MFJ Manual Loop Tuner Considerations

Similar documents
DISCLAIMER user purposes only not not

The EMCOMM Easytenna

A short, off-center fed dipole for 40 m and 20 m by Daniel Marks, KW4TI

Portable Magnetic Loop Antenna. KG5EAO Rick Bono

Port P able ort Magnet Magne ic Loop Ant An e t nna KG5EAO Rick Bono August Augus 11, 2015

Introduction LOADING COIL COUNTERPOISE ATTACHMENT ANTENNA ATTACHMENT. Figure 1: MFJ-1625 Window/Balcony Mount Antenna

Antenna Design for FM-02

Users Manual. 200W HF/50MHz Band Auto Antenna Tuner. Model HC-200AT

ALWAYS ATTACH THE SAFETY ROPE TO A STABLE SUPPORT BEFORE ATTEMPTING TO ATTACH THE UNIVERSAL MOUNT TO A WINDOW FRAME OR RAIL.

A 75-Watt Transmitter for 3 Bands Simplified Shielding and Filtering for TVI BY DONALD H. MIX, W1TS ARRL Handbook 1953 and QST, October 1951

Miniature Magnetic Loops By David Posthuma, WD8PUO

AD5X. Low Cost HF Antennas & Accessories. Phil Salas - AD5X Phil Salas AD5X. Richardson, Texas

N5PUV s 4 Band Fan Dipole Experiment. Using the New SRI (Stanford Research Institute) Method

User Guide for the Alpha Loop Sr Antenna

AD5X. The 43-Foot Vertical. Phil Salas - AD5X Phil Salas AD5X. Richardson, Texas

4 Antennas as an essential part of any radio station

Small Magnetic Loops: A Beginner s Guide WOW! This is a very different antenna!

HFp. User s Guide. Vertical. entenna. 7 MHz 30 MHz Amateur Radio Antenna Plus 6-Meters

Chapter 6 Antenna Basics. Dipoles, Ground-planes, and Wires Directional Antennas Feed Lines

Hardware Store 40m Magnetic Loop Antenna for Regional and EMCOM Use. Richard Bono NO5V. QST Antenna Design Competition 80 through 10 meter entry

Technician Licensing Class. Antennas

LC31L-BAT Link Coupler

Compact Multi-Band Rotatable Dipole Antenna Array

USERS MANUAL for the. FB5 Antenna. a personal non-commercial project of the Florida Boys

SWL Receiving Antenna Experiments

MFJ-2982 Feather-Lite 80-6 Meter Vertical Antenna

Improved Ionospheric Propagation With Polarization Diversity, Using A Dual Feedpoint Cubical Quad Loop

MFJ-208 VHF SWR Analyzer

Assembly Instructions for the FRB FET FM 70 Watt Amp

Some hints/tips on how to assemble nice COAX TRAPS!

MFJ-219/219N 440 MHz UHF SWR Analyzer TABLE OF CONTENTS

THE W3FF HOMEBREW BUDDIPOLE

Build a 12/17 Meter Trap Dipole Phil Salas AD5X

Technician Licensing Class T9

Introduction. Understanding Power Ratings. Peak Reading SWR/Wattmeter

PAC-12 Kit Contents. Tools Needed Soldering iron Phillips screwdriver Wire stripper Wrenches, 7/16 and 1/2 Terminal crimp tool Pliers Solder

TW4040. The Adventurer Monobander INSTRUCTION MANUAL. TransWorld Antennas

HFp. User s Guide. Vertical. entenna. 7 MHz 54 MHz Amateur Radio Antenna. The Ventenna Co. LLC P.O. Box 227 Huston, ID

MFJ-2100 INSTRUCTION MANUAL. CAUTION: Read All Instructions Before Operating Equipment

Portable or Emergency VHF Antennas Paul R. Jorgenson KE7HR

Mast and Antennas for Field Day & Emergencies

Technician License. Course

MFJ-941E Versa Tuner II GENERAL INFORMATION:

Array Solutions OCF Series Dipoles

Optimizing Your Stations Performance

Cable Hanging Instruction Manual

SPORTCRAFT ANTENNAS. INSTALLATION INSTRUCTIONS for FLUSH WINGTIP COM ANTENNAS

Transmission Line Signal Sampling By Don Steinbach, AE6PM

Helically Loaded Magnetic Loop Antenna

4/25/2012. Supplement T9. 2 Exam Questions, 2 Groups. Amateur Radio Technician Class T9A: T9A: T9A: T9A:

