David Vye technical marketing director NI, AWR Groups Designing a Narrowband 28 GHz Bandpass Filter for 5G Applications Presented by David Vye technical marketing director NI, AWR Groups Agenda 5G Applications and Filter Requirements 5G Challenges: Performance,

More information

Today I would like to present a short introduction to microstrip cross-coupled filter design. I will be using Sonnet em to analyze my planar circuit.

Today I would like to present a short introduction to microstrip cross-coupled filter design. I will be using Sonnet em to analyze my planar circuit. Today I would like to present a short introduction to microstrip cross-coupled filter design. I will be using Sonnet em to analyze my planar circuit. And I will be using our optimizer, EQR_OPT_MWO, in

More information

THE DESIGN of microwave filters is based on

THE DESIGN of microwave filters is based on IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 4, APRIL 1998 343 A Unified Approach to the Design, Measurement, and Tuning of Coupled-Resonator Filters John B. Ness Abstract The concept

More information

Design of Duplexers for Microwave Communication Systems Using Open-loop Square Microstrip Resonators

Design of Duplexers for Microwave Communication Systems Using Open-loop Square Microstrip Resonators International Journal of Electromagnetics and Applications 2016, 6(1): 7-12 DOI: 10.5923/j.ijea.20160601.02 Design of Duplexers for Microwave Communication Charles U. Ndujiuba 1,*, Samuel N. John 1, Taofeek

More information

Design of an Evanescent Mode Circular Waveguide 10 GHz Filter

Design of an Evanescent Mode Circular Waveguide 10 GHz Filter Design of an Evanescent Mode Circular Waveguide 10 GHz Filter NI AWR Design Environment, specifically Microwave Office circuit design software, was used to design the filters for a range of bandwidths

More information

Electrical Design of Narrow Band Filters. Giuseppe Macchiarella Polytechnic of Milan, Italy Electronic and Information Department

Electrical Design of Narrow Band Filters. Giuseppe Macchiarella Polytechnic of Milan, Italy Electronic and Information Department Electrical Design of Narrow Band Filters Giuseppe Macchiarella Polytechnic of Milan, Italy Electronic and Information Department Introduction The design of a narrow band microwave filter starts with the

More information

A SIMPLE FOUR-ORDER CROSS-COUPLED FILTER WITH THREE TRANSMISSION ZEROS

A SIMPLE FOUR-ORDER CROSS-COUPLED FILTER WITH THREE TRANSMISSION ZEROS Progress In Electromagnetics Research C, Vol. 8, 57 68, 29 A SIMPLE FOUR-ORDER CROSS-COUPLED FILTER WITH THREE TRANSMISSION ZEROS J.-S. Zhan and J.-L. Wang Xidian University China Abstract Generalized

More information

Design of an Evanescent Mode Circular Waveguide 10 GHz Filter

Design of an Evanescent Mode Circular Waveguide 10 GHz Filter Application Note Design of an Evanescent Mode Circular Waveguide 10 GHz Filter Overview Ham radio operation at 10 GHz is far removed from global shortwave communication typically operating below 30 MHz.

More information

Design of Microstrip Coupled Line Bandpass Filter Using Synthesis Technique

Design of Microstrip Coupled Line Bandpass Filter Using Synthesis Technique Design of Microstrip Coupled Line Bandpass Filter Using Synthesis Technique 1 P.Priyanka, 2 Dr.S.Maheswari, 1 PG Student, 2 Professor, Department of Electronics and Communication Engineering Panimalar

More information

MICROWAVE diplexers are typically employed to connect

MICROWAVE diplexers are typically employed to connect IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 12, DECEMBER 2006 4281 Novel Approach to the Synthesis of Microwave Diplexers Giuseppe Macchiarella, Member, IEEE, and Stefano Tamiazzo

More information

Ceramic Waveguide Filters with Wide Spurious-Free Stopband Response

Ceramic Waveguide Filters with Wide Spurious-Free Stopband Response Progress In Electromagnetics Research M, Vol. 79, 23 31, 2019 Ceramic Waveguide Filters with Wide Spurious-Free Stopband Response Sharjeel Afridi 1, *, Ian Hunter 2, and Yameen Sandhu 1 Abstract This work

More information

ponents Com ped Lum Lumped Components

ponents Com ped Lum Lumped Components Lumped Components Lumped Components K&L Microwave offers Lumped Component filters with a broad selection of frequencies, topologies, and mechanical configurations. Use of standard packages has enabled

More information

COMPACT DESIGN AND SIMULATION OF LOW PASS MICROWAVE FILTER ON MICROSTRIP TRANSMISSION LINE AT 2.4 GHz

COMPACT DESIGN AND SIMULATION OF LOW PASS MICROWAVE FILTER ON MICROSTRIP TRANSMISSION LINE AT 2.4 GHz International Journal of Management, IT & Engineering Vol. 7 Issue 7, July 2017, ISSN: 2249-0558 Impact Factor: 7.119 Journal Homepage: Double-Blind Peer Reviewed Refereed Open Access International Journal

More information

Lowpass and Bandpass Filters

Lowpass and Bandpass Filters Microstrip Filters for RF/Microwave Applications. Jia-Sheng Hong, M. J. Lancaster Copyright 2001 John Wiley & Sons, Inc. ISBNs: 0-471-38877-7 (Hardback); 0-471-22161-9 (Electronic) CHAPTER 5 Lowpass and

