Series PM130 PLUS Powermeters PM130P/PM130E/PM130EH

Similar documents
C191HM POWERMETER AND HARMONIC MANAGER COMMUNICATIONS REFERENCE GUIDE

Series PM130 PLUS Powermeters PM130P/PM130E/PM130EH

SERIES PM172 POWERMETERS COMMUNICATIONS. DNP Communications Protocol REFERENCE GUIDE

E50 MODBUS POINT MAP

See notes for calculations 4110 Usage Hours 1 Integer RO Y - Hours YP Usage Minutes 1 Integer RO Y - Minutes 0-59 YP

H8238/MCM MODBUS POINT MAP

COMMUNICATION MODBUS PROTOCOL MFD44 NEMO-D4Le

EIG DNP V3.0 Protocol Assignments

Contents. Introduction and description Package contents Device identification PM Options... 80

PM130 PLUS Powermeter Series PM130P/PM130E/PM130EH

MODBUS RS485 SERIAL PROTOCOL

PM130 PLUS Powermeter Series PM130P/PM130E/PM130EH

4111 Usage Minutes 1 Integer RO Y - Minutes 0-59 Y Y YP

CoolEx User Manual 2008 XDIMAX LTD. Revision 1.0

Installation and Operating Instructions

Know your energy. Modbus Register Map EB etactica Power Bar

ULTRA RAPID POWER QUALITY ANALYZER

Metasys Integrator Power Measurement Ltd. Application

ELECTRICAL VARIABLE ANALYZER RELAY EVAR

Interface Description A2000. Multifunctional Power Meter Communications Protocol per DIN Draft /2.15

Data Sheet. RISH Master Record %THD

Know your energy. Modbus Register Map EM etactica Power Meter

Universal-Transducer Multi-E11-MU

Centrale de mesure Power Meter PM500 Merlin Gerin

Installation Instructions and Reference Handbook. Installation instructions

TAS APFC Controller / Load Managers with MOD-BUS Interface

RISH PQM. Power Quality Monitor. Preliminary Datasheet subject to change without notice. Individual Harmonics measurement upto 56th Harmonics

I-7088, I-7088D, M-7088 and M-7088D User Manual

Modular Metering System ModbusTCP Communications Manual

Multi-functional Power Meter DPM-C530A User Manual.

Delta Din-rail Power Meter DPM-D520I User Manual.

Interface Description A2000. Multifunctional Power Meter Communications Protocol per EN /1.15

InfraStruXure Manager v4.x Addendum: Building Management System Integration

Line-to-line RMS Volts, 3 phases 4 digits (XXX.X) Volts

Mx7x. Manual. Mx7x. Modbus for Bitronics 70 Series GRID

Soluciones! Para el ahorro y control de la energía eléctrica. Distribuidor autorizado:

Acuvim-X Series Multifunction Power Meter

RISH Master Digital Multifunction Instrument with onsite pluggable output options. Application : Product Features:

UBN Universal Power Meter. MODBUS Protocol English 1UNMUP3K1004

Installation and Operating Instructions Quadratic Integra 1530 Digital Metering Systems

MICROPROCESSOR-BASED METERING EQUIPMENT SECTION 16901C PART 2

MS2711B Hand-Held Spectrum Analyzer

ASCII Programmer s Guide

PM296/RPM096 Power Quality Analyzers. Installation and Operation Manual

OHIO SEMITRONICS, INC. DIGITAL AC POWER MONITOR OSI SPECIFICATIONS

Digital Multifunction Instrument - Rish Master 3440

User's Manual. ServoCenter 4.1. Volume 2: Protocol Reference. Yost Engineering, Inc. 630 Second Street Portsmouth, Ohio

The rangefinder can be configured using an I2C machine interface. Settings control the

70 SERIES MEASUREMENT SYSTEM

UNIVERSAL MEASURING INSTRUMENTS. TNM 34xx. TNM 3410 / 3420 / 3430 / 3440 Universal measuring instrument 1/49

PMC-340. Digital Three-Phase Energy Meter User Manual Version: V1.1A. December 11, 2017

EASTRON SDM630MCT-RJV / SDM630MCT-RJA User Manual V1.1. Three phase multifunction din rail energy meter

ezpac Operation Manual

C u t l e r- H a m m e r. IQ Analyzer START Q U I C KS TA RT G U I D E

ALPHA 50 MULTIFUNCTION METER (ALPHA SERIES)

Technical Data Sheet AMIK 300 / 301

745 Transformer Protection System Communications Guide

DEIF A/S. Description of options. Option H1 Serial communication CAN open. Description of options. Functional description. Tables.

