Low Power, Rail-to-Rail Output, Precision JFET Amplifiers AD8641/AD8642/AD8643

Similar documents
AD864/AD8642/AD8643 TABLE OF CONTENTS Specifications... 3 Electrical Characteristics... 3 Absolute Maximum Ratings... 5 ESD Caution... 5 Typical Perfo

AD8613/AD8617/AD8619. Low Cost Micropower, Low Noise CMOS Rail-to-Rail, Input/Output Operational Amplifiers PIN CONFIGURATIONS FEATURES APPLICATIONS

16 V, 4 MHz RR0 Amplifiers AD8665/AD8666/AD8668

Low Power, Precision, Auto-Zero Op Amps AD8538/AD8539 FEATURES Low offset voltage: 13 μv maximum Input offset drift: 0.03 μv/ C Single-supply operatio

TABLE OF CONTENTS Features... Applications... Pin Configurations... General Description... Revision History... 2 Specifications... 3 Absolute Maximum

Micropower Precision CMOS Operational Amplifier AD8500

Dual, Ultralow Distortion, Ultralow Noise Op Amp AD8599

15 MHz, Rail-to-Rail, Dual Operational Amplifier OP262-EP

General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544

Precision, Low Noise, CMOS, Rail-to-Rail, Input/Output Operational Amplifiers AD8605/AD8606/AD8608

Ultraprecision, 36 V, 2.8 nv/ Hz Dual Rail-to-Rail Output Op Amp AD8676

24 MHz Rail-to-Rail Amplifiers with Shutdown Option AD8646/AD8647/AD8648

General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544

Ultraprecision, 36 V, 2.8 nv/ Hz Dual Rail-to-Rail Output Op Amp AD8676

Low Cost, Precision JFET Input Operational Amplifiers ADA4000-1/ADA4000-2/ADA4000-4

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820

Low Cost JFET Input Operational Amplifiers ADTL082/ADTL084

Low Cost JFET Input Operational Amplifiers ADTL082/ADTL084

Single and Dual, Ultralow Distortion, Ultralow Noise Op Amps AD8597/AD8599 PIN CONFIGURATIONS FEATURES APPLICATIONS

Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP282/OP482

Precision Low Power Single-Supply JFET Amplifiers AD8625/AD8626/AD8627

Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP282/OP482

AD8603/AD8607/AD8609. Precision Micropower, Low Noise CMOS Rail-to-Rail Input/Output Operational Amplifiers

4 MHz, 7 nv/ Hz, Low Offset and Drift, High Precision Amplifier ADA EP

10-Channel Gamma Buffer with VCOM Driver ADD8710

16 V, 1 MHz, CMOS Rail-to-Rail Input/Output Operational Amplifier ADA4665-2

Precision, Very Low Noise, Low Input Bias Current Operational Amplifiers

Dual Precision, Low Cost, High Speed BiFET Op Amp AD712-EP

1.8 V Low Power CMOS Rail-to-Rail Input/Output Operational Amplifier AD8515

TABLE OF CONTENTS AD8625/AD8626/AD8627 Specifications... 3 Electrical Characteristics... 3 Electrical Characteristics... 4 Absolute Maximum Ratings...

Precision Low Power Single-Supply JFET Amplifiers AD8625/AD8626/AD8627

150 μv Maximum Offset Voltage Op Amp OP07D

ADA485-/ADA485- TABLE OF CONTENTS Features... Applications... Pin Configurations... General Description... Revision History... Specifications... 3 Spe

Very Low Distortion, Precision Difference Amplifier AD8274

1.8 V, Micropower, Zero-Drift, Rail-to-Rail Input/Output Op Amp ADA4051-2

Dual Low Offset, Low Power Operational Amplifier OP200

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820

Precision Low Power Single-Supply JFET Amplifier AD8627/AD8626/AD8625

TABLE OF CONTENTS Features... Applications... General Description... Pin Configurations... Revision History... 2 Specifications... 3 Electrical Charac