A Folding 5-Element Yagi for 144 MHz

Portable Magnetic Loop Antenna Version Two

HFp. User s Guide. Vertical. entenna. 7 MHz 30 MHz Amateur Radio Antenna

4/29/2012. General Class Element 3 Course Presentation. Ant Antennas as. Subelement G9. 4 Exam Questions, 4 Groups

A IVE-BAND, TWO-ELEMENT H QUAD

BARRETT. 911 Automatic antenna tuner Installation instructions. General. Specifications COMMUNICATIONS

1) Transmission Line Transformer a. First appeared on the scene in 1944 in a paper by George Guanella as a transmission line transformer, the 1:1

ALWAYS ATTACH THE SAFETY ROPE TO A STABLE SUPPORT BEFORE ATTEMPTING TO ATTACH THE UNIVERSAL MOUNT TO A WINDOW FRAME OR RAIL.

MFJ ENTERPRISES, INC.

Portable Magnetic Loop Antennas

Installation Instructions Hustler 6-BTV Trap Vertical

CON NEX HP. OWNER'S MANUAL Full Channel AM/FM Amateur Mobile Transceiver TABLE OF CONTENTS TUNING THE ANTENNA FOR OPTIMUM S.W.R..

Transmission lines. Characteristics Applications Connectors

6M HALO VERSON II + OPTIONAL 2M GROUND PLANE

WA3RNC 30 METER CRYSTALPLEXER TRANSMITTER KIT ASSEMBLY INSTRUCTIONS

Nick Garner N3WG and George Zafiropoulos KJ6VU

Lightning Strikes. Presented to the Greater Norwalk Amateur Radio Corporation Inc. February 8, 2017 Steven M. Simons W1SMS

The W3FF Portable Dipole

Portable Vertical Antenna for 75m & 40m

MFJ-949E. tuner antenowy skrzynka antenowa. Instrukcja obsługi. importer:

MFJ-834 RF Ammeter. Introduction. Uses

Installation Instructions Hustler 6-BTV Trap Vertical

CP6A. 6 Band Trap Vertical 75-6m

Chapter 5.0 Antennas Section 5.1 Theory & Principles

Tuning a 160M full sized vertical with strong AM broadcast RF present on the antenna. Jay Terleski, WX0B

Basic Wire Antennas. Part II: Loops and Verticals

The Switched Longwire Tuner SLT

1997 MFJ ENTERPRISES, INC.

db Systems Model 5100A-HS-ICE DME Antenna

(Revised March 16, 1922.) CONSTRUCTION AND OPERATION OF A VERY SIMPLE RADIO RECEIVING EQUIPMENT.*

HF SIGNALS ΜBITX. The QRP HF General Coverage Transceiver you can build. Buy Now Circuit Description Wireup Tune Up Help and Support BITX Hacks

How to use your antenna tuner.

MFJ-249B HF/VHF SWR ANALYZER

High-Power Directional Couplers with Excellent Performance That You Can Build

CP6 6 Band Trap Vertical 80-6m

Building the Sawdust Regenerative Receiver

Constructing VHF/UHF Antennas WB5CXC Larry Brown W5WF Charles Webb

Technician Licensing Class. Lesson 4. presented by the Arlington Radio Public Service Club Arlington County, Virginia

MFJ-2389 Compact 8 Band Vertical

ANTENNA MATRIX. Antenna Matrix. Purpose. Using the Antenna Selection Proforma

LJ element beam for 10 or 12 meters INSTRUCTION MANUAL. CAUTION: Read All Instructions Before Operating Equipment

High Performance 40 Meters Vertical Without Radials

Ground-Mounted Verticals. Dispelling the Myths and Misconceptions

Time of Arrival Radio Direction Finder.

MAGNETIC LOOP SYSTEMS SIMPLIFIED

Pacific Antenna RF Probe assembly

mat-180h HF-SSB Automatic Antenna Tuner Instruction Manual Version V1.0

MFJ ENTERPRISES, INC.