Copley ASCII Interface Programmer s Guide

PMAC770 Multifunction Power Meter. Installation & Operation Manual V2.0 ZHUHAI PILOT TECHNOLOGY CO., LTD.

RISH Master 3440i/3440iDL 0.2S

THREE-PHASE ENERGY METER DIRECT CONNECTION PM30D01KNX. User manual

53U MULTI POWER MONITOR OPERATING MANUAL MODEL 53U CONTENTS. (4 digital displays)

POWER QUALITY AND REVENUE METER EM920. Operation Manual. BG0482 Rev. A4

Bulletin 1403 Ethernet Communications Card

ROTRONIC HygroClip Digital Input / Output

BMS BMU Vehicle Communications Protocol

RISH Master 3430 DIGITAL MULTI-FUNCTION TRANSDUCER. Electro-Meters

M-BUS Communication Protocol. -for M-BUS modules and counters with integrated M-BUS interface-

Servo Switch/Controller Users Manual

Operating Guide October 2006

ANNEX A.4. Asynchronous Recorder Multiplexer Output Re-Constructor (ARMOR)

MPS PROFIBUS-DP INTERFACE

BlinkRC User Manual. 21 December Hardware Version 1.1. Manual Version 2.0. Copyright 2010, Blink Gear LLC. All rights reserved.

DIRIS Ap RS485 JBUS/MODBUS COM. Systèmes de Coupure et de Protection Industrial Switching and Protection Systems ON 1

Copley Amplifier Parameter Dictionary

Mercury technical manual

System 295 Powermeter & Harmonic Analyzer

DNP V3.00 LEVEL 2 Protocol Assignments

Modbus communication module for TCX2: AEX-MOD

POWER QUALITY AND REVENUE METER EM720/EM720T. Operation Manual. BG0451 Rev. A1

JT4 Data on the UKµWG Reverse DDS Module

ENGLISH 3 Phase Multi-function Power Meter 1/5A MID MID

NO WARRANTIES OF ANY KIND ARE IMPLIED ON THE INFORMATION CONTAINED IN THIS DOCUMENT.

DEIF A/S. Description of options. Option H1, CAN open communication Basic Gen-set Controller. Description of option. Functional description

Index CARLO GAVAZZI WM3-96

Energy Division

PREMIER INSTALLATION AND OPERATING INSTRUCTIONS

TIP551. Optically Isolated 4 Channel 16 Bit D/A. Version 1.1. User Manual. Issue December 2009

MT174 Three-Phase Static Electricity Multi Tariff Meter with Maximum Demand Indicator and Load-profile

PM 305 Operating Guide

DI-1100 USB Data Acquisition (DAQ) System Communication Protocol

PMC-53A. Intelligent Multifunction Meter User Manual Version: V1.0A

Model ipm Intelligent Power Monitor

TIP500. Optically Isolated 16 Channel 12 Bit ADC. Version 1.1. User Manual. Issue January 2010

RISH Delta Energy / Demand (Multifunction instrument) Data Sheet

PEM353. Universal measuring device

Serial Servo Controller

Mate Serial Communications Guide This guide is only relevant to Mate Code Revs. of 4.00 and greater

PROFINET USER S GUIDE ACSI Servo

Transcription:

Series PM PLUS Powermeters PMPPMEPMEH SATEC ASCII Communications Protocol eference Guide BG46 ev. A4

Every effort has been made to ensure that the material herein is complete and accurate. However, the manufacturer is not responsible for any mistakes in printing or faulty instructions contained in this book. Notification of any errors or misprints will be received with appreciation. For further information regarding a particular installation, operation or maintenance of equipment, contact the manufacturer or your local representative or distributor. EVISION HISTOY A A A A4 Nov Dec 9 Jun Oct 5 elease F versions.. or higher. Added time triggers. F versions.. or higher. Added 8 tariffs. F versions.. or higher. Added event and data log setup and file transfer registers. F versions.. or higher. Added kvah importexport and 4-quadrant kvarh registers. Added support for the LL wiring mode.