More information

The Design of Microstrip Six-Pole Quasi-Elliptic Filter with Linear Phase Response Using Extracted-Pole Technique

The Design of Microstrip Six-Pole Quasi-Elliptic Filter with Linear Phase Response Using Extracted-Pole Technique IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 2, FEBRUARY 2001 321 The Design of Microstrip Six-Pole Quasi-Elliptic Filter with Linear Phase Response Using Extracted-Pole Technique

More information

DUAL-BAND FILTER USING NON-BIANISOTROPIC SPLIT-RING RESONATORS

DUAL-BAND FILTER USING NON-BIANISOTROPIC SPLIT-RING RESONATORS Progress In Electromagnetics Research Letters, Vol. 13, 51 58, 21 DUAL-BAND FILTER USING NON-BIANISOTROPIC SPLIT-RING RESONATORS P. De Paco, O. Menéndez, and J. Marin Antenna and Microwave Systems (AMS)

More information

COMPUTER-AIDED DESIGN OF Y-JUNCTION WAVE- GUIDE DIPLEXERS

COMPUTER-AIDED DESIGN OF Y-JUNCTION WAVE- GUIDE DIPLEXERS Progress In Electromagnetics Research C, Vol. 17, 203 218, 2010 COMPUTER-AIDED DESIGN OF Y-JUNCTION WAVE- GUIDE DIPLEXERS F. M. Vanin and F. Frezza Department of Information Engineering, Electronics, and

More information

Cavity Filters. Waveguide Filters

Cavity Filters. Waveguide Filters Cavity Cavity Filters K&L Microwave s series of cavity filters covers the frequency range from 30 MHz to 40 GHz. These filters are available with 2 to 17 resonant sections and bandwidths from 0.2% to 50%.

More information

LENGTH REDUCTION OF EVANESCENT-MODE RIDGE WAVEGUIDE BANDPASS FILTERS

LENGTH REDUCTION OF EVANESCENT-MODE RIDGE WAVEGUIDE BANDPASS FILTERS Progress In Electromagnetics Research, PIER 40, 71 90, 2003 LENGTH REDUCTION OF EVANESCENT-MODE RIDGE WAVEGUIDE BANDPASS FILTERS T. Shen Advanced Development Group Hughes Network Systems Germantown, MD

More information

DESIGN OF EVEN-ORDER SYMMETRIC BANDPASS FILTER WITH CHEBYSHEV RESPONSE

DESIGN OF EVEN-ORDER SYMMETRIC BANDPASS FILTER WITH CHEBYSHEV RESPONSE Progress In Electromagnetics Research C, Vol. 42, 239 251, 2013 DESIGN OF EVEN-ORDER SYMMETRIC BANDPASS FILTER WITH CHEBYSHEV RESPONSE Kai Wang 1, Li-Sheng Zheng 1, Sai Wai Wong 1, *, Yu-Fa Zheng 2, and

More information

Design, Optimization, Fabrication, and Measurement of an Edge Coupled Filter

Design, Optimization, Fabrication, and Measurement of an Edge Coupled Filter SYRACUSE UNIVERSITY Design, Optimization, Fabrication, and Measurement of an Edge Coupled Filter Project 2 Colin Robinson Thomas Piwtorak Bashir Souid 12/08/2011 Abstract The design, optimization, fabrication,

More information

ytivac Cavity Filters

ytivac Cavity Filters Cavity Cavity Filters K&L Microwave s series of cavity filters covers the frequency range from 30 MHz to 40 GHz. These filters are available with 2 to 17 resonant sections and bandwidths from 0.2% to 50%.

More information

Number of Sections. Contact factory for specific requirements not listed above.

Number of Sections. Contact factory for specific requirements not listed above. Tubular Filters MHz to 20 GHz Chebyshev Response Standard 4 Convenient Sizes Reliable Sturdy Construction Lorch Microwave tubular filters are available in bandpass and lowpass configurations. A low ripple

More information

Chalmers Publication Library

Chalmers Publication Library Chalmers Publication Library Ka-band gap waveguide coupled-resonator filter for radio link diplexers This document has been downloaded from Chalmers Publication Library (CPL). It is the author s version

More information

Design of Multiple-band Microwave Filters Using Cascaded Filter Elements

Design of Multiple-band Microwave Filters Using Cascaded Filter Elements Design of Multiple-band Microwave Filters Using Cascaded Filter Elements. M. bu-hudrouss (1) and M. J. Lancaster (2) (1) Department of Electrical Engineering, IUG University, Gaza, P. O. ox 108, E-mail:

More information

Multi-pole Microstrip Directional Filters for Multiplexing Applications

Multi-pole Microstrip Directional Filters for Multiplexing Applications Multi-pole Microstrip Directional Filters for Multiplexing Applications Humberto Lobato-Morales, Alonso Corona-Chávez, J. Luis Olvera-Cervantes, D.V.B. Murthy Instituto Nacional de Astrofísica, Óptica

More information

AS THE frequency spectrum becomes more crowded, specifications

AS THE frequency spectrum becomes more crowded, specifications IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 57, NO. 3, MARCH 2009 667 An Inline Coaxial Quasi-Elliptic Filter With Controllable Mixed Electric and Magnetic Coupling Huan Wang, Student Member,

