Investigation of Different Effects of Water Repellent Finishes on Different Knit Dyed Fabrics

Similar documents
A Comparative Study on Effect of Shade Depth on Various Properties of Cotton Knitted Fabric Dyed with Reactive Dyes

Effects of Dyeing Parameters on Color Strength and Fastness Properties of Cotton Knitted Fabric Dyed with Direct Dyes

Performance Evaluation of Water Repellent Finishes on Cotton Fabrics

Dyeing of Cotton Fabric with Basic Dye in Conventional Method and Pretreated with Cationic Polyacrylamide

Md. Jonayet Chowdhury *, Shamima Nasrin **

Effect of Titanium Dioxide Treatment on the Properties of 100% Cotton Knitted Fabric

EFFECT OF STITCH TYPE ON AIR PERMEABILITY 0F SUMMER OUTERWEAR KNITTED FABRICS

CHAPTER 4 INFLUENCE OF INDIVIDUAL FILAMENT FINENESS ON COMFORT CHARACTERISTICS OF MOISTURE MANAGEMENT FINISHED POLYESTER KNITTED FABRICS

Automotive Moisture-Resistant Nonwovens

[232] RMUTP Research Journal: Special Issue 2014 The 4 th RMUTP International conference: Textiles and Fashion

Creating Barriers Repellent Finishing for Medical & Protective Apparel. Melanie P. Jones Operations Supervisor Precision Fabrics Group, Inc.

CHAPTER V SUMMARY AND CONCLUSIONS

Effects of Binder Solution on Color Fastness of Digital Printed Cotton Fabric

CHAPTER 7 DEVELOPMENT OF CHEMICAL BONDED NONWOVEN FABRICS MADE FROM RECLAIMED FIBERS FOR SOUND ABSORPTION BEHAVIOUR

PILLING CAPACITY ASSESSMENT OF COTTON KNITTED FABRICS AFTER FINISHING PROCESS

FASHION DESIGN: STRAND 3. Textiles in Fashion

Effect of Salt Concentration on Rubbing and Wash Fastness of Dyed Woven and Knitted Fabrics

MARKING SCHEME TEXTILE CHEMICAL PROCESSING (779) STD XII ( ) Time: 2.5 Hrs. MM: Define the following term (Do any 10) (1x10=10)

Effective Surface Active Agents for Improving Colorfastness of Reactive Dyeing

THE EFFECT OF MATERIAL AND STRUCTURAL ANALYSIS ON COMFORT PROPERTIES OF BILAYER MODAL POLYESTER FABRICS

A Study on the Effects of Material to Liquor Ratio on the Colorfastness of Synolon Yellow EXW Fluorescent Disperse Dye

Textiles: Secret Life of Fabrics

Effect of Knitted Structures and Yarn Count on the Properties of Weft Knitted Fabrics

Chemistry behind good feelings

EFFECT OF FINISHING AGENTS ON STIFFNESS AND DRAPE OF KHADI FABRIC FOR THEIR UTILITY IN GARMENT DESIGNING

A COMPARATIVE STUDY BETWEEN ONE BATH DYEING METHOD FOR POLYESTER COTTON (PC) BLENDED FABRIC OVER CONVENTIONAL TWO BATH DYEING METHOD

Color-Fixing. Agent Organoleptic Feeling1 #

UNIT 3: Textiles and Fabric # Assignment

WHICH INK DO I USE? What This Presentation Covers

Study on Properties Analysis of Knitwear After Acid Wash

International Journal of Engineering & Technology IJET-IJENS Vol: 12 No: 01 5

Comparative study on Garments dyeing process and Fabric dyeing process on various parameters (PH, M: L, softener etc)

IMPACT OF REPEATED WASHINGS ON THE THERMAL INSULATION PROPERTIES OF WOVEN COTTON FABRIC

Scope of Dyeing Polyester Cotton (PC) Blended Fabric in Single Bath Process for Water, Energy and Time Saving.

Ionic Activated Viscose Fibres

RFT Dyeing & Its Effect

Effect of M: L ratio on dyeing of jute fabrics using REMAZOL RR & DRIMAREN HF

Textile Industry Dyeing process

AATCC Test Method 132. Colorfastness to Drycleaning

COLOR CO-ORDINATES AND RELATIVE COLOR STRENGTH OF REACTIVE DYE INFLUENCED BY FABRIC GSM AND DYE CONCENTRATION

Mechanical and Chemical Enhancements for Appearance and Hand. Roy Bamford, Technical Director Aurora Textile Finishing

Colour Scene Investigation: Colour Communication in Fashion and Textile Design.