Table of Contents GENEAL... ASCII POTOCOL DESCIPTION... 8. ASCII Framing... 8.. ASCII Message Frame... 8. Exception esponses... 9. Protocol Implementation... 9.. ASCII Specific and Direct equests... 9.. Data Formats....4 Direct eadrite equest....4. General....4. Long-Size Direct eadrite....4. Variable-Size Direct eadrite....4.4 User Assignable egisters....5 Password Protection....6 Data ecording and File Transfers....6. Log File Organization... Multi-tion Files... Data Log Files... Profile Data Log File... eal-time aveforms....6. File Transfers... Common File Transfer... 4 eading a Daily Profile Log File... 4 eading eal-time aveforms... 4 SPECIFIC ASCII EQUESTS... 6. Basic Data Set... 6. Device Control and Status... 8 esetclear... 8 arm estart... 8 Firmware Version... 8 Device Status... 8. Device Setup... 8 ead Basic Setup... 8 rite Basic Setup... 9 ead Analog Output Setup... 9 rite Analog Output Setup... 9 ead Pulse Counter Setup... 9 rite Pulse Counter Setup... 9 ead File Setup E... rite File Setup E... ead Data Log Setup E... rite Data Log Setup E... ead Clock Indication... rite Clock Setup... 4 DIECT EADITE EQUESTS... 4. Protocol Setup egisters... Assignable egisters...

Assignable egisters Map... Device Data Scales... 4. Analog egisters, Binary egisters and Counters... Special Inputs... Digital Inputs DI-DI4 (bitmap)... elay Outputs O-O (bitmap)... 4 Counters... 4 -Cycle Phase Values... 4 -Cycle Total Values... 5 -Cycle Auxiliary Values... 6 Phasor... 6 -Second Phase Values... -Second Total Values... 9 -Second Auxiliary Values... 9 Present Volt, Ampere and Power Demands... Total Energies E... Summary Energy egisters E... Phase Energies E... VV Harmonic Distortion EH... VV Harmonic Distortion EH... VV Harmonic Distortion EH... I Harmonic Distortion EH... 4 I Harmonic Distortion EH... 4 I Harmonic Distortion EH... 4 Fundamental Phase Values EH... 4 Fundamental Total Values EH... 5 Minimum -Cycle Phase Values... 5 Minimum -Cycle Total Values... 6 Minimum -Cycle Auxiliary Values... 6 Maximum -Cycle Phase Values... 6 Maximum -Cycle Total Values... 6 Maximum -Cycle Auxiliary Values... 6 Maximum Demands... TOU Parameters E... 8 Scaled Analog Outputs... 8 TOU Energy egister # E... 8 TOU Energy egister # E... 8 TOU Energy egister # E... 8 TOU Energy egister #4 E... 9 Summary Energy Accumulated Demands E... 9 Summary Energy Block Demands E... 9 Summary Energy Sliding indow Demands E... 9 Summary Energy Maximum Demands E... 9 TOU Maximum Demand egister # E... 4 TOU Maximum Demand egister # E... 4 TOU Maximum Demand egister # E... 4 TOU Maximum Demand egister #4 E... 4 VV Harmonic Angles EH... 4 VV Harmonic Angles EH... 4 VV Harmonic Angles EH... 4 I Harmonic Angles EH... 4 I Harmonic Angles EH... 4 I Harmonic Angles EH... 4 Setpoint Status SP-SP6 (bitmap)... 4 4. MinimumMaximum Log egisters... 4 Minimum Phase Values... 4 Minimum Total Values... 4 Minimum Auxiliary Values... 44 Maximum Phase Values... 44 4