More information

Microstrip Dual-Band Bandpass Filter Using U-Shaped Resonators

Microstrip Dual-Band Bandpass Filter Using U-Shaped Resonators Progress In Electromagnetics Research Letters, Vol. 59, 1 6, 2016 Microstrip Dual-Band Bandpass Filter Using U-haped Resonators Eugene A. Ogbodo 1, *,YiWang 1, and Kenneth. K. Yeo 2 Abstract Coupled resonators

More information

Design and Synthesis of Lossy Microwave Filters

Design and Synthesis of Lossy Microwave Filters Design and Synthesis of Lossy Microwave Filters Meng Meng Submitted in accordance with the requirements for the degree of Doctor of philosophy The University of Leeds School of Electrical and Electronic

More information

This is an author produced version of Miniaturized dielectric waveguide filters.

This is an author produced version of Miniaturized dielectric waveguide filters. This is an author produced version of Miniaturized dielectric waveguide filters. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/88315/ Article: Sandhu, MY orcid.org/-3-381-8834

More information

PARALLEL coupled-line filters are widely used in microwave

PARALLEL coupled-line filters are widely used in microwave 2812 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 9, SEPTEMBER 2005 Improved Coupled-Microstrip Filter Design Using Effective Even-Mode and Odd-Mode Characteristic Impedances Hong-Ming

More information

QUASI-ELLIPTIC MICROSTRIP BANDSTOP FILTER USING TAP COUPLED OPEN-LOOP RESONATORS

QUASI-ELLIPTIC MICROSTRIP BANDSTOP FILTER USING TAP COUPLED OPEN-LOOP RESONATORS Progress In Electromagnetics Research C, Vol. 35, 1 11, 2013 QUASI-ELLIPTIC MICROSTRIP BANDSTOP FILTER USING TAP COUPLED OPEN-LOOP RESONATORS Kenneth S. K. Yeo * and Punna Vijaykumar School of Architecture,

More information

Design and Synthesis of Quasi Dual-mode, Elliptic Coaxial Filter

Design and Synthesis of Quasi Dual-mode, Elliptic Coaxial Filter RADIOENGINEERING, VOL. 4, NO. 3, SEPTEMBER 15 795 Design and Synthesis of Quasi Dual-mode, Elliptic Coaxial Filter Sovuthy CHEAB, Peng Wen WONG Dept. of Electrical and Electronic Engineering, University

More information

8 th Order Dielectric Resonator Filter with Three Asymmetric

8 th Order Dielectric Resonator Filter with Three Asymmetric Application Article CST AG 215 8 th Order Dielectric Resonator Filter with Three Asymmetric Transmission Zeroes The dielectric resonator filter (Figure 1) is a high-performance filter design which is well-suited

More information

IMPROVED BANDWIDTH WAVEGUID BANDPASS FIL- TER USING SIERPINSKI FRACTAL SHAPED IRISES

IMPROVED BANDWIDTH WAVEGUID BANDPASS FIL- TER USING SIERPINSKI FRACTAL SHAPED IRISES Progress In Electromagnetics Research Letters, Vol. 36, 113 120, 2013 IMPROVED BANDWIDTH WAVEGUID BANDPASS FIL- TER USING SIERPINSKI FRACTAL SHAPED IRISES Abbas A. Lotfi-Neyestanak 1, *, Seyed M. Seyed-Momeni

More information

THE GENERALIZED CHEBYSHEV SUBSTRATE INTEGRATED WAVEGUIDE DIPLEXER

THE GENERALIZED CHEBYSHEV SUBSTRATE INTEGRATED WAVEGUIDE DIPLEXER Progress In Electromagnetics Research, PIER 73, 29 38, 2007 THE GENERALIZED CHEBYSHEV SUBSTRATE INTEGRATED WAVEGUIDE DIPLEXER Han S. H., Wang X. L., Fan Y., Yang Z. Q., and He Z. N. Institute of Electronic

More information

Performance Comparison of Micro strip Band pass Filter Topologies On Different Substrates

Performance Comparison of Micro strip Band pass Filter Topologies On Different Substrates ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 International Conference

More information

TELONIC FIXED FREQUENCY FILTERS

TELONIC FIXED FREQUENCY FILTERS Established 1981 Advanced Test Equipment Rentals www.atecorp.com 800-404-ATEC (2832) TELONIC FIXED FREQUENCY FILTERS ENGINEERS DESIGN HANDBOOK TABLE OF CONTENTS Introduction............................................1

More information

[Makrariya* et al., 5(8): August, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

[Makrariya* et al., 5(8): August, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY FIVE POLE OPTIMUM DISTRIBUTED HIGH PASS MICROWAVE FILTER: DESIGN ANALYSIS AND SIMULATION ON MICROSTRIP AT 2.4 GHZ Atul Makrariya*,

More information

For this example, the required filter order is five, to theoretically meet the specifications. This then equates to the required susceptances as:

For this example, the required filter order is five, to theoretically meet the specifications. This then equates to the required susceptances as: For this example, the required filter order is five, to theoretically meet the specifications. This then equates to the required susceptances as: =1.0402 =2.7404 =3.7714 Likewise, the electrical lengths