TEXTILES CAN BE FUN AND EDUCATIONAL

Evaluation of Mechanical Properties of Denim Garments after Enzymatic Bio-Washing

110 ±5 gsm Report # Fabric X Non-Fabric (check one) Address: th Street Valley, AL Lot #: Hi-Vis Yellow 10/11/06

Discipline Mechanical Testing Issue Date Certificate Number T-1114 Valid Until Last Amended on - Page 1 of 10

What you Always Wanted to Know About Flock

Abu Naser Md. Ahsanul Haque. BGMEA University of Fashion & Technology, Uttara, Dhaka, Bangladesh

TABLE OF CONTENTS. SI No Contents Page No.

DEVELOPMENT OF MOSQUITO REPELLENT FINISHED COTTON FABRIC USING ECO FRIENDLY CYMBOPOGANCITROS OIL

EVALUATION OF SURFACE WATER ABSORBENCY OF TERRY FABRICS

CHAPTER 3 COMPARISON OF FABRIC PROPERTIES OF RING & COMPACT YARN FABRIC SUBJECTED TO HOT MERCERIZATION

Dyeing Behavior and Fastness Properties of Corn (PLA) Fiber

Chapter 11 Dyeing and Printing

Application of the Water and Oil Repellent Finishing Agent EX-910E in Polyester Nonwovens

Designing and Producing Fabrics Suitable for Being Used as Waterproof Raincoats. G. E. Ibrahim

Part E04: Textiles Tests for colour fastness. Colour fastness to perspiration

Chapter 44: Fabrics and Their Care. Objectives: Compare different types of fibers, fabric construction, methods, and finishes.

The Influences of Loop Length and Raw Material on Bursting Strength Air Permeability and Physical Characteristics of Single Jersey Knitted Fabrics

Annex to the Accreditation Certificate D-PL according to DIN EN ISO/IEC 17025:2005

Objective: Use the process of dying fabrics to illustrate chemical reactions, equilibrium, chemical bonding, and ph.

THE SYNTHETIC AND ART SILK MILLS' RESEARCH ASSOCIATION (SASMIRA)

Subject : Dyeing And Printing. Unit 5: Dyeing process for natural fibers. Quadrant 1 E-Text

Effect of fabric softener on thermal comfort of cotton and polyester fabrics

Textiles. Natural and Synthetic Fibers

TABLE OF CONTENTS. SI No Contents Page No.

Subject: Dyeing and Printing. Unit 7: Introduction to textile printing. Quadrant 1 e-text

The Effect of Different Spinning and Finishing Methods on Cotton Fabrics Dyeing With Different Concentrations. Ghada A. Fatah A.

International Journal on Textile Engineering and Processes ISSN Vol. 2, Issue 4 October 2016

Textile Studies II Laboratory Report

Apparel and Sport Fabric File Fabric Descriptions. Denim: twill weave made of single hard-twisted yarns with colored warp and

Hi-Vis Yellow 5/4/2010 TEST FOR ALL MATERIALS Pass/ Test/Method Section ANSI/ISEA 107 Requirement Test Result Fail/ NA

Effect of various softeners on the performance of polyester-viscose air-jet spun yam fabrics

EC477 Man Made Fibers and Fabrics

SUSTAINABLE AND ENERGY-EFFICIENT DYEING OF HOT BRAND REACTIVE DYES ON COTTON SUBSTRATE

Types of Yarns UNIT. Structure. Learning Objectives. Unit Preview

65/35 Cotton/Polyester Blended Fabric dyeing in one step by using azeotropic ternary mixture

FURNITURE & BEDDING. Nonwovens

Enhancement in Fabric Quality by Optimizing the Dyeing Process Parameters Using Response Surface Methodology

RETARDANTS ON 100 % COTTON FABRIC

LEATHER. Lugafast Dyes. Reactive dyes for drum dyeing. Reversible (highly dependent on ph)

DO NOT TURN OVER THE PAGE UNTIL YOU ARE TOLD TO DO SO

Thai Kiwa Chemicals Co., Ltd.