Maximum Auxiliary Values... 44 Summary Energy Maximum Demands E... 45 Maximum Demands... 45 TOU Maximum Demand egister # E... 4 TOU Maximum Demand egister # E... 48 TOU Maximum Demand egister # E... 48 TOU Maximum Demand egister #4 E... 48 4.4 Device Control and Status egisters... 5 Device Authorization egister... 5 emote elay Control... 5 Device esetclear egisters... 5 Device Status egisters... 5 Alarm Notification egisters... 5 4.5 Device Setup egisters... 5 Device Identification... 5 Factory Device Settings... 5 Communication Ports Setup... 5 Basic Setup... 5 Device Options Setup... 54 Digital Inputs Setup... 54 AlarmEvent Setpoints Setup... 54 Local Settings... 56 TOU Daily Profile Setup E... 56 TOU Calendar Setup E... 5 Summary EnergyTOU egisters Setup E... 58 Summary EnergyTOU egisters Source Setup E... 59 Digital Inputs Setup... 59 elay Outputs Setup... 6 4.6 Analog and Digital IO Configuration... 6 IO Slots Configuration Info... 6 IO Type Info... 6 4. File Transfer egisters E... 6 File Allocation Status egisters... 6 File Transfer ControlStatus egisters... 6 Data Log File Transfer egisters... 6 Event Log File Transfer egisters... 64 aveform Header Transfer egisters... 65 aveform Series Transfer Block... 65 4.8 BillingTOU Daily Profile Data Log E... 6 5 DATA SCALES AND UNITS... Data Scales... Data Units Low esolution Option... Data Units High esolution Option... 6 DATA FOMATS...... iring Mode... File Attributes... File Status ord... File ecord Status ord... File Allocation Map... Profile Log Sections Map... File ID... aveform Log Channel Mask... TOU Tariff Change Time... SummaryTOU Energy egister Source ID... Setpoint Trigger Parameters ID... 5

6 elays... Setpoint Action ID... Counter Source ID... elay Output Pulse Source ID... AO Output Parameters ID... Event CausePoint ID... 4 Event Effect ID... 5 Data Point ID... 5 Device Diagnostics... 5 Instrument Options... 6 IO Slot Types... 6 esetclear Function... 6 Basic Setup Parameters ID... 6

General This document specifies the SATEC ASCII serial communications protocol used to transfer data between a master computer station and the PM. The document provides the complete information necessary to develop third-party communications software capable of communication with the Series PM instruments. For additional information concerning operating the device, configuring the communication parameters, and communication connections see the PM PLUS Installation and Operation Manual. The document is applicable to PMA, PMP, PME and PMEH meters. IMPOTANT In -wire connection schemes, the unbalanced current and phase readings for power factor, active power, and reactive power will be zeros, because they have no meaning. Only the total three-phase power values are provided. Most of the advanced features are configured using multiple setup parameters that can be accessed in a number of contiguous registers. hen writing the setup registers, it is recommended to write all the registers at once using a single request, or to clear (zero) the setup before writing into separate registers. Designations used in the guide: E - available in the PME and PMEH EH - available in the PMEH

ASCII Protocol Description. ASCII Framing.. ASCII Message Frame The following specifies the ASCII message frame: Field No. 4 5 6 Contents SYN C Message length Slave addres Messag e type Message body Checksum Trailer (C LF) (!) s Length, char to 46 SYNC Synchronization character: one character '!' (ASCII ), used for starting synchronization. Message length The length of the message including only number of bytes in fields #, #, #4 and #5. Contains three characters between '6' and '5'. Slave address Contains two characters from '' to '99'. The instrument with address '' responds to requests with any incoming address. For S-4S-485 communications (multi-drop mode), this field must NEVE be zero. Message type Consists of one character representing the type of a host request. A list of the message types is shown in Tables - and -. Note that they are case-sensitive. Message body Contains the message parameters in ASCII representation. All parameter fields have a fixed format. The data fields vary in length depending on the data type. Unless otherwise indicated, the parameters should be right justified and left-padded with zeros. Most parameters are represented in ASCII hexadecimal notation, and in some cases (to provide compatibility with old devices) a decimal representation is preserved. For data formats, see Section.. Checksum Arithmetic sum, calculated in a -byte word over fields #, #, #4 and #5 to produce a onebyte check sum in the range of x to xe (hexadecimal) as follows: [ (each byte x)] mod x5c + x Trailer The message termination consisting of two ASCII characters C (ASCII ) and LF (ASCII ). NOTE Fields # and #4 of the instrument response are always the same as those in the host request. 8