More information

MICROWAVE communication systems require numerous

MICROWAVE communication systems require numerous IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 4, APRIL 2006 1545 The Effects of Component Q Distribution on Microwave Filters Chih-Ming Tsai, Member, IEEE, and Hong-Ming Lee, Student

More information

Simulation Analysis of the Filter with Frequency Dependent Coupling Coefficients

Simulation Analysis of the Filter with Frequency Dependent Coupling Coefficients 217 Asia-Pacific Engineering and Technology Conference (APETC 217) ISBN: 978-1-6595-443-1 Simulation Analysis of the Filter with Frequency Dependent Coupling Coefficients Gang Li ABSTRACT *This paper illustrates

More information

A TUNABLE GHz BANDPASS FILTER BASED ON SINGLE MODE

A TUNABLE GHz BANDPASS FILTER BASED ON SINGLE MODE Progress In Electromagnetics Research, Vol. 135, 261 269, 2013 A TUNABLE 1.4 2.5 GHz BANDPASS FILTER BASED ON SINGLE MODE Yanyi Wang *, Feng Wei, He Xu, and Xiaowei Shi National Laboratory of Science and

More information

Microstrip Filter Design

Microstrip Filter Design Practical Aspects of Microwave Filter Design and Realization IMS 5 Workshop-WMB Microstrip Filter Design Jia-Sheng Hong Heriot-Watt University Edinburgh, UK Outline Introduction Design considerations Design

More information

IN MICROWAVE communication systems, high-performance

IN MICROWAVE communication systems, high-performance IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 2, FEBRUARY 2006 533 Compact Microstrip Bandpass Filters With Good Selectivity and Stopband Rejection Pu-Hua Deng, Yo-Shen Lin, Member,

More information

264 MHz HTS Lumped Element Bandpass Filter

264 MHz HTS Lumped Element Bandpass Filter IEICE SAITO TRANS. et al: 264 ELECTRON., MHz HTS LUMPED VOL. E83-C, ELEMENT NO. 1 JANUARY BANDPASS 2 FILTER 15 PAPER Special Issue on Superconductive Devices and Systems 264 MHz HTS Lumped Element Bandpass

More information

RF Circuit Synthesis for Physical Wireless Design

RF Circuit Synthesis for Physical Wireless Design RF Circuit Synthesis for Physical Wireless Design Overview Subjects Review Of Common Design Tasks Break Down And Dissect Design Task Review Non-Synthesis Methods Show A Better Way To Solve Complex Design

More information

MODERN microwave communication systems require

MODERN microwave communication systems require IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 2, FEBRUARY 2006 755 Novel Compact Net-Type Resonators and Their Applications to Microstrip Bandpass Filters Chi-Feng Chen, Ting-Yi Huang,

More information

Progress In Electromagnetics Research, Vol. 107, , 2010

Progress In Electromagnetics Research, Vol. 107, , 2010 Progress In Electromagnetics Research, Vol. 107, 101 114, 2010 DESIGN OF A HIGH BAND ISOLATION DIPLEXER FOR GPS AND WLAN SYSTEM USING MODIFIED STEPPED-IMPEDANCE RESONATORS R.-Y. Yang Department of Materials

More information

DUAL-MODE SPLIT MICROSTRIP RESONATOR FOR COMPACT NARROWBAND BANDPASS FILTERS. Federal University, Krasnoyarsk , Russia

DUAL-MODE SPLIT MICROSTRIP RESONATOR FOR COMPACT NARROWBAND BANDPASS FILTERS. Federal University, Krasnoyarsk , Russia Progress In Electromagnetics Research C, Vol. 23, 151 160, 2011 DUAL-MODE SPLIT MICROSTRIP RESONATOR FOR COMPACT NARROWBAND BANDPASS FILTERS V. V. Tyurnev 1, * and A. M. Serzhantov 2 1 Kirensky Institute

More information

A Novel Bandpass Filter Using a Combination of Open-Loop Defected Ground Structure and Half-Wavelength Microstrip Resonators

A Novel Bandpass Filter Using a Combination of Open-Loop Defected Ground Structure and Half-Wavelength Microstrip Resonators 392 P. VÁGNER, M. KASAL, A NOVEL BANDPASS FILTER USING A COMBINATION OF OPEN-LOOP DEFECTED GROUND A Novel Bandpass Filter Using a Combination of Open-Loop Defected Ground Structure and Half-Wavelength

More information

Progress In Electromagnetics Research B, Vol. 42, , 2012

Progress In Electromagnetics Research B, Vol. 42, , 2012 Progress In Electromagnetics Research B, Vol. 42, 115 139, 212 GENERALIZED SYNTHESIS AND DESIGN OF SYMMETRICAL MULTIPLE PASSBAND FILTERS A. Mohan 1, *, S. Singh 2, and A. Biswas 3 1 Center for Excellence

More information

Welcome. Randy Rhea Founder of Eagleware & Elanix 2013 Agilent Technologies, Inc.