Prediction of Fabrics Air Permeability Properties by Artificial Neural Network (ANN) Models

Available online at ScienceDirect. Procedia Materials Science 11 (2015 )

LESSON 15 TESTING OF TEXTILE FABRICS

Flammability. ACT Voluntary Performance Guidelines. The measurement of a fabric s performance when it is exposed to specific sources of ignition.

Designing and development of batik dyeing on khadi fabric

A STUDY ON THE AFTER TREATMENTS OF METALLISED ACID DYE ON NYLON 6, 6 BY USING REACTIVE FIXING AGENT

INFLUENCE OF KNITS STRUCTURE ON FLAMMABILITY AND COMFORTABILITY

Handbook for zero microplastics from textiles and laundry

1.Pretreatment auxiliary

SnyperSports.com Custom Sports Apparel. baseball

EFFECT OF SEWING PARAMETERS AND WASH TYPE ON THE DIMENSIONAL STABILITY OF KNITTED GARMENTS

ANALYZING THE SUITABLE ELECTROLYTE FOR REACTIVE DYEING PROCESS IN COTTON GOODS

R & D PROJECTS

Textile colorfastness is an important factor in garment and product maintenance, use, and care.

Textile colouration. Mr Mac Fergusson RMIT University

Uniperol EL. Technical Information. Nonionic dispersing agent, emulsifier and leveling agent for use in textile dyeing and printing processes.

Standard Guide to International Test Methods Associated with Textile Care Procedures 1

Transcription:

IOSR Journal of Polymer and Textile Engineering (IOSR-JPTE) e-issn: 2348-19X, p-issn: 2348-181, Volume 5, Issue 1 (Jan. - Feb. 218), PP 22-31 www.iosrjournals.org Investigation of Different Effects of Water Repellent Finishes on Different Knit Dyed Fabrics SkNasimulAlahi 1, Mohammad Alamin Hosain 2, Ahasan Al Mamun 3, Md. Saifur Rahman 4 1 Department of Wet Process Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh. Corresponding Author:SkNasimulAlahi Abstract: The purpose of this study was to investigate the effects of high performance water repellent finishes on different knit dyed fabrics. The water repellency evaluation tests and the effects of water repellent treatment towards the physical testing systems like GSM test, bursting strength test and hydrostatic head test were been studied. The experiments were done in two parts: the first was to apply different water repellent chemicals on different knit dyed fabrics. The research work includes different chemical concentrations such as 7g/L, 9g/L and 1g/L, pick up ratio 8%, drying temperature 12 C, curing temperature 16 C and curing time 1 minute. The second part was to evaluate the water repellency by drop test and spray test. The physical properties of the fabric were determined through bursting strength test and hydrostatic head test according to the standard testing procedures. Besides these, ISO 15-C6 and ISO 15-X12 methods were used for wash and rubbing fastness respectively. Moreover, the effects of different water repellent treated fabrics and their comparisons with different concentrations were also been studied. Keywords: Water repellent finish; Knit fabric; Chemical; Drop test; Spray test; Physical test; Fastness test. --------------------------------------------------------------------------------------------------------------------------------------- Date of Submission: 2-3-218 Date of acceptance: 17-3-218 ----------------------------------------------------------------------------------------------------------------------------- ---------- I. Introduction Water repellent finishing is a treatment applied to textile substrates which prevents penetration of water droplets through the fabric but allows the passage of water vapor and air. It is an important finishing process for cotton and blended fabrics which can be provided without destroying comfort of the fabric. Fabrics that are been treated to resist wetting shed water by causing the water to bead on the surface. It does not close the pores of the fabric as waterproof treatments do, so the fabrics are comfortable to wear. It will offer protection in light shower but not in case of heavy rain [1-3]. Water repellency may be added by treating the fabric withaluminum (Al) andzirconium (Zr) compounds, paraffin emulsions, fluorocarbon based chemicals, silicon compounds, N- methylol compounds, stearic acid-melamine compounds or metal complexes [4]. Water repellent fabrics are used in rain-wear, sportswear, medical bandages, upholstery fabrics for automobiles, headliners, cover tapes for adhesive plasters and outdoor activities. In the early 193 s there was an increased interest in achieving durable water repellency and it has played an important role in the apparel industry ever since. The existence of inter-molecular attractive forces of polarity and hydrogen bonding imperatively providing strength, heat resistance and dry-cleaning resistance to textile fabric. However, these forces enhance easy wetting of fiber by water offering little resistance to snow and rain for outerwear garments. These problems could be overcome by adding various water repellent chemicals to the fabric either chemically or with mechanical coating. The water repellent compounds cover the outer surface of the fabric with hydrophobic groups. These hydrophobic groups repel water molecules forming a low energy surface and thus resist water absorption. The formation of permanent covalent bonds between fibers and water repellent chemicals are necessary to produce durable water repellency. The chemical nature of the bond between fiber and water repellent chemicals prevents removal of the water repellent chemical during laundering or dry-cleaning. Pyridinium[C 5 H 5 NH] + compounds, chromium (Cr) based metal complexes and N-methylol based products accomplish the durable chemical bond formation. These products provide durable water repellent performance. Unfortunately, these compounds are hazardous and toxic to the environment limiting their production. Polysiloxanes can also be applied to textile fabrics based on the hydrogen bonding and mechanical interactions between the fabric and the Si-O-Si- bonds of the silicone compound along with the network cross link formation within the polysiloxane compound itself [5]. This finish provides semi-durable water repellency. Fluorocarbon-based repellents provide the best performance of water repellency among all other repellents. They provide the lowest surface energies to fiber surface, which even can improve textiles with oil repellent ability. The polymers of fluorocarbon will form a dense structure of CF 3 when being applied to textile DOI: 1.979/19X-512231 www.iosrjournals.org 21 Page