Table - Specific ASCII equests Message type Description ASCII Char ASCII Hex x ead basic data registers x ead basic setup x rite basic setup 4 x4 esetclear functions 8 x8 eset the instrument 9 x9 ead version number? xf ead extended status B x4 ead analog output setup b x6 rite analog output setup J x4a ead pulse counter setup j x6a rite pulse counter setup S x5 ead eal Time Clock T x54 rite eal Time Clock Table - Direct eadrite ASCII equests Message type Description ASCII Char ASCII Hex A x4 Long-size direct read a x6 Long-size direct write X x58 Variable-size direct read x x8 Variable-size direct write. Exception esponses The instrument will send the following error codes in the message body in response to incorrect host requests: XK - the meter is in programming mode XM - invalid request type or illegal operation XP - invalid data address or data value, or data is not available NOTE hen a check or framing error is detected, the meter will not act on or respond to the master's request.. Protocol Implementation.. ASCII Specific and Direct equests The ASCII protocol provides two different types of messages to transfer data between a master application and the meter: specific requests and direct readwrite requests. Specific ASCII requests use different formats for accessing different data locations. The message body differs depending on the request type. Each data field has a fixed position in the ASCII string. Section describes specific ASCII requests and their message body formats. Direct readwrite requests use a universal message body format, described in Section.4. These requests allow a master application to access different data locations (registers) in the instrument by specifying a direct register index. A number of consequent registers can be read or written by a single request by specifying an arbitrary start register and the number of registers to be accessed. Section 4 gives a register map for direct readwrite requests and their contents. All measurement data in your instrument can be accessed using direct read requests, and some data can be read via specific ASCII requests. In all cases, a direct register read offers you more precise data with extended resolution. Setup data can be partially accessed using both specific and direct requests, and partially via either specific or direct requests. 9

.. Data Formats Specific ASCII requests use both decimal and hexadecimal notation. Direct requests transfer ASCII data only in a hexadecimal format. Using a decimal notation, data is transmitted in a decimal representation as is, i.e., no conversion is needed. Negative numbers are transmitted with a sign at the left. Fractional numbers are represented with a decimal point. hen the value exceeds the field width, it is truncated to the right. In a hexadecimal notation, each data byte is transferred by two hexadecimal characters in ASCII representation (i.e., ASCII printable characters -9, A-F are used to represent hexadecimal digits x-x9, xa-xf). All data is transferred as -character (8-bit unsigned byte), 4-character (6-bit unsigned or signed integer) or 8-character (-bit unsigned or signed long integer) whole numbers. Negative numbers are transmitted in - complement code. Each data byte is transmitted high order digit first. Each integer or long integer register is transmitted high order bytes first. Fractional numbers are transmitted being scaled by in power N, where N is the number of digits in the fractional part. For example, the frequency reading of 5. Hz is transmitted as 5 being pre-multiplied by. henever a data register contains a fractional number, the register measurement unit is given with a multiplier.,. or., showing an actual register resolution (the weight of the least significant decimal digit). To get an actual fractional number with specified precision, scale the register value with the given multiplier. To write a fractional number into the register, divide the number by the given multiplier..4 Direct eadrite equest.4. General In direct readwrite requests, data registers are addressed by point ID s that are given in a 4-digit hexadecimal format. All data is transmitted in ASCII hexadecimal notation as -character (UINT8, 8-bit unsigned byte), 4-character (6-bit unsigned UINT6 or signed INT6 integer) or 8-character (-bit unsigned or signed INT long integer) numbers. Negative numbers are transmitted in -complement code. egister type in the tables below shows an actual data size for data accessed using variable-size direct readwrite requests. hen long-size direct readwrite request is used, an actual data size is ignored and all registers are transmitted in an 8-character format as long signed (INT) or unsigned () integers..4. Long-Size Direct eadrite In long-size direct readwrite messages, all data items are read and written as long unsigned () or signed (INT) integers, which are represented in messages by 8-digit hexadecimal numbers, regardless of the actual data size. Up to contiguous points can be read in one message once. A write request allows for writing only one data location at a time. Table - ead equest Offset Description ange Type Message type A equest body: + Start point ID x-xffff UINT6 +4 The number of points to read - (x-xe) UINT8 esponse body: + Number of points read - (x-xe) UINT8 + Point # value x- INT xffffffff + Point # value x- INT xffffffff.........