Zero Drift, Digitally Programmable Instrumentation Amplifier AD8231-EP OP FUNCTIONAL BLOCK DIAGRAM FEATURES ENHANCED PRODUCT FEATURES

1.8 V, Micropower, Zero-Drift, Rail-to-Rail Input/Output Op Amp ADA4051-1/ADA4051-2

Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp AD820

High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628

Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifier AD8276

Very Low Distortion, Dual-Channel, High Precision Difference Amplifier AD8274 FUNCTIONAL BLOCK DIAGRAM +V S FEATURES APPLICATIONS GENERAL DESCRIPTION

Rail-to-Rail, High Output Current Amplifier AD8397

Zero Drift, Unidirectional Current Shunt Monitor AD8219

Ultraprecision Operational Amplifier OP177

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Quad 7 ns Single Supply Comparator AD8564

9- and 11-Channel, Muxed Input LCD Reference Buffers AD8509/AD8511

AD8601/AD8602/AD8604. Precision CMOS, Single-Supply, Rail-to-Rail, Input/Output Wideband Operational Amplifiers FEATURES PIN CONFIGURATIONS

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822

Precision Micropower Single Supply Operational Amplifier OP777

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Ultralow Offset Voltage Operational Amplifier OP07

High Voltage, Current Shunt Monitor AD8215

16 V Auto-Zero, Rail-to-Rail Output Operational Amplifiers AD8638/AD8639

Quad Low Offset, Low Power Operational Amplifier OP400

Ultralow Power, Rail-to-Rail Output Operational Amplifiers OP281/OP481

Quad Low Offset, Low Power Operational Amplifier OP400

AD8218 REVISION HISTORY

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822

Self-Contained Audio Preamplifier SSM2019

High Voltage, Current Shunt Monitor AD8215

AD8510/AD8512/AD8513. Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers FEATURES PIN CONFIGURATIONS

High Resolution, Zero-Drift Current Shunt Monitor AD8217

6 db Differential Line Receiver

30 V, High Speed, Low Noise, Low Bias Current, JFET Operational Amplifier ADA4627-1/ADA4637-1

Dual Picoampere Input Current Bipolar Op Amp AD706. Data Sheet. Figure 1. Input Bias Current vs. Temperature

AD8628/AD8629/AD863 TABLE OF CONTENTS Features... Applications... General Description... Pin Configurations... Revision History... 2 Specifications...

Precision Instrumentation Amplifier AD524

Low Cost, High Speed Rail-to-Rail Amplifiers AD8091/AD8092

Ultralow Offset Voltage Operational Amplifier OP07

Low Cost, High Speed, Rail-to-Rail, Output Op Amps ADA4851-1/ADA4851-2/ADA4851-4

Dual Picoampere Input Current Bipolar Op Amp AD706

Improved Second Source to the EL2020 ADEL2020

Dual Low Power Operational Amplifier, Single or Dual Supply OP221

Precision, Low Power, Micropower Dual Operational Amplifier OP290

Low Power, 350 MHz Voltage Feedback Amplifiers AD8038/AD8039

Ultralow Distortion Current Feedback ADC Driver ADA4927-1/ADA4927-2

High Voltage, Bidirectional Current Shunt Monitor AD8210

High Performance, 145 MHz FastFET Op Amps AD8065/AD8066

Low Power, Wide Supply Range, Low Cost Difference Amplifiers, G = ½, 2 AD8278/AD8279

AD MHz, 20 V/μs, G = 1, 10, 100, 1000 i CMOS Programmable Gain Instrumentation Amplifier. Preliminary Technical Data FEATURES

Low Cost, High Speed Differential Amplifier AD8132

Ultralow Input Bias Current Operational Amplifier AD549

SGM8271/2/4 High Voltage Rail-to-Rail Output Operational Amplifiers

Precision CMOS Single-Supply Rail-to-Rail Input/Output Wideband Operational Amplifiers AD8601/AD8602/AD8604