fibers, giving maximal repellency. Fluorochemical repellents have much lower surface energies than hydrophobic and silicon repellents imparting both water repellency and oil repellency together. Due to its hazardous chemical attitudes [6], the use of fluorocarbon based repellents has become limited to textile applications. II. Experimental 2.1 Materials and Methods Materials, chemicals and the experimental methods used in this thesis work were available in most of the textile industries. Since availability and cost were major concerns, we tried to use such type of raw materials, chemicals and experimental techniques which were easily available, safe and economical. All the knitted fabrics used in our experiments were made of cotton. Table 1: Types of knit fabrics used in the experiment with their characteristics Types of Knit Characteristics Fabrics Used Simplest knit structure, back and face side appearance different, curling tendency prominent, plain can be unroved from the course knitted last or from the course knitted first [7]. Vertical cord appearance much more prominent, no curling tendency, same appearance on both sides like technical face of plain, thicker and extensibility and elasticity are higher. Appearance like technical face of plain, no curling tendency, horizontal and vertical stripes can be produced, can be unroved from end point. A single jersey derivative, a knit-tuck single jersey structure, design repeat consists of four courses of which the first two courses are same, popular structure to produce cut and sew knit wear, prominence of the design appears on the back side of the fabric. Reactive dye was been used thoroughly as the coloring agent. Reactive dye is a class of highly colored organic substance which chemically reacts with cellulosic or protein fibers in an alkaline dye bath to form covalent bond and becomes a part of fiber. General structure of reactive dye is:s D B RG X Where, S = Solubilizing group; D = Dye chromophore; B = Bridging group;rg = Reactive group; X = Leaving group. Table 2: Water repellent chemicals used Chemicals Used Manufacturer Composition Application Recipe Archroma Dispersion of a fluorine compound. Rudolf Fluorocarbon resin with polymeric, hyper branched dendrimers in a hydrocarbon. Huntsman Alkyl urethane, non-fluorinated material. : 7g/L, 9g/L, 1g/L Acetic acid: 1ml/L as required for p H 4-5 : 7g/L, 9g/L, 1g/L Acetic acid: 1ml/L as required for p H 4-5 : 7g/L, 9g/L, 1g/L Acetic acid: 1ml/L as required for p H 4-5 Phobol XAN: 1g/L Invadine PBN: 5g/L The method of application for the whole experiment lies on the following technique: Pad Dry Cure Padding is the method of applying finishing chemicals to the fabric. Padding was done at pick up of 8% allowing through pad roller pressure. Drying is the process to remove moisture from the treated fabric. Drying was done at 12 C. Curing is the process of placing the fabric at high temperature for allowing the chemical to carry out the reaction process. Curing was done at 16 C for 1 minute. Padding pressure was 1 bar. Machines used for impregnation were Horizontal Pad-Mangle as padding machine of which fabric speed was 2 meter per minute and padding pressure was 1 bar, Fine Oven as drying machine and Mathis Steamer (Switzerland) as curing machine. 2.2 Testing and Analysis of Treated Fabrics Two types of water repellency evaluation tests were been used for the treated samples. One was Drop Test and the other one was Spray Rating Test. Drop test was the first and foremost test of the treated samples in which the fabric was tested with water droplets to retain its spherical structure on the fabric surface. Spray rating test was done according to the AATCC test method 22-25 [8] in which samples were conditioned for 24 hours at a relative humidity of 65±2% prior to testing. The specimens were stretched on a hoop, which was held at an angle of 45 and 25ml of water was been poured through a spray nozzle on the fabric surface. Any wetting or spotted pattern observed was compared with the photographic rating chart. DOI: 1.979/19X-512231 www.iosrjournals.org 22 Page