Welcome. Randy Rhea Founder of Eagleware & Elanix 2013 Agilent Technologies, Inc. Welcome Founder of Eagleware & Elanix 2013 Agilent Technologies, Inc. Webcast: Designing Custom RF and Analog Filters through Direct Synthesis with examples from the new book Synthesis of Filters: S/Filter

More information

A Folded SIR Cross Coupled WLAN Dual-Band Filter

A Folded SIR Cross Coupled WLAN Dual-Band Filter Progress In Electromagnetics Research Letters, Vol. 45, 115 119, 2014 A Folded SIR Cross Coupled WLAN Dual-Band Filter Zi Jian Su *, Xi Chen, Long Li, Bian Wu, and Chang-Hong Liang Abstract A compact cross-coupled

More information

Case Study: Parallel Coupled-Line Combline Filter. Microwave filter design. Specifications. Case Study: Parallel Coupled- Line Combline Filter

Case Study: Parallel Coupled-Line Combline Filter. Microwave filter design. Specifications. Case Study: Parallel Coupled- Line Combline Filter MIROWAVE AND RF DESIGN MIROWAVE AND RF DESIGN ase Study: Parallel oupled- ine ombline Filter ase Study: Parallel oupled-ine ombline Filter Presented by Michael Steer Reading: 6. 6. 5 b t b 5 S (db) 6 S

More information

Microwave Bandpass Filters Using Couplings With Defected Ground Structures

Microwave Bandpass Filters Using Couplings With Defected Ground Structures Proceedings of the 5th WSEAS Int. Conf. on DATA NETWORKS, COMMUNICATIONS & COMPUTERS, Bucharest, Romania, October 16-17, 26 63 Microwave Bandpass Filters Using Couplings With Defected Ground Structures

More information

RF Board Design for Next Generation Wireless Systems

RF Board Design for Next Generation Wireless Systems RF Board Design for Next Generation Wireless Systems Page 1 Introduction Purpose: Provide basic background on emerging WiMax standard Introduce a new tool for Genesys that will aide in the design and verification

More information

A MINIATURIZED LOWPASS/BANDPASS FILTER US- ING DOUBLE ARROW HEAD DEFECTED GROUND STRUCTURE WITH CENTERED ETCHED ELLIPSE

A MINIATURIZED LOWPASS/BANDPASS FILTER US- ING DOUBLE ARROW HEAD DEFECTED GROUND STRUCTURE WITH CENTERED ETCHED ELLIPSE Progress In Electromagnetics Research Letters, Vol. 24, 99 107, 2011 A MINIATURIZED LOWPASS/BANDPASS FILTER US- ING DOUBLE ARROW HEAD DEFECTED GROUND STRUCTURE WITH CENTERED ETCHED ELLIPSE M. H. Al Sharkawy

More information

Dual Band Dielectric Resonator Filter (DBDRF) with Defected Ground Structure (DGS)

Dual Band Dielectric Resonator Filter (DBDRF) with Defected Ground Structure (DGS) World Applied Sciences Journal 32 (4): 582-586, 2014 ISSN 1818-4952 IDOSI Publications, 2014 DOI: 10.5829/idosi.wasj.2014.32.04.114 Dual Band Dielectric Resonator Filter (DBDRF) with Defected Ground Structure

More information

bandwidth, and stopband attenuation, and the computer will spit out camera-ready layouts. A child can do it.

bandwidth, and stopband attenuation, and the computer will spit out camera-ready layouts. A child can do it. Designing a Printed Microstrip Filter without a Computer The hairpin microwave filter shown in photos 1 and 2 has become a poster child for 2D electromagnetic design software packages. Plug in the substrate

More information

H B Input Output. Figure 45. Drawing of a helical filter showing the sizes used in the formulae.

H B Input Output. Figure 45. Drawing of a helical filter showing the sizes used in the formulae. RF Electronics Chapter7 : RF Filters Page 27 Helical Filters For high Q value resonators at UHF frequencies, a cylindrical rod of one-quarter wavelength long is placed inside a cavity. This cavity can

More information

L AND S BAND TUNABLE FILTERS PROVIDE DRAMATIC IMPROVEMENTS IN TELEMETRY SYSTEMS

L AND S BAND TUNABLE FILTERS PROVIDE DRAMATIC IMPROVEMENTS IN TELEMETRY SYSTEMS L AND S BAND TUNABLE FILTERS PROVIDE DRAMATIC IMPROVEMENTS IN TELEMETRY SYSTEMS Item Type text; Proceedings Authors Wurth, Timothy J.; Rodzinak, Jason Publisher International Foundation for Telemetering

More information

Chapter-2 LOW PASS FILTER DESIGN 2.1 INTRODUCTION

Chapter-2 LOW PASS FILTER DESIGN 2.1 INTRODUCTION Chapter-2 LOW PASS FILTER DESIGN 2.1 INTRODUCTION Low pass filters (LPF) are indispensable components in modern wireless communication systems especially in the microwave and satellite communication systems.

More information

Design of four-pole chebyshev and quasi-elliptic Ka band dielectric resonator filter using higher order mode TE01(δ+1)

Design of four-pole chebyshev and quasi-elliptic Ka band dielectric resonator filter using higher order mode TE01(δ+1) Design of four-pole chebyshev and quasi-elliptic Ka band dielectric resonator filter using higher order mode TE01(δ+1) Sujesh Dutta 1 and Dalveer Kaur 2 1 Department of Electronics and Communication Engg.,

More information

Enhanced Couplings in Broadband Planar Filters with Defected Ground Structures

Enhanced Couplings in Broadband Planar Filters with Defected Ground Structures ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 10, Number 2, 2007, 199 212 Enhanced Couplings in Broadband Planar Filters with Defected Ground Structures N. MILITARU 1, M.G. BANCIU 2, G.