270 MHz, 400 μa Current Feedback Amplifier AD8005

Dual Low Bias Current Precision Operational Amplifier OP297

High Voltage Current Shunt Monitor AD8211

Dual, High Voltage Current Shunt Monitor AD8213

Low Voltage Micropower Quad Operational Amplifier OP490

High Voltage, Low Noise, Low Distortion, Unity-Gain Stable, High Speed Op Amp ADA4898-1/ADA4898-2

Dual Picoampere Input Current Bipolar Op Amp AD706

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers AD8510/AD8512

Ultralow Offset Voltage Dual Op Amp AD708

Transcription:

Data Sheet Low Power, Rail-to-Rail Output, Precision JFET Amplifiers AD864/AD8642/AD8643 FEATURES Low supply current: 25 μa max Very low input bias current: pa max Low offset voltage: 75 μv max Single-supply operation: 5 V to 26 V Dual-supply operation: ±2.5 V to ±3 V Rail-to-rail output Unity-gain stable No phase reversal SC7 package APPLICATIONS Line-/battery-powered instruments Photodiode amplifiers Precision current sensing Medical instrumentation Industrial controls Precision filters Portable audio ATE GENERAL DESCRIPTION The AD864/AD8642/AD8643 are low power, precision JFET input amplifiers featuring extremely low input bias current and rail-to-rail output. The ability to swing nearly rail-to-rail at the input and rail-to-rail at the output enables designers to buffer CMOS DACs, ASICs, and other wide output swing devices in single-supply systems. The outputs remain stable with capacitive loads of more than 5 pf. The AD864/AD8642/AD8643 are suitable for applications utilizing multichannel boards that require low power to manage heat. Other applications include photodiodes, ATE reference level drivers, battery management, and industrial controls. The AD864/AD8642/AD8643 are fully specified over the extended industrial temperature range of 4 C to +25 C. The AD864 is available in 5-lead SC7 and 8-lead SOIC lead-free packages. The AD8642 is available in 8-lead MSOP and 8-lead SOIC lead-free packages. The AD8643 is available in 4-lead SOIC and 6-lead, 3 mm 3 mm, LFCSP lead-free packages. PIN CONFIGURATIONS OUT 5 VCC VEE 2 AD864 TOP VIEW (Not to Scale) +IN 3 4 IN Figure. 5-Lead SC7 (KS-5) NC IN 2 +IN 3 VEE 4 OUT A IN A 2 +IN A 3 V 4 AD864 TOP VIEW (Not to Scale) 572-8 NC 7 VCC 6 OUT 5 NC NC = NO CONNECT Figure 2. 8-Lead SOIC (R-8) OUT A IN A 2 +IN A 3 V 4 AD8642 TOP VIEW (Not to Scale) 572-2 8 V+ 7 OUT B 6 IN B 5 +IN B Figure 3. 8-Lead SOIC (R-8) AD8642 TOP VIEW (Not to Scale) 8 V+ 7 OUT B 6 IN B 5 +IN B Figure 4. 8-Lead MSOP (RM-8) OUT A 4 OUT D IN A 2 3 IN D +IN A 3 AD8643 2 +IN D V+ 4 TOP VIEW V (Not to Scale) +IN B 5 +IN C IN B 6 9 IN C OUT B 7 8 OUT C Figure 5. 4-Lead SOIC (R-4) IN A +IN A 2 V+ 3 +IN B 4 NC OUT A OUT D NC 6 5 4 3 PIN INDICATOR AD8643 TOP VIEW 5 6 7 8 572-5 572-64 572-3 2 IN D +IN D V 9 +IN C IN B OUT B OUT C IN C NOTES. NC = NO CONNECT. 2. EXPOSED PAD SHOULD BE CONNECTED TO V+. Figure 6. 6-Lead LFCSP (CP-6) (Not Drawn to Scale) 572-4 Rev. E Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 96, Norwood, MA 262-96, U.S.A. Tel: 78.329.47 www.analog.com Fax: 78.46.33 24 2 Analog Devices, Inc. All rights reserved.