Table 3: British Spray Rating Rating Description 1 Complete wetting of the whole of the sprayed surface. 2 Wetting of more than half of the sprayed surface. 3 Wetting of the sprayed surface only at small discrete areas. 4 No wetting, but adherence of small drops to the sprayed surface. 5 No wetting and no adherence of small drops to the sprayed surface. Physical testing is imperative to check either the physical properties of the treated fabrics having changed or not. Three physical testing methods were used during the inspection procedure such as GSM test, Bursting Strength test and Hydrostatic Head test. GSM stands for gram per square meter which means the weight of fabric in gram per square meter. By this we can compare the fabrics in unit area which is heavier and which is lighter. Gram per square meter (GSM) = Weight of fabric cut by GSM cutter (in cm 2 ) 1 (1) Bursting strength test is a method of measuring strength in which the material is stressed in all directions at the same time and is therefore more suitable for knitted materials, laces or nonwovens. ASTM test method D3786 [9] was used to evaluate the treated knit fabric bursting strength. The specimens to be tested (3mm and 113mm) were clamped over a rubber diaphragm by means of an annular clamping ring and an increasing fluid pressure was applied to the underside of the diaphragm until the specimen burst (within 2±3 seconds). The same process was carried out without a specimen. The operating fluid was a liquid. Bursting Strength = Pressure required to burst the specimen at a certain height of the diaphragm (in kpa) (P 1 ) - Pressure required to lift the diaphragm to the same height without the specimen (in kpa) (P 2 ) (2) If the extension percentage [1] be calculated due to fluid pressure then, c Extension = 2 +h 2 tan 1 h c 1 percent (3) h c c Where,h= height and c= radius of the specimen. Hydrostatic head test means water permeability test which exhibits how much the pressure required to penetrate the water into the fabric. According to the British Standard ISO 811 test method [11] the test specimen was cut at 6cm diameter and the test cell was rinsed thoroughly with distilled water and filled to approximately.3cm of the top. The specimen was clamped between the gaskets and orifice. Air was supplied by the manometer and the pressure under the surface of the specimen was allowed to increase until water appeared at three places. The dial showed the result in cm of water. Hydrostatic pressure in a liquid can be calculated using the following equation, p = ρ g h(4) Where, p= pressure in liquid, ρ= density of liquid,g= acceleration due to gravity, h= height of fluid column. Here, in case of hydrostatic head test the head was derived as the height of the fluid column in centimeters. Color fastness to wash was measured with ISO 15-C6 method [12] using 1cm 4cm dyed fabric samples with the washing recipe: ECE (Detergent): 3g/L, Soda ash (p H 11): 2g/L, Sodium per borate (NaBO 3.1H 2 O): 1g/L, M:L=1:1, Washing temperature: 6 C, Washing time: 3minutes, 1 stainless balls were used to provide mechanical action each had diameter of.6cm and weight of 1gm. The resistance of color of dyed treated samples to the action of rubbing (dry and wet) was evaluated with ISO 15-X12 method [13] using 14cm 5cm sample by rubbing at 1 turn per second (1 1 seconds). III. Results And Discussion 3.1 Water Repellency of Fabrics Drop test was the visual test and the first test to evaluate the water repellency of the fabrics. All the treated fabrics showed better results on visual examination in Fig. 1. The pictures of the treated samples before and after are given below: DOI: 1.979/19X-512231 www.iosrjournals.org 23 Page