+ 4 Point # value x- xffffffff INT Table -4 rite equest Offset Description ange Type Message type a equest body: + Point ID x-xffff UINT6 +4 Point value to write x- INT xffffffff esponse body: + Point ID x-xffff UINT6 +4 ritten value x- xffffffff INT.4. Variable-Size Direct eadrite ith variable-size direct readwrite messages, data points are read and written as, 4 or 8- character hexadecimal numbers. The actual data size is indicated for each data location. hen written, the data type should be exactly the same as indicated. The number of parameters that can be read or written by a single readwrite request depends on the size of each data item. The total length of all parameters should not exceed 4 characters. Table -5 ead equest Offset Description ange Type Message type X equest body: + Start point ID x-xffff UINT6 +4 The number of points to read -6 (x-xc) UINT8 esponse body: + Number of points read -6 (x-xc) UINT8 + Point # value INT86 Point # value INT86...... Point #6 value INT86 Table -6 rite equest Offset Description ange Type Message type x equest body: + Start point ID x-xffff UINT6 +4 The number of points to write -6 (x-xc) UINT8 +6 Point # value INT86 Point # value INT86...... Point #6 value INT86 esponse body: + Start point ID x-xffff UINT6 +4 Number of points written -6 (x-xc) UINT8.4.4 User Assignable egisters The PM contains user assignable registers designated by points x8 through x8, any of which you can map to any point accessible in the instrument through direct readwrite requests. Points that reside in different locations may be accessed by a single request by re-mapping them to adjacent points in the user assignable registers area.

The actual point ID s of the assignable registers, which are accessed via addresses x8 through x8, are specified in the register map through points x8-x8, where point x8 contains the actual point ID of the register accessed via point x8, point x8 contains the actual point ID of the register accessed via point x8, and so on. The assignable registers and the map registers themselves may not be re-mapped. To build your own register map, write to map registers (points x8-x8) the actual point ID s of the registers you want to read from or write to via the assignable points x8-x8. For example, if you want to read points xc (real-time voltage of phase A) and x (kh import) through points x8-x8, do the following: - write xc to point x8 - write x to point x8 eading from points x8-x8 will return the voltage reading through point x8, and the kh reading through point x8..5 Password Protection The PM has a password protection option allowing you to protect your setups, cumulative registers and logs from being changed or cleared through communications. You can disable or enable password protection through communications or via the front display. For details, refer to your instrument Installation and Operation Manual. hen password protection is enabled, the user password you set in your instrument should be written into the device authorization register (point xff) before another write request is issued. If the correct password is not supplied while password protection is enabled, the instrument will respond to all write requests with the exception code XM (illegal operation). It is recommended to clear the password register after you have completed your changes in order to activate password protection..6 Data ecording and File Transfers.6. Log File Organization Historical files are stored to the non-volatile memory. Memory is allocated for each file statically when you set up your files and will not change unless you re-organize the files. The PM automatically performs de-fragmentation of the memory each time you re-organize your files. This helps keep all free memory in one continuous chunk and thus prevents possible leakage of memory caused by fragmentation. Data records in a file are arranged in the order of their recording. Each record has a unique 6-bit sequence number that is incremented modulo 6556 with each new record. The sequence number can be used to point to a particular record in the file, or to check the sequence of records when uploading files from the device. Each file has a write position pointer that indicates the place where the next record will be recorded, and a read position pointer that indicates the place from where the current record will be read. Both pointers show sequence numbers of the records they point to rather than record offsets in the file. After acknowledging a record you have read, the read pointer automatically advances to the next record in the file. hen the read pointer gets to the record to which the file write pointer points, the end-of-file (EOF) flag is set. It is automatically cleared when a new record is added to the file, or when you explicitly move the read pointer to any record within a file. If a file has a wrap-around attribute (circular file), the most recent records can overwrite the oldest records. hen this happens at the current read position, the read pointer automatically advances forward in order to point to the oldest record in the file. The PM keeps a separate read pointer for each communication port so that access to the same file through a different port will not affect current active sessions for other ports.