AD864/AD8642/AD8643 TABLE OF CONTENTS Features... Applications... General Description... Pin Configurations... Revision History... 2 Specifications... 3 Electrical Characteristics... 3 Data Sheet Absolute Maximum Ratings...5 Thermal Resistance...5 ESD Caution...5 Typical Performance Characteristics...6 Outline Dimensions... 3 Ordering Guide... 5 REVISION HISTORY 9/ Rev. D to Rev. E Changes to Thermal Resistance Section... 5 7/ Rev. C to Rev. D Changes to Figure 6... / Rev. B to Rev. C Changes to Figure 6... Added Thermal Resistance Section and Table 4... 5 Updated Outline Dimensions... 3 Changes to Ordering Guide... 5 4/5 Rev. A to Rev. B Added AD8643...Universal Added 4-Lead SOIC...Universal Added 6-Lead LFCSP...Universal Updated Outline Dimensions... 3 Changes to Ordering Guide... 4 3/5 Rev. to Rev. A Added AD8642...Universal Changes to General Description... Added Figure 3 and Figure 4... Changes to Specifications...3 Changes to Absolute Maximum Ratings...5 Changes to Figure 22...8 Changes to Figure 23...9 Changes to Figure 4... 2 Updated Outline Dimensions... 3 Changes to Ordering Guide... 4 /4 Initial Version: Revision Rev. E Page 2 of 6

Data Sheet AD864/AD8642/AD8643 SPECIFICATIONS ELECTRICAL CHARACTERISTICS VS = 5. V, VCM = 2.5 V, TA = 25 C, unless otherwise noted. Table. Parameter Symbol Conditions Min Typ Max Unit INPUT CHARACTERISTICS Offset Voltage VOS 5 75 μv AD8643 LFCSP only mv 4 C < TA < +85 C.5 mv +85 C < TA < +25 C, VCM =.5 V.6 mv Input Bias Current IB.25 pa 4 C < TA < +25 C 8 pa Input Offset Current IOS.5 pa 4 C < TA < +25 C 6 pa Input Voltage Range 3 V Common-Mode Rejection Ratio CMRR VCM = V to 2.5 V 74 93 db Large Signal Voltage Gain AVO RL = kω, VO =.5 to 4.5 V 8 4 V/mV Offset Voltage Drift VOS/ T 4 C < TA < +25 C 2.5 μv/ C OUTPUT CHARACTERISTICS Output Voltage High VOH 4.95 V IL = ma, 4 C to +25 C 4.94 V Output Voltage Low VOL.5 V IL = ma, 4 C to +25 C..5 V Output Current IOUT ±6 ma POWER SUPPLY Power Supply Rejection Ratio PSRR VS = 5 V to 26 V 9 7 db Supply Current/Amplifier ISY 95 25 μa 4 C < TA < +25 C 27 μa DYNAMIC PERFORMANCE Slew Rate SR 2 V/μs Gain Bandwidth Product GBP AD864, AD8642 3 MHz AD8643 2.5 MHz Phase Margin Øm 5 Degrees NOISE PERFORMANCE Voltage Noise en p-p f =. Hz to Hz 4. μv p-p Voltage Noise Density en f = khz 28.5 nv/ Hz Current Noise Density in f = khz.5 fa/ Hz Rev. E Page 3 of 6

AD864/AD8642/AD8643 Data Sheet VS= ±3 V, VCM = V, TA =25 C, unless otherwise noted. Table 2. Parameter Symbol Conditions Min Typ Max Unit INPUT CHARACTERISTICS Offset Voltage VOS 7 75 μv AD8643 LFCSP only mv 4 < TA < +25 C.5 mv Input Bias Current IB.25 pa 4 C < TA < +25 C 26 pa Input Offset Current IOS.5 pa 4 C < TA < +25 C 65 pa Input Voltage Range 3 + V Common-Mode Rejection Ratio CMRR VCM = 3 V to + V 9 7 db Large Signal Voltage Gain AVO RL = kω, VO = V to + V 25 29 V/mV Offset Voltage Drift VOS/ T 4 C < TA < +25 C 2.5 μv/ C OUTPUT CHARACTERISTICS Output Voltage High VOH +2.95 V IL = ma, 4 C to +25 C +2.94 V Output Voltage Low VOL 2.95 V IL = ma, 4 C to +25 C 2.94 V Output Current IOUT ±2 ma POWER SUPPLY Power Supply Rejection Ratio PSRR VS = ±2.5 V to ±3 V 9 7 db Supply Current/Amplifier ISY 2 29 μa 4 C < TA < +25 C 33 μa DYNAMIC PERFORMANCE Slew Rate SR 3 V/μs Gain Bandwidth Product GBP 3.5 MHz Phase Margin Øm 6 Degrees NOISE PERFORMANCE Voltage Noise en p-p f =. Hz to Hz 4.2 μv p-p Voltage Noise Density en f = khz 27.5 nv/ Hz Current Noise Density in f = khz.5 fa/ Hz Rev. E Page 4 of 6