Figure 1: Drop test on treated fabrics and their visual appearance The water repellency of the treated fabrics was actually evaluated using the spray test method whose obtained results and graphical analysis are given below in Fig.2. The water repellent chemicals were used at three different concentrations of 7g/L, 9g/L and 1g/L on four different types of knit dyed fabrics. All the fabrics were rated under 16 C curing temperature at 1 minute. Table 4: Water repellency ratings- Spray test Concentration (g/l) Fabric Types 7 9 1 3-4 4 4-5 3-4 3-4 4-5 3-4 3-4 4 3-4 3-4 4 4-5 4-5 4-5 4 4-5 4-5 4 4 4 4 4 4 4-5 4-5 4-5 4-5 4-5 4-5 4-5 4 4 4 4 4 DOI: 1.979/19X-512231 www.iosrjournals.org 24 Page

5 4.5 4 3.5 3 2.5 2 1.5 1.5 Concentration 7g/L 4.6 4.5 4.4 4.3 4.2 4.1 4 3.9 3.8 3.7 Concentration 9g/L Concentration 1g/L 4.6 4.5 4.4 4.3 4.2 4.1 4 3.9 3.8 3.7 Figure 2: Water repellency of treated fabrics at different concentrations At 7g/L concentration, water repellency found varied with different knit fabrics that we got comparatively better results for and rib fabric combination which showed the efficiency of the chemical and also the fabric because of its compactness and heavy GSM. At 9g/L concentration, showed similar results like Rucostar EE6 and in this case also rib showed the best results for all three chemicals. At 1g/L concentration, particularly provided the best results among others and rib and polo pique both fabrics showed similar activation. 3.2 Fabric GSM Table 5: Changes in GSM due to chemical treatment Fabric Types GSM Before Concentration (g/l) 315 325 323 322 2 7 21 213 211 15 16 159 157 16 172 173 172 315 328 327 326 2 9 215 217 216 DOI: 1.979/19X-512231 www.iosrjournals.org 25 Page

15 167 168 169 16 175 173 172 315 33 332 334 2 1 218 215 214 15 17 173 171 16 178 18 179 The GSM tests were done under GSM cutter for all fabrics with all concentrations in Fig. 3. After chemical implementation, GSM of the treated fabrics increased thoroughly because chemical covered up all the pores of the fabric and a chemical coating was created on the fabric. That was the reason behind the weight of the fabric increased. Also because of the coating water was not allowed to penetrate into the fabric. 35 3 25 2 15 1 5 Concentration 7g/L 35 3 25 2 15 1 5 Concentration 9g/L GSM Before GSM Before Concentration 1g/L 4 35 3 25 2 15 1 5 GSM Before Figure 3: Fabric GSM at different concentrations of chemical implementation 3.3 Bursting Strength of Fabrics ASTM test method D3786 was used to evaluate the treated knit fabric strength. Bursting strength of the cotton knit fabric showed slight deterioration and it was taken into account. Though the change was marginal but it was important for the treated fabric to go for the next proceedings. DOI: 1.979/19X-512231 www.iosrjournals.org 26 Page

Table 6: Bursting strength of treated fabrics Fabric Types Bursting Strength Concentration Before (kpa) (g/l) 538.1 522. 526.3 523.7 428.3 7 416.2 417.7 42.5 341.7 328.8 329. 327.1 34.7 298. 3.6 297.6 538.1 516.5 516.3 513.8 428.3 9 48.3 47.5 41.9 341.7 32.5 322.4 321. 34.7 289.9 291.7 288.2 538.1 513.4 511.2 51.7 428.3 1 41.1 43.3 45.4 341.7 314.3 316.5 316. 34.7 286. 286.3 285.9 Concentration 7g/L Concentration 9g/L 6 6 5 5 4 4 3 3 2 2 1 1 Bursting Strength Before (kpa) Bursting Strength Before (kpa) Concentration 1g/L 6 5 4 3 2 1 Bursting Strength Before (kpa) Figure 4. Bursting Strength of treated fabrics at different chemical concentrations According to the derived results in Fig.4, it is clear that after water repellent finish the fabric strength decreases slightly and reasonably. The fabric strength fall phenomena increases with increasing concentration. DOI: 1.979/19X-512231 www.iosrjournals.org 27 Page