More information

Progress In Electromagnetics Research Letters, Vol. 23, , 2011

Progress In Electromagnetics Research Letters, Vol. 23, , 2011 Progress In Electromagnetics Research Letters, Vol. 23, 173 180, 2011 A DUAL-MODE DUAL-BAND BANDPASS FILTER USING A SINGLE SLOT RING RESONATOR S. Luo and L. Zhu School of Electrical and Electronic Engineering

More information

This article describes the design procedure

This article describes the design procedure Microwave Multiplexer Design Based on Triplexer Filters By Eudes P. de Assunção, Leonardo R.A.X. de Menezes and Humberto Abdalla, Jr. Universidade de Brasília, Departamento de Engenharia Elétrica This

More information

Impedance Matching Techniques for Mixers and Detectors. Application Note 963

Impedance Matching Techniques for Mixers and Detectors. Application Note 963 Impedance Matching Techniques for Mixers and Detectors Application Note 963 Introduction The use of tables for designing impedance matching filters for real loads is well known [1]. Simple complex loads

More information

High Rejection BPF for WiMAX Applications from Silicon Integrated Passive Device Technology

High Rejection BPF for WiMAX Applications from Silicon Integrated Passive Device Technology High Rejection BPF for WiMAX Applications from Silicon Integrated Passive Device Technology by Kai Liu, Robert C Frye* and Billy Ahn STATS ChipPAC, Inc, Tempe AZ, 85284, USA, *RF Design Consulting, LLC,

More information

Tunable Combline Filter and Balun: Design, Simulation, and Test

Tunable Combline Filter and Balun: Design, Simulation, and Test University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 3-23-2017 Tunable Combline Filter and Balun: Design, Simulation, and Test Daniel Alex Ramirez University of

More information

Transformation of Generalized Chebyshev Lowpass Filter Prototype to Suspended Stripline Structure Highpass Filter for Wideband Communication Systems

Transformation of Generalized Chebyshev Lowpass Filter Prototype to Suspended Stripline Structure Highpass Filter for Wideband Communication Systems Transformation of Generalized Chebyshev Lowpass Filter Prototype to Suspended Stripline Structure Highpass Filter for Wideband Communication Systems Z. Zakaria 1, M. A. Mutalib 2, M. S. Mohamad Isa 3,

More information

A Compact Quad-Band Bandpass Filter Using Multi-Mode Stub-Loaded Resonator

A Compact Quad-Band Bandpass Filter Using Multi-Mode Stub-Loaded Resonator Progress In Electromagnetics Research Letters, Vol. 61, 39 46, 2016 A Compact Quad-Band Bandpass Filter Using Multi-Mode Stub-Loaded Resonator Lakhindar Murmu * and Sushrut Das Abstract This paper presents

More information

A NOVEL WIDE-STOPBAND BANDSTOP FILTER WITH SHARP-REJECTION CHARACTERISTIC AND ANA- LYTICAL THEORY

A NOVEL WIDE-STOPBAND BANDSTOP FILTER WITH SHARP-REJECTION CHARACTERISTIC AND ANA- LYTICAL THEORY Progress In Electromagnetics Research C, Vol. 40, 143 158, 2013 A NOVEL WIDE-STOPBAND BANDSTOP FILTER WITH SHARP-REJECTION CHARACTERISTIC AND ANA- LYTICAL THEORY Liming Liang, Yuanan Liu, Jiuchao Li *,

More information

Comparison and Analysis of Microstrip Low Pass Filter using DGS technique for WLAN Applications

Comparison and Analysis of Microstrip Low Pass Filter using DGS technique for WLAN Applications Comparison and Analysis of Microstrip Low Pass Filter using DGS technique for WLAN Applications Aanshi Jain 1, Anjana Goen 2 1 M.Tech Scholar, Dept. of ECE, Rustam Ji Institute of Technology, Tekanpur,

More information

A Simple Bandpass Filter with Independently Tunable Center Frequency and Bandwidth

A Simple Bandpass Filter with Independently Tunable Center Frequency and Bandwidth Progress In Electromagnetics Research Letters, Vol. 69, 3 8, 27 A Simple Bandpass Filter with Independently Tunable Center Frequency and Bandwidth Bo Zhou *, Jing Pan Song, Feng Wei, and Xiao Wei Shi Abstract

More information

CHAPTER 7 CONCLUSION AND FUTURE WORK

CHAPTER 7 CONCLUSION AND FUTURE WORK 132 CHAPTER 7 CONCLUSION AND FUTURE WORK 7.1 CONCLUSION In this research, UWB compact BPFs, single and dual notch filters, reconfigurable filter are developed in microstrip line using PCB technology. In

More information

EMDS for ADS Momentum

EMDS for ADS Momentum EMDS for ADS Momentum ADS User Group Meeting 2009, Böblingen, Germany Prof. Dr.-Ing. Frank Gustrau Gustrau, Dortmund User Group Meeting 2009-1 Univ. of Applied Sciences and Arts (FH Dortmund) Presentation