Data Sheet ABSOLUTE MAXIMUM RATINGS Absolute maximum ratings apply at 25 C, unless otherwise noted. Table 3. Parameter Rating Supply Voltage 27.3 V Input Voltage VS to VS+ Differential Input Voltage ±Supply Voltage Output Short-Circuit Duration Indefinite Storage Temperature Range KS-5, R-8, RM-8, R-4, CP-6 Packages 65 C to +5 C Operating Temperature Range 4 C to +25 C Junction Temperature Range KS-5, R-8, RM-8, R-4, CP-6 Packages 65 C to +5 C Lead Temperature (Soldering, 6 sec) 3 C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. AD864/AD8642/AD8643 THERMAL RESISTANCE θja is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. This was measured using a standard 4-layer board. For the LFCSP package, solder the exposed pad to a copper plane, which should be connected to V+. Table 4. Package Type θja θjc Unit 5-Lead SC7 (KS) 43 49 C/W 8-Lead SOIC (R) 2 43 C/W 8-Lead MSOP (RM) 42 45 C/W 4-Lead SOIC (R) 36 C/W 6-Lead LFCSP (CP) 8 6 C/W ESD CAUTION Rev. E Page 5 of 6

AD864/AD8642/AD8643 Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS 8 7 2 8 V SY = 5V V CM =.5V FREQUENCY 6 5 4 3 2 NUMBER OF AMPLIFIERS 6 4 2 8 6 4 2.6.55.5.45.4.35.3.25.2.5..5.5..5.2.25.3.35.4.45.5.55.6 V OS (mv) 572-2.5..5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. 7.5 T C V OS (μv/ C) 8. 8.5 9. 9.5. 572-5 Figure 7. Input Offset Voltage Figure. Offset Voltage Drift NUMBER OF AMPLIFIERS 6 4 2 8 6 4 2 INPUT BIAS (pa) 4.5 4. 3.5 3. 2.5 2..5..5 T A = 25 C.5..5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. 7.5 8. 8.5 9. 9.5. OFFSET VOLTAGE (μv/ C) 572-3.5 5 3 9 7 5 3 3 5 7 9 3 5 V CM (V) 572-6 Figure 8. Offset Voltage Drift Figure. Input Bias Current vs. VCM 7.5 6 V SY = ±2.5V.4.3 T A = 25 C FREQUENCY 5 4 3 2 INPUT BIAS (pa).2...2.3.4.6.55.5.45.4.35.3.25.2.5..5.5..5.2.25.3.35.4.45.5.55.6 V OS (mv) 572-4.5 5. 2.5. 7.5 5. 2.5 2.5 5. 7.5. 2.5 5. V CM (V) 572-7 Figure 9. Input Offset Voltage Figure 2. Input Bias Current vs. VCM Rev. E Page 6 of 6