The cause behind this trend may be fluorocarbon affects the crystalline region of cellulosic fiber during cross linking. When the water repellent chemicals form cross link with the free O-H group of cotton in the amorphous region, it stiffs the fabric and that is why the fabric bursting strength decreases. 3.4 Fabric Water Permeability The Hydrostatic Head was tested to find out the water permeability of the treated fabrics. It is a major parameter to evaluate since it is directly connected with the efficiency of the water repellency treatment. Table 7: Water permeability of the treated fabrics Fabric Types Hydrostatic Head Concentration Before (cm of H 2O) (g/l) 19 21 21 22 16 7 18 18 2 14 15 15 17 13 15 15 16 19 22 23 23 16 9 19 2 2 14 16 17 17 13 15 16 16 19 24 23 23 16 1 21 2 2 14 17 17 17 13 17 16 16 25 2 15 1 5 Concentration 7g/L 25 2 15 1 5 Concentration 9g/L Hydrostatic Head Before (cm) Hydrostatic Head Before (cm) Concentration 1g/L 3 2 1 Hydrostatic Head Before (cm) Rucostar EE6 Figure 5: Water permeability of treated fabrics at different chemical concentrations DOI: 1.979/19X-512231 www.iosrjournals.org 28 Page

According to the results obtained in Fig.5, as the concentrations of the water repellent chemicals increased gradually from 7g/L to 1g/L, the pressure required to force water through the fabric also increased. The reason behind this phenomena is that the water repellent chemical forms a coating on the fabric surface and the more the concentration is the higher will be the density of coating and also the pressure required. 3.5 Fabric Wash Fastness The wash fastness of water repellent fabrics with different concentrations were rated under grey scale for two types of measurements, one for color change and another for color staining. Color change was measured with the standard sample which was washed and compared with the washed sample according to the standard recipe. Table 8: Color fastness to washing of the treated fabrics using all chemicals (Color Change) Concentration (g/l) Fabric Types Grey scale value (Color Change) 3-4 3-4 3-4 7 3-4 3-4 3-4 3 3-4 3-4 3 3-4 3-4 3-4 3-4 4 9 3-4 3-4 4 3 3-4 3-4 3 3-4 3-4 4 4 4 1 4 4 4 3-4 3-4 3-4 3-4 3-4 3-4 Color staining of the treated fabrics was also measured at grey scale with the help of washing with the Multifibers Fabric. The fabric comprises six different types of fibers such as acetate, cotton, nylon, polyester, acrylic and wool. Staining on these fibers was observed. Table 9: Color fastness to washing of the treated fabrics using all chemicals (Color Staining) Concentratio n (g/l) Fabric Types Grey scale value (Color Staining) (N), (Z), (R) Acetate Cotton Nylon Polyester Acrylic Wool 7 9 1 3-3- 3(N) 3(N) 3(N)3(Z) 3-3(N)3(Z) 3-3(N)4(Z) 3(N)4(Z) 3-3- 3-3- 3-3- 3(N)3(Z) 3(R) 3(N)3(Z) 3(R) 3-3- 3-3- 3-3- 3-3- 3-3- 3-3- 3-3- 4( R) DOI: 1.979/19X-512231 www.iosrjournals.org 29 Page