MFJ-969 Versa Tuner II Instruction Manual

Least understood topics by most HAMs RF Safety Ground Antennas Matching & Feed Lines

Transcription:

Pagina 1 0 items Proceed to Secure Checkout All Categories Accessories Analyzers Products Tuners Morse Code / CW Power Supplies Product Search Search! List All Products Site Menu Customer Account Order Lookup Customer Support Product Support MFJ Catalog Dealer Listing Talk About MFJ Sister Companies Ameritron Hy-Gain Mirage Vectronics Cushcraft MFJ Manual Loop Tuner Considerations Introduction MFJ manual loop tuners are versatile, high-efficiency loop tuners that can turn any loop conductor into a high-efficiency multi-band transmitting loop antenna system. This paper has been prepared to provide the reader with some loop antenna theory, and loop mounting and antenna considerations as specifically applicable to MFJ manual loop tuners. MFJ Manual Loop Tuner Products There are two types of MFJ manual loop tuners. The QRO series consist of the MFJ933, MFJ-935B and MFJ-936B all rated at 150 watts maximum power. The MFJ-932 QRP loop tuner is a much smaller, lower powered unit rated at 50 watts maximum. The MFJ-933B, MFJ-935B, and MFJ-936B utilize the same basic loop tuner circuitry, but there is a difference in size and features. The MFJ-933B and MFJ-935B tuners measure 6 ¼ x 9 ¼ x 5 ¼ and cover 60-10 meters. The MFJ-933B has no internal metering, while the MFJ-935B has an RF current meter for tuning. The MFJ-936B is a physically larger tuner (10 ¼ x 9 ¼ x 5 ¼ ), and includes both an internal RF current meter and a SWR/RF Power Meter and also adds 80 meters to the band coverage. The MFJ-932 loop tuner has dimensions of just 3 x 4 x 1½, making it a convenient size for portable/camping/qrp operation. No metering is included in this unit. Some basic loop antenna theory A small transmitting loop antenna has a conductor length or circumference of less than 1/4 wavelength (λ/4). When properly designed, the small loop can have performance close to, or even exceed that of a full-size antenna depending on mounting location. The small loop radiation pattern is maximum along the plane of the loop, with sharp nulls perpendicular to the plane of the loop. Loop length (circumference) approaching λ/4 and shaped as a circle is the most efficient configuration. A circular loop has about 10% higher gain than the other shapes as gain is directly proportional to the area enclosed by the loop. Small loop antennas also enjoy significant rejection of undesired signals and noise, height above ground is not critical, and no ground or radials are needed. Unfortunately, the advantages do not come without trade-offs. Tuning is very sharp, bandwidth is very narrow, and efficiency can suffer unless care is taken in the design and set-up of the loop system. As an example, there can be thousands of volts generated across the tuning capacitor due to the high-q circuit. And radiation resistance is very low because the loop is small compared to a full-size antenna. So very high RF currents will flow in the loop on the order of 10 s of amps at the 100-watt power level. To mitigate these issues, one must use large-gauge low-loss antenna conductors, minimize all loop connector interfaces, and use wide-spaced air-variable tuning capacitors which have no mechanical wiping contacts in series with the RF signal. See the loop antenna chapter in the ARRL Book for more detailed information. Loop Tuner Operating Locations As the loop antenna is elevated, its efficiency improves. At very low heights, close coupling to the ground can cause detuning MFJ-1172 REMOTE AC ON/ OFF S Only $139.95! MFJ-815D WATTMETER, HF/6M C Only $89.95! MFJ-281 SPEAKER, CLEAR TON Only $12.95! MFJ-9415 TRANSCEIVER, SSB, Only $259.95!