Multi-tion Files Log files can have one or more (up to 8) tions for multi-channel recording. An ordinal file consists of a single tion. A daily profile log file is arranged as a multi-tion file. A multi-tion file is subdivided into multiple tions of the same structure, one tion per recording channel. The number of tions in each file is defined at the time you set up your files and may not change unless you re-organize the file. Each tion within a multi-tion file can be addressed through a particular register window related to the tion. A multi-tion file has a single write position pointer for all tions and stores data in all tions simultaneously. This means that records with the same sequence number in all tions are associated with the same event. A multi-tion file has also a single read position pointer for all tions. Data Log Files Data log files can store up to 9 measured parameters per a record. Any data measured by the device can be stored in the log file. The number of parameters that each record will hold and the list of parameters you want to be recorded in the file can be selected through the Data log setup registers for a particular file. ecording data to the data log files can be triggered through the setpoints, either on a time basis using the meter clock or periodic timers, or upon any event detected by setpoints. Profile Data Log File Data log file #6 can be configured for a daily profile log of the energy usage and maximum demand registers. A profile log file is organized as a multi-tion file that has a separate tion for each energy and maximum demand register. A file record stores the summary data (total of all tariffs) and all tariff data for each configured SummaryTOU register. See Section 4.8 for information on the file record structure. The number of tions is taken automatically from the SummaryTOU egisters setup. Since each SummaryTOU energy register has a shadow maximum demand register, the number of tions in the file can be twice the number of the allocated SummaryTOU registers. Always configure the SummaryTOU registers before you allocate memory for your profile log file. New records are added to the file automatically every day at midnight. You can review the list of parameters that are recorded to the file through the Data log #6 setup. It is preset automatically by the meter and shows the recorded data for the first file tion, which represents the first configured energy usage register. eal-time aveforms eal-time waveforms are read as a multi-tion file that stores data for each recording channel in a separate tion. A real-time waveform contains six AC channels - three voltage and three current waveforms, which are recorded in successive tions. A single waveform record for a channel contains 5 points of the sampled input signal. efer to the line frequency field in the channel header record to correctly set up the time scale for the waveforms..6. File Transfers File transfer protocol provides both data transfer and information services. File transfer is performed through blocks of registers separate for each file and file tion. File transfer control registers allow changing the file or tion position in order to point to the desired record. The information service uses separate statuscontrol registers for each file. The extended file information is available including current file pointers positions, the number of records in the file, allocated file size, and more. See Section 4. File Transfer egisters for information on register locations.

Common File Transfer Log files can be read either in a sequence record-by-record, or in a random order. Each read request fills the corresponding register block with the data of the record pointed to by the file (or tion) read pointer. If you want to begin reading a file from a particular record, which sequence number is known, you can change the pointer position by writing the desired sequence number into the file transfer control register. If you want to read a file from the beginning, you can simply write a corresponding command to the file command register that moves the pointer to the oldest file record. If you do not change the file position, then you will continue reading the file from the record following the one you have read the last time you accessed the file. You need not explicitly move the file position to the following record if you want to continue reading a file in a sequence after you have uploaded the current record. Instead, continue reading the file through the file transfer block. For the event log files, the file transfer block can contain up to 6 records that can be read at once: the file position automatically moves to the record following the last one you have just read in the file transfer block. The file transfer is completed after you have read the last record of the file. Before storing a file record to your database, always check bit in the record status word, which contains the end-of-file (EOF) flag. This bit set to indicates that the file read pointer does not point to any record within the file, and you should not store any record that has this bit set. The EOF flag is set only after you have read the last record of the file, so that testing for end-of-file requires one extra read. If you wish to stop the transfer just after storing the last file record, check bit in the record status word. Bit is set to only once when you read the last record of the file. The following gives a summary of steps you should do to read an ordinal log file:. If you want to begin reading a file from a particular record or from the first record, either set the file position to the desired record sequence number, or preset the file position to point to oldest record.. ead the record data through the corresponding file transfer block. The file pointer will be automatically moved to the next file record.. epeat steps - until all the file records are read, i.e., until either bit or bit is set in the record status word. eading a Daily Profile Log File eading a multi-tion profile log file does not differ from reading ordinal files with the only exception that each file tion is accessed through a separate transfer block. If you want to know which registers are recorded to the file tions before reading them, check the daily profile log tions map through point xaf4 (see Section 4., File Transfer egisters). This is a bitmap that contains one in a bit position if a designated register is recorded to the file, and contains zero if it is not. The following gives a summary of steps for a multi-tion file:. If you want to begin reading a file tion from a particular record or from the first record, either set the file tion position to the desired record sequence number, or preset the file tion position to point to oldest record.. ead the record data through the corresponding file tion transfer block. The file pointer automatically moves to the next file record.. epeat steps - until all the file tion records are read, i.e., until either bit or bit is set in the record status word. eading eal-time aveforms Each waveform record consists of six channel records that are read in sequence always starting with channel V. Each channel s data is read in two stages. The channel header record is read first through a separate transfer block followed be reading the channel sample series. Each time you read the V channel header record, the meter captures new waveforms 4