3.6 Fabric Rubbing Fastness The rubbing fastness of water repellent fabrics with different concentrations were rated under grey scale for the measurement of color staining. According to the data obtained, for all three different chemicals the treated fabrics showed average rubbing (dry and wet) fastness and as the chemical concentration increased, the rating of rubbing fastness got better. Table 1: Color fastness to rubbing of the treated fabrics using all chemicals Concentration (g/l) Fabric Types Grey scale value Dry Wet Dry Wet Dry Wet 3-4 3 4 3 4 3-4 7 3-4 3 4 3 4 3-4 3-4 3 3-4 3-4 3-4 3-4 3-4 3 3-4 3-4 3-4 3-4 4 3-4 4 3-4 4 4 9 4 3-4 4 3-4 4 4 3-4 3 3-4 3-4 3-4 3-4 3-4 3 3-4 3-4 3-4 3-4 4 4 4 4 4 4 1 4 4 4 4 4 4 3-4 3-4 3-4 3-4 3-4 3-4 3-4 3-4 3-4 3-4 3-4 3-4 IV. Conclusion In this research we tried to establish an optimum condition for achieving a good durable water repellent finish by using three popular easily available water repellent chemicals such as, and. For implementation of these chemicals we chose the mostly used knit fabric structures such as,, and all of which were dyed with Reactive Dye before chemical treatment. We used the three chemicals in three different concentrations to find out the optimum chemical concentration for compatibility, efficiency and cost minimization. To evaluate the water repellency, Spray test and Drop test were performed whereas many more physical tests like GSM test, Bursting Strength test and Hydrostatic Head test were taken places for the evaluation of the performance of the treated fabrics. We used AATCC, ASTM and ISO test methods for performing these tests. Besides these, Color Fastness to Washing and Rubbing were also checked according to the ISO methods. The depth of this research is huge and we tried our level best to find out the superior outcomes within our limitations. Acknowledgement We, the authors would like to express our gratitude to our thesis supervisor KawserParveen Chowdhury (Assistant Professor, Department of Wet Process Engineering), Dr. Md. Forhad Hossain (Head, Department of Dyes and Chemicals Engineering) and Professor Dr. Md. Zulhash Uddin (Dean, Faculty of Textile Chemical Engineering), Bangladesh University of Textiles for their overall support and guidance. We would also like to thank deeply Archroma (Bangladesh) Ltd and Micro Fibre Group for providing us the lab facilities essentially during the thesis work. We would also like to thank Swiss Color (BD) Ltd for providing us required chemicals and Texeurop (BD) Ltd for providing us sample fabrics. Finally, we would like to mention the cordial support from Wet Process Lab and TTQC Lab of Bangladesh University of Textiles. References [1]. Kissa E, Handbook of Fiber Science and Technology, Vol II, Chemical Processing of Fibers and Fabrics. Functional Finishes, Part B, Levin M and Sello S B (eds), (New York, Marcel Dekker), 1984, 159-172. [2]. Sahin B, Fluorochemicals in textile finishing, International Textile Bulletin- Dyeing/ Printing/ Finishing, 1996, 42(3), 26-3. [3]. Singh O P, Stain removal characteristics of fabrics and stain- resistance/ release finishing, Textile Dyer & Printer, 1987, 2(25), 24-27. [4]. W. D. Schindler and P.J. Hauser, Chemical Finishing of Textiles,Woodhead Publishing Limited, (Cambridge, England), 24, 76-8. [5]. Kurz E, AusrüstungausorganischenLösungsmitteln, Textilveredlung, 1969, 4, 773-786. [6]. Nassl W, Sahin B and Schuirer M, Functional finishing of sports and leisure wear, Chemiefasern/Textilindustrie, 1992, 42/94, 137-142. [7]. Engr. Shah AlimuzzamanBelal, Understanding Textiles for a Merchandiser, BMN 3 Foundation, (Dhaka, Bangladesh), 29, 383-395, 416-417. [8]. AATCC Test Method 22-25, Water Repellency: Spray Test. [9]. ASTM Test Method D3786, Standard Test Method for Bursting Strength of Textile Fabrics- Diaphragm Bursting Strength Tester Method. [1]. J. E. Booth, Principles of Textile Testing, Butterworth Heinemann Ltd. (U.K.), Third Edition, 42-423. DOI: 1.979/19X-512231 www.iosrjournals.org 3 Page

[11]. ISO 811: 1981, Textile Fabrics- Determination of Resistance to Water Penetration- Hydrostatic Pressure Test. [12]. ISO 15-C6: 21, Textiles- Tests for Color Fastness, Color Fastness to Domestic and Commercial Laundering. [13]. ISO 15-X12: 216, Textiles- Tests for Color Fastness, Color Fastness to Rubbing. Sk Nasimul Alahi. Investigation of Different Effects of Water Repellent Finishes on Different Knit Dyed Fabrics. IOSR Journal of Polymer and Textile Engineering (IOSR-JPTE), vol. 5, no. 1, 218, pp. 22 31. DOI: 1.979/19X-512231 www.iosrjournals.org 31 Page