Pagina 2 and losses due to current induced into a mirror image of the loop below the surface, with resistance of the image loop proportional to soil resistance. Another loss component is due to current flowing in the soil via capacitance between the loop and soil surface. An operational height equal to half the diameter of the loop antenna is recommended to prevent detuning and excess ground losses. This means that the loop tuner should be at that recommended height, since the MFJ manual loop tuners are connected to the bottom ends of the loop, regardless of the loop antenna configuration. Finally, to minimize ground losses, the loop should be mounted vertically. For operation on 14 MHz and higher frequencies, ground losses are minimal so it is fine to operate near normal ground level. For the 7 MHz band and lower, ground losses can be more of a problem, so elevated operation (i.e. from a second or higher floor) can result in improved performance. MFJ Loop Tuner Design Discussion All MFJ loop tuners use a butterfly looptuning capacitor, which has no rotating contacts in series with the high-current RF loop signal. For the 150-watt tuners, MFJ manufactures their own butterfly airvariable tuning capacitors (MFJ-19 and MFJ-21). Number 10 brass screws hold the capacitor assembly together, and two of these screws extend through the case and serve as antenna connectors to essentially make the tuning capacitor part of the antenna. The entire capacitor plate connectors and brass screws on all four sides are paralleled with separate bus wires to further reduce losses. Transmitter matching is accomplished with another air-variable capacitor. So, only high-q air-variable capacitors are used in the tuner design. Finally, a vernier drive is used with the butterfly tuning capacitor to ease the tuning process. While the MFJ-932 QRP Loop Tuner is rated at 50 watts maximum power, this doesn t negate the necessity of requiring very low loss components and connections. Like the larger loop tuners, the MFJ-932 uses a more expensive airvariable butterfly tuning capacitor which eliminates any wiping contacts in series with the RF. And transmitter matching into the loop is also accomplished with an air-variable capacitor. So again, only high-q air variable capacitors are used in the design. No vernier drive is available do to the compact size of this tuner, so tuning is touchier than on the larger loop tuners. Loss Considerations When coupled to a low-resistance loop conductor such as a copper strap, copper tube, or large gauge copper wire, MFJ loop tuners can provide a high efficiency transmitting loop antenna system. However, particular care must be taken to reduce system losses. The primary causes of loss are due to the antenna conductor itself, and losses due to mechanical interconnect points. As discussed earlier, the radiation resistance of a small loop antenna is very low. From the ARRL Book, Rrad = 3.12x10-4 (A/λ 2 ) 2 Where: A = area of the loop in square metersλ=wavelength in meters of the operating frequency So, as an example, a 10-foot loop on 20 meters has a radiation resistance of only about 0.1 ohms! This highlights the necessity of minimizing other system losses. Another ARRL Book equation permits calculating the AC loss resistance of various copper conductors. RAC(Ω/ft) = 9.96x10-7 (f) 1/2 /d

Pagina 3 Where: f = frequency in Hz d = conductor diameter in inches Again, a few examples highlight the conductor considerations. A 10-gauge copper wire has a diameter of about 0.1 inch. It s AC resistance will be approximately 0.037Ω/ft on 20 meters, or 0.37 ohms for a 10-foot loop. Therefore, assuming no other system losses, the efficiency of a 10-foot loop on 20 meters will be: Eff = Rrad/(Rrad + RAC) = 0.1/0.47 0.2 or 20%. I.e., 80% of your power is lost! By going to ¼ diameter copper tubing (refrigerator ice-maker tubing), the efficiency will double to about 40%. The only mechanical interconnect points in the MFJ loop antenna systems are the actual interconnection points where the loop attaches to the loop tuner. Care must be taken to ensure that these two connection points are kept very clean, and that the wing nuts are tightened snugly. Cleaning is particularly important after periods of inactivity to ensure minimal losses due to dirty contacts. But it is good practice to always clean the connectors before attaching the loops. Considerations - General The 150-watt loop tuners will cover about a 1.5- to-1 frequency range (i.e. 28 18 or 10 7 MHz, etc.) for a given loop length. The MFJ-932 50-watt loop tuner can achieve a 2to-1 frequency range due to differences in its tuning capacitor range. Exact frequency coverage depends on each individual installation configuration involving choice of loop length, shape of the loop, height above ground level, and operating environment. Considerations Wire Loops For portable operation, trade-offs in antenna efficiency can be made when true portability is desired. In this case, wire loops may make the most sense, while keeping in mind the efficiency penalties discussed earlier. Ten gauge wire should be the smallest wire used, as this can be a good trade-off of efficiency versus size, weight, and portability. Along this vein, the MFJ-933/935B/936B loop tuners have provisions for mounting an assembled CPVC Loop Cross assembly (MFJ-57B or MFJ-58B Loop Kit) by inserting the cross into the ¾-inch CPVC receptacle mounted on the cover. The MFJ-57B kit provides operation on 20 and 30 meters using an insulated 10-gauge flexible wire loop strung on the CPVC assembly. The MFJ-58B uses the same CPVC assembly, but provides coverage from 60 meters through 10 meters with four different 10-gauge flexible wire loops. However, only operation from 30-10 meters is supported by the CPVC assembly. The 60/40 meter wire loop is too long (28-ft) for the CPVC assembly. The photos below show the different wire loops mounted on the MFJ-936B loop tuner. 13-ft 10ga 30-20m wire loop & MFJ-936B 7-ft 10ga 20-15m wire loop & MFJ-936B