More information

Design of a Wideband Band-Pass Filter Using Semi-lumped and Semi-distributed Technology

Design of a Wideband Band-Pass Filter Using Semi-lumped and Semi-distributed Technology 3rd International Conference on Science and Social Research (ICSSR 2014) Design of a Wideband Band-Pass Filter Using Semi-lumped and Semi-distributed Technology Ying Liu 1, Jiayu Xie 1, Junling Huang 1

More information

International Journal of Advance Engineering and Research Development DESIGN OF DUPLEXER USING MICROSTRIP FILTERS FOR LOW POWER GSM APPLICATIONS

International Journal of Advance Engineering and Research Development DESIGN OF DUPLEXER USING MICROSTRIP FILTERS FOR LOW POWER GSM APPLICATIONS Scientific Journal of Impact Factor(SJIF): 3.134 International Journal of Advance Engineering and Research Development Volume 2,Issue 4, April -2015 e-issn(o): 2348-4470 p-issn(p): 2348-6406 DESIGN OF

More information

PARAMETRIC STUDIES ON EFFECTS OF DEFECTED GROUND STRUCTURE (DGS) FOR 6 GHz BANDPASS FILTER

PARAMETRIC STUDIES ON EFFECTS OF DEFECTED GROUND STRUCTURE (DGS) FOR 6 GHz BANDPASS FILTER 2015 International Symposium on Technology Management and Emerging Technologies (ISTMET), August 25-27, 2015, Langkawi, Kedah, Malaysia PARAMETRIC STUDIES ON EFFECTS OF DEFECTED GROUND STRUCTURE (DGS)

More information

PRACTICAL BROADBAND MICROSTRIP FILTER DESIGN AND IMPLEMENTATION METHOD

PRACTICAL BROADBAND MICROSTRIP FILTER DESIGN AND IMPLEMENTATION METHOD IJRRAS 9 (3) December 20 www.arpapress.com/volumes/vol9issue3/ijrras_9_3_0.pdf PRACTICAL BROADBAND MICROSTRIP FILTER DESIGN AND IMPLEMENTATION METHOD Abdullah Eroglu, Tracy Cline & Bill Westrick Indiana

More information

Microstrip Filtering Structure with Optimized Group-Delay Response for Wireless Communications

Microstrip Filtering Structure with Optimized Group-Delay Response for Wireless Communications Microstrip Filtering Structure with Optimized Group-Delay Response for Wireless Communications NICOLAE MILITARU, GEORGE LOJEWSKI Department of Telecommunications University POLITEHNICA of Bucharest 313

More information

CHAPTER 4 EFFECT OF DIELECTRIC COVERS ON THE PERFORMANCES OF MICROSTRIP ANTENNAS 4.1. INTRODUCTION

CHAPTER 4 EFFECT OF DIELECTRIC COVERS ON THE PERFORMANCES OF MICROSTRIP ANTENNAS 4.1. INTRODUCTION CHAPTER 4 EFFECT OF DIELECTRIC COVERS ON THE PERFORMANCES OF MICROSTRIP ANTENNAS 4.1. INTRODUCTION In the previous chapter we have described effect of dielectric thickness on antenna performances. As mentioned

More information

A NOVEL DUAL-BAND BANDPASS FILTER USING GENERALIZED TRISECTION STEPPED IMPEDANCE RESONATOR WITH IMPROVED OUT-OF-BAND PER- FORMANCE

A NOVEL DUAL-BAND BANDPASS FILTER USING GENERALIZED TRISECTION STEPPED IMPEDANCE RESONATOR WITH IMPROVED OUT-OF-BAND PER- FORMANCE Progress In Electromagnetics Research Letters, Vol. 21, 31 40, 2011 A NOVEL DUAL-BAND BANDPASS FILTER USING GENERALIZED TRISECTION STEPPED IMPEDANCE RESONATOR WITH IMPROVED OUT-OF-BAND PER- FORMANCE X.

More information

COMPACT ULTRA-WIDEBAND BANDPASS FILTER WITH DEFECTED GROUND STRUCTURE

COMPACT ULTRA-WIDEBAND BANDPASS FILTER WITH DEFECTED GROUND STRUCTURE Progress In Electromagnetics Research Letters, Vol. 4, 25 31, 2008 COMPACT ULTRA-WIDEBAND BANDPASS FILTER WITH DEFECTED GROUND STRUCTURE M. Shobeyri andm. H. VadjedSamiei Electrical Engineering Department

More information

Design and Analysis of Microstrip Bandstop Filter based on Defected Ground Structure

Design and Analysis of Microstrip Bandstop Filter based on Defected Ground Structure Design and Analysis of Microstrip Bandstop Filter based on Defected Ground Structure Alpesh D. Vala, Amit V. Patel, Alpesh Patel V. T. Patel Department of Electronics & Communication Engineering, Chandubhai

More information

Design A Distributed Amplifier System Using -Filtering Structure

Design A Distributed Amplifier System Using -Filtering Structure Kareem : Design A Distributed Amplifier System Using -Filtering Structure Design A Distributed Amplifier System Using -Filtering Structure Azad Raheem Kareem University of Technology, Control and Systems