Data Sheet AD864/AD8642/AD8643 5 4 V SY = 5V INPUT BIAS CURRENT (pa) V OS (μv) 3 2 2 3 4. 25 5 75 25 5 TEMPERATURE ( C) 572-8 5.5..5 2. 2.5 V CM (V) 572- Figure 3. Input Bias Current vs. Temperature Figure 6. Input Offset Voltage vs. VCM..8.6 V SY = +5V OR ±5V M INPUT BIAS (pa).4.2.2.4 OPEN-LOOP GAIN (V/V) M k V SY = ±2.5V.6.8. 5 4 3 2 2 3 4 5 V CM (V) 572-9 k. LOAD RESISTANCE (kω) 572-2 Figure 4. Input Bias Current vs. VCM Figure 7. Open-Loop Gain vs. Load Resistance 9 A 8 B 7 6 C D V OS (μv) 5 4 3 2 5 3 9 7 5 3 3 5 7 9 3 5 V CM (V) 572- A VO (V/mV) E A., V O = ±V, R L = kω B., V O = ±V, R L = 2kΩ C. V SY = +5V, V O = +.5V/+4.5V, R L = kω D. V SY = +5V, V O = +.5V/+4.5V, R L = 2kΩ E. V SY = +5V, V O = +.5V/+4.5V, R L = 6Ω 5 3 3 5 7 9 3 5 TEMPERATURE ( C) 572-3 Figure 5. Input Offset Voltage vs. VCM Figure 8. Open-Loop Gain vs. Temperature Rev. E Page 7 of 6

AD864/AD8642/AD8643 Data Sheet OFFSET VOLTAGE (μv) 6 5 4 3 2 kω 2 3 4 kω kω 5 6 5 5 5 5 OUTPUT VOLTAGE (V) Figure 9. Input Error Voltage vs. Output Voltage for Resistive Loads 572-4 SATURATION VOLTAGE (mv) V SY V OH V SY V OL... LOAD CURRENT (ma) Figure 22. Output Saturation Voltage vs. Load Current 572-7 25 2 5 V SY = ±5V POS RAIL V SY =5V V SY V OH INPUT VOLTAGE (μv) R L = kω 5 R L = 2kΩ R L = kω R L = kω 5 5 2 25 R L = kω R L = kω R L = kω 3 NEG RAIL R L = 2kΩ 35 5 5 2 25 3 35 OUTPUT VOLTAGE FROM SUPPLY RAIL (mv) 572-5 SATURATION VOLTAGE (mv) V OL... LOAD CURRENT (ma) 572-8 Figure 2. Input Error Voltage vs. Output Voltage Within 3 mv of Supply Rails Figure 23. Output Saturation Voltage vs. Load Current 8 7 6 7 6 5 R L = 2kΩ C L = 4pF 35 27 225 I SY (μa) 5 4 3 +25 C +25 C 2 55 C 4 8 2 6 2 24 28 V SY (V) 572-6 GAIN (db) 4 3 2 2 GAIN 3 35 k k M M PHASE 8 35 9 45 45 9 PHASE (Degrees) 572-9 Figure 2. Quiescent Current vs. Supply Voltage at Different Temperatures Figure 24. Open-Loop Gain and Phase Margin vs. Frequency Rev. E Page 8 of 6

Data Sheet AD864/AD8642/AD8643 7 6 5 V SY = 5V R L = 2kΩ C L = 4pF 35 27 225 4 2 GAIN (db) 4 3 2 GAIN PHASE 8 35 9 45 PHASE (Degrees) CMRR (db) 8 6 4 2 45 2 2 9 3 35 k k M M 572-2 4 6 k k k M M 572-23 Figure 25. Open-Loop Gain and Phase Margin vs. Frequency Figure 28. CMRR vs. Frequency 7 6 5 R L = 2kΩ C L = 4pF 4 2 V SY =5V GAIN (db) 4 3 2 G = + G = + CMRR (db) 8 6 4 2 G = + 2 2 4 3 k k k M M 572-2 6 k k k M M 572-24 Figure 26. Closed-Loop Gain vs. Frequency Figure 29. CMRR vs. Frequency 7 6 5 V SY = 5V R L = 2kΩ C L = 4pF 4 2 +PSRR GAIN (db) 4 3 2 G = + G = + PSRR (db) 8 6 4 2 PSRR G = + 2 2 4 3 k k k M M 572-22 6 k k k M M 572-25 Figure 27. Closed-Loop Gain vs. Frequency Figure 3. PSRR vs. Frequency Rev. E Page 9 of 6