Pagina 4 4-ft 10ga 17-10m wire loop & MFJ-936B The loop lengths are not the same for the QRO and QRP loop tuners due to differences in the tuning capacitors. Also, MFJ does not currently provide a loop antenna kit for the MFJ-932 QRP loop tuner. However, a CPVC stand-alone assembly can easily be made. You will need the following material: 13-feet of ½ CPVC pipe Five 3-port ½ CPVC adapters Four ½ cpvc caps Four #10 yellow crimp-on connectors Four ¼ nylon cable clips 20-feet of flexible 10-gauge wire (or 16-feet of ¼ copper tubing) The drawing below details this CPVC assembly, made with ½ CPVC tubing. It is designed to hold a 10.5-foot wire loop which covers 20-17 meters, and a 6-foot wire loop for covering 15-10 meters, or a 10-foot ¼ copper tubing loop which covers 20-15 meters and a 6-foot copper tube covering 15-10 meters.. Glue caps in place 4 places 4 x 12 CPVC Support legs Figure 2: ½ CPVC Support Components The nylon cable clips are cut down so that only the bottom mounting hole is used. Place the clips at the locations shown, mark the holes with a marker pen, and drill and tap holes for #6 screws. Then affix the clips in place with #6 nylon screws and some epoxy. Aluminum pop rivets are also acceptable. The photos below shows a close up of a mounted clip, the unassembled and assembled CPVC assembly, and

Pagina 5 the assembly with the 20-17 and 15-10 meter wires in place connected to the MFJ-932 loop tuner. Nylon clip mounting details Unassembled MFJ-932 CPVC support Assembled MFJ-932 CPVC support CPVC stand-alone (l) vs MFJ-58B (r) 10.5-ft 20-17m 10-gauge wire & MFJ-932 6-ft 15-10m 10-gauge wire & MFJ-932 Considerations Copper Tubing Loops As discussed earlier, ¼ diameter copper tubing has much less loss than 10-gauge wire. Larger diameter copper tubing is even better. However ¼ diameter copper refrigerator tubing is inexpensive, flexible, and self-supporting when used with the MFJ-933/935/936 series loop tuners. It can even be part of a portable set-up as the copper tubing can be tightly rolled for transport and then unrolled for installation. It is also easily shaped into the more efficient circular shape. The following lengths of copper tubing have been found to work well with both the QRO and QRP loop tuners. As you can see, the 10-foot copper loop does give coverage from 20-10 meters with the MFJ-932, though this does violate the small loop definition as the length is greater thanλ/4 on 12 and 10 meters. Loop Length MFJ-933/935/936 MFJ-932 10-feet 30-20 meters 20-10 meters* 6- feet 20-15 meters 15-10 meters 5-feet 17-10 meters * 20-15 meters for small loop definition, but does work 20-10 meters For the tubing ends, use tubular copper ground lugs with ¼ mounting holes (ACE Hardware/Noble 924). These can be crimped on the end of the copper tubing with

Pagina 6 an RG-6 crimper, and then soldered in place using either a butane or propane torch, or a large soldering iron. The photos below show the details. Tubing & lug before soldering Tubing & lug after crimping & soldering The photos below show the tubing mounted in place on the MFJ-935B. MFJ-935B copper loop mounting 10-ft 30-20m copper loop & MFJ-935B 6-ft 20-15m copper loop and MFJ-935B 5-ft 17-10m copper loop and MFJ-935B The small and light MFJ-932 QRP loop tuner needs an external support for the copper loops (part of the ½ CPVC assembly discussed earlier). The photos below show the MFJ-932 with the 10-foot 20-15 meter (actually 20-10 meter) and the 6- foot 15-10 meter copper loops in place. MFJ-932 copper loop attachment MFJ-932 and 10-ft 20-15m copper loop

Pagina 7 MFJ-932 and 6-ft 15-10m copper loop Conclusion Small loop antennas can be very effective when care is taken in the design of the loop tuner and the loop antenna itself. This paper has attempted to provide the reader with information on building an effective small loop antenna system optimized for the MFJ series of manual loop tuners. All information, images, and documents on this website are the sole property of MFJ Enterprises, Inc. Any reuse or redistribution of the contents of this website are strictly forbidden without authorization from MFJ Enterprises, Inc. Search