More information

A NOVEL G-SHAPED SLOT ULTRA-WIDEBAND BAND- PASS FILTER WITH NARROW NOTCHED BAND

A NOVEL G-SHAPED SLOT ULTRA-WIDEBAND BAND- PASS FILTER WITH NARROW NOTCHED BAND Progress In Electromagnetics Research Letters, Vol. 2, 77 86, 211 A NOVEL G-SHAPED SLOT ULTRA-WIDEBAND BAND- PASS FILTER WITH NARROW NOTCHED BAND L.-N. Chen, Y.-C. Jiao, H.-H. Xie, and F.-S. Zhang National

More information

EKT 356 MICROWAVE COMMUNICATIONS CHAPTER 4: MICROWAVE FILTERS

EKT 356 MICROWAVE COMMUNICATIONS CHAPTER 4: MICROWAVE FILTERS EKT 356 MICROWAVE COMMUNICATIONS CHAPTER 4: MICROWAVE FILTERS 1 INTRODUCTION What is a Microwave filter? linear 2-port network controls the frequency response at a certain point in a microwave system provides

More information

Lesson 1: Introduction and Backgrounds on Microwave Circuits. Giuseppe Macchiarella Polytechnic of Milan, Italy Electronic and Information Department

Lesson 1: Introduction and Backgrounds on Microwave Circuits. Giuseppe Macchiarella Polytechnic of Milan, Italy Electronic and Information Department Lesson 1: Introduction and Backgrounds on Microwave Circuits Giuseppe Macchiarella Polytechnic of Milan, Italy Electronic and Information Department A very general definition A microwave filter is a -port

More information

SMALL SIZED DOUBLE-FOLD HAIRPIN LINE MICROSTRIP BANDPASS FILTER AT 2400 MHZ FOR RF/ WIRELESS COMMUNICATIONS

SMALL SIZED DOUBLE-FOLD HAIRPIN LINE MICROSTRIP BANDPASS FILTER AT 2400 MHZ FOR RF/ WIRELESS COMMUNICATIONS SMALL SIZED DOUBLE-FOLD HAIRPIN LINE MICROSTRIP BANDPASS FILTER AT 2400 MHZ FOR RF/ WIRELESS COMMUNICATIONS Jagdish Shivhare 1, S B Jain 2 1 Department of Electrical, Electronics and Communication Engineering

More information

Microwave Circuits Design. Microwave Filters. high pass

Microwave Circuits Design. Microwave Filters. high pass Used to control the frequency response at a certain point in a microwave system by providing transmission at frequencies within the passband of the filter and attenuation in the stopband of the filter.

More information

Filters / Duplexers / Diplexers / RF Assemblies. Commercial, Military and Wireless filter products

Filters / Duplexers / Diplexers / RF Assemblies. Commercial, Military and Wireless filter products Filters / Duplexers / Diplexers / RF Assemblies Commercial, Military and Wireless filter products Excellence in Filter Technologies for the Military, Commercial and Wireless Markets Table of Contents INTRODUCTION

More information

A Rectangular Ring Shaped Ultra-Wide Band Pass Filter Design

A Rectangular Ring Shaped Ultra-Wide Band Pass Filter Design A Rectangular Ring Shaped Ultra-Wide Band Pass Filter Design Pankaj Jain Shabahat Hasan Deepak Raghuvanshi Deptt. of Microwave & Milimeter Deptt. of Microwave & Milimeter Deptt. of Digital Communication

More information

MERITS OF PARALLEL COUPLED BANDPASS FILTER OVER END COUPLED BANDPASS FILTER IN X BAND

MERITS OF PARALLEL COUPLED BANDPASS FILTER OVER END COUPLED BANDPASS FILTER IN X BAND International Journal of Electrical, Electronics and Data Counication, ISSN: 232-284 MERITS OF PARALLEL COUPLED BANDPASS FILTER OVER END COUPLED BANDPASS FILTER IN X BAND 1 INDER PAL SINGH, 2 PRAVEEN BHATT,

More information

Computing and Enhancing Power Handling in Bandstop Filters

Computing and Enhancing Power Handling in Bandstop Filters Computing and Enhancing Power Handling in Bandstop Filters By R. V. SNYDER RS MICROWAVE BUTLER, NJ IMS2007 Workshop June 4, 2007 CONTENTS OF THIS TALK -Power handling in bandpass vs. bandstop similarities

More information

Products. Dielectric Resonators. Description: Specifications: Attenuation:

Products. Dielectric Resonators. Description: Specifications: Attenuation: Dielectric Resonators Products Description: K&L s Dielectric Resonator Bandpass Filters are available in standard packages with a basic Chebychev design. Connectors available are SMA and RF pins. Through

More information

Design closure for a filter is the process of going

Design closure for a filter is the process of going Progress in Simulator-Based Tuning The Art of Tuning Space Mapping Qingsha S. Cheng, James C. Rautio, John W. Bandler, and Slawomir Koziel Design closure for a filter is the process of going from the initial

More information

Transfer function: a mathematical description of network response characteristics.

Transfer function: a mathematical description of network response characteristics. Microwave Filter Design Chp3. Basic Concept and Theories of Filters Prof. Tzong-Lin Wu Department of Electrical Engineering National Taiwan University Transfer Functions General Definitions Transfer function:

More information