AD864/AD8642/AD8643 Data Sheet 4 2 V SY =5V..8 T 8 +PSRR.6.4 V IN PSRR (db) 6 4 2 PSRR INPUT BIAS (pa).2.2.4 2 2.6 V OUT 4 6 k k k M M 572-26.8. 5 CH 4.V 3 CH2 2.V M4μs 2 A 3CH 4.V5 T.s V CM (V) 572-29 572-9 Figure 3. PSRR vs. Frequency Figure 34. No Phase Reversal G = + 5 V S = ±3V GAIN = +5 TS + (%) Z OUT (Ω) G = + G = + OUTPUT SWING (V) 5 5 TS + (.%) TS (.%). TS (%). k k k M M M 572-27 5.2.4.6.8..2.4.6.8 2. SETTLING TIME (μs) 572-3 Figure 32. Output Impedance vs. Frequency Figure 35. Output Swing and Error vs. Settling Time V SY =5V G = + 7 6 5 V S = ±3V R L = kω V IN = mv p-p A V = + Z OUT (Ω) G = + G = + OVERSHOOT (%) 4 3 2 OS OS+.. k k k M M M 572-28 CAPACITANCE (pf) 572-3 Figure 33. Output Impedance vs. Frequency Figure 36. Small Signal Overshoot vs. Load Capacitance Rev. E Page of 6

Data Sheet AD864/AD8642/AD8643 OVERSHOOT (%) 7 6 5 4 3 2 V S = ±2.5V R L = kω V IN = mv p-p A V = + OS OS+ VOLTAGE NOISE DENSITY (nv/ Hz) k CAPACITANCE (pf) Figure 37. Small Signal Overshoot vs. Load Capacitance 572-32 k k Figure 4. Voltage Noise Density 572-35 INPUT BIAS (pa)..8.6.4.2.2.4.6 V S = ±3V G = +M CH p-p = 4.26V VOLTAGE NOISE DENSITY (nv/ Hz) k V SY = 5V.8. 5 CH 4.V 3 2 M.s 2 A CH 3 4 2.V5 V CM (V) 572-33 572-9 k k 572-36 Figure 38.. Hz to Hz Noise Figure 4. Voltage Noise Density..8.6 V S = ±2.5V G = +M CH p-p = 4.6V.4. LOAD = kω GAIN = + 8V p-p INPUT INPUT BIAS (pa).4.2.2.4 THD + NOISE (%).. 4V p-p INPUT 2V p-p INPUT V p-p INPUT.6.8. 5 CH 4.V 3 2 M.s 2 A CH 3 4 2.V5 V CM (V) 572-34 572-9. k k 2k 572-37 Figure 39.. Hz to Hz Noise Figure 42. Total Harmonic Distortion + Noise vs. Frequency Rev. E Page of 6

AD864/AD8642/AD8643 Data Sheet (db) 4 5 6 7 8 9 2 3 4 5 V IN + 2kΩ 2kΩ V IN = 4.5V p-p V IN = 9V p-p 2kΩ 6 2 k k k Figure 43. Channel Separation + 2kΩ V IN = 8V p-p 572-4 Rev. E Page 2 of 6

Data Sheet AD864/AD8642/AD8643 OUTLINE DIMENSIONS 2.2 2..8.35.25.5 5 2 4 3 2.4 2..8..9.7.65 BSC..8.4.. MAX COPLANARITY..3.5 SEATING PLANE.22.8 COMPLIANT TO JEDEC STANDARDS MO-23-AA Figure 44. 5-Lead Thin Shrink Small Outline Transistor Package [SC7] (KS-5) Dimensions shown in millimeters.46.36.26 7289-A 5. (.968) 4.8 (.89) 4. (.574) 3.8 (.497) 8 5 4 6.2 (.244) 5.8 (.2284).25 (.98). (.4) COPLANARITY. SEATING PLANE.27 (.5) BSC.75 (.688).35 (.532).5 (.2).3 (.22) 8.25 (.98).7 (.67).5 (.96).25 (.99).27 (.5).4 (.57) 45 COMPLIANT TO JEDEC STANDARDS MS-2-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 45. 8-Lead Standard Small Outline Package [SOIC_N] (R-8) Dimensions shown in millimeters and (inches) 247-A Rev. E Page 3 of 6

AD864/AD8642/AD8643 Data Sheet 3.2 3. 2.8 3.2 3. 2.8 8 5 4 5.5 4.9 4.65 PIN IDENTIFIER.65 BSC.95.85.75.5.5 COPLANARITY..4.25. MAX 6 5 MAX.23.9 COMPLIANT TO JEDEC STANDARDS MO-87-AA Figure 46. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters.8.55.4-7-29-b 8.75 (.3445) 8.55 (.3366) 4. (.575) 3.8 (.496) 4 8 7 6.2 (.244) 5.8 (.2283).25 (.98). (.39) COPLANARITY..27 (.5) BSC.5 (.2).3 (.22).75 (.689).35 (.53) SEATING PLANE 8.25 (.98).7 (.67).5 (.97).25 (.98).27 (.5).4 (.57) 45 COMPLIANT TO JEDEC STANDARDS MS-2-AB CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 47. 4-Lead Standard Small Outline Package [SOIC_N] (R-4) Dimensions shown in millimeters and (inches) 666-A PIN INDICATOR 3. BSC SQ TOP VIEW 2.75 BSC SQ.45.6 MAX BOTTOM VIEW 3 2 EXPOSED PAD 6.5.4.3 PIN INDICATOR *.65.5 SQ.35.9.85.8 SEATING PLANE 2 MAX.8 MAX.65 TYP.3.23.8.5 MAX.2 NOM.2 REF.5 BSC.5 REF 4 5 *COMPLIANT TO JEDEC STANDARDS MO-22-VEED-2 EXCEPT FOR EXPOSED PAD DIMENSION. 9 8.25 MIN FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. Figure 48. 6-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 3 mm 3 mm Body, Very Thin Quad (CP-6-3) Dimensions shown in millimeters 7-7-28-A Rev. E Page 4 of 6

Data Sheet AD864/AD8642/AD8643 ORDERING GUIDE Model Temperature Range Package Description Package Option Branding AD864AKSZ-R2 4 C to +25 C 5-Lead SC7 KS-5 A7 AD864AKSZ-REEL7 4 C to +25 C 5-Lead SC7 KS-5 A7 AD864AKSZ-REEL 4 C to +25 C 5-Lead SC7 KS-5 A7 AD864ARZ 4 C to +25 C 8-lead SOIC_N R-8 AD864ARZ-REEL7 4 C to +25 C 8-lead SOIC_N R-8 AD864ARZ-REEL 4 C to +25 C 8-lead SOIC_N R-8 AD8642ARMZ 4 C to +25 C 8-lead MSOP RM-8 AA AD8642ARMZ-REEL 4 C to +25 C 8-lead MSOP RM-8 AA AD8642ARZ 4 C to +25 C 8-lead SOIC_N R-8 AD8642ARZ-REEL7 4 C to +25 C 8-lead SOIC_N R-8 AD8642ARZ-REEL 4 C to +25 C 8-lead SOIC_N R-8 AD8643ARZ 4 C to +25 C 4-lead SOIC_N R-4 AD8643ARZ-REEL7 4 C to +25 C 4-lead SOIC_N R-4 AD8643ARZ-REEL 4 C to +25 C 4-lead SOIC_N R-4 AD8643ACPZ-R2 4 C to +25 C 6-Lead LFCSP_VQ CP-6-3 AUA AD8643ACPZ-REEL7 4 C to +25 C 6-Lead LFCSP_VQ CP-6-3 AUA AD8643ACPZ-REEL 4 C to +25 C 6-Lead LFCSP_VQ CP-6-3 AUA Z = RoHS Compliant Part. Rev. E Page 5 of 6

AD864/AD8642/AD8643 Data Sheet NOTES 24 2 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D572--9/(E) Rev. E Page 6 of 6