to the buffer so that you can then read all of them through the waveform transfer blocks. The following gives a summary of steps for reading real-time waveforms:. ead the V channel header data through the corresponding real-time waveform header transfer block. The captured waveform s data is moved to the port s communication buffer.. ead the V channel sample series through the waveform series transfer block.. ead the next channel s header data through the corresponding waveform header transfer block. 4. ead the sample series for the selected channel through the waveform series transfer block. 5. epeat steps, 4 until all channels records are read. 5

Specific ASCII equests. Basic Data Set Offset Leng th Description ange Units Basic Data Set Message Type equest Body No esponse Body (decimal) + 4 VV Voltage to Vmax U +4 4 VV Voltage to Vmax U +8 4 VV Voltage to Vmax U + 5 I Current to Imax U + 5 I Current to Imax U + 5 I Current to Imax U + 6 k L -Pmax to Pmax U + 6 k L -Pmax to Pmax U +9 6 k L -Pmax to Pmax U +45 4 Power factor L -.99 to. 4 +49 4 Power factor L -.99 to. 4 +5 4 Power factor L -.99 to. 4 +5 6 k total -Pmax to Pmax U +6 4 Power factor total -.99 to. 4 +6 6 kh import to 99999. Mh + 5 Neutral (unbalanced) current to Imax A +8 4 Frequency 5. to 4. Hz +8 6 kvar L -Pmax to Pmax U +88 6 kvar L -Pmax to Pmax U +94 6 kvar L -Pmax to Pmax U + 6 kva L to Pmax U +6 6 kva L to Pmax U + 6 kva L to Pmax U +8 6 kvarh net -9999. to 99999. Mvarh +4 6 kvar total -Pmax to Pmax U + 6 kva total to Pmax U +6 6 Maximum sliding window k import demand 5 to Pmax U +4 6 Accumulated k import demand to Pmax U +48 5 I Max. ampere demand to Imax U +5 5 I Max. ampere demand to Imax U +58 5 I Max. ampere demand to Imax U Type 6

Offset NOTES: Leng th Description ange Units +6 Status inputs (bitmap - hex) x-x +65 6 kh export to 99999. Mh + 6 Maximum sliding window kva demand 5 to Pmax U + 4 VV Voltage THD. to 999., 5 - value +8 4 VV Voltage THD. to 999., 5 - value +85 4 VV Voltage THD. to 999., 5 - value +89 4 I Current THD. to 999. 5 - value +9 4 I Current THD. to 999. 5 - value +9 4 I Current THD. to 999. 5 - value + 8 kvah total to 99999.99 MVAh +9 6 Present sliding window k import demand 5 to Pmax U +5 6 Present sliding window kva demand 5 to Pmax U + 4 PF (import) at maximum KVA demand to. +5 4 I Current TDD. to 99.9 5 - value +9 4 I Current TDD. to 99.9 5 - value + 4 I Current TDD. to 99.9 5 - value Energy and power demand readings are only available in PME and PMEH meters. Total harmonics are only available in PMEH meters. Voltage and voltage harmonics readings: when the 4LN, LN or BLN wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode, they will be line-to-line voltages. All analog registers except of harmonics are -ond average values. For volts, amps and power scales and units, refer to Section 5 Data Scales and Units. hen ASCII compatibility mode is disabled (see Section 5.5), voltages, currents and powers are transmitted with a decimal point in units defined in the table. hen the value is greater than the field width, the right most digits of the fractional part are truncated. hen ASCII compatibility mode is enabled, the meter provides a fully downward-compatible response using a lower resolution for voltages, currents and powers - the value is transmitted as a whole number until the field is filled up, and then it is converted to higher units and transmitted with a decimal point. If the value is greater than the field width, the right most digits of the fractional part are truncated. Voltages are transmitted in volts as whole numbers or in kilovolts with a decimal point, currents in amperes as whole numbers, and powers in kilowatts as whole numbers or in megawatts with a decimal point. Energy readings are transmitted in Mh, Mvarh and MVAh units with a decimal point. If the energy value exceeds the field width, the right-most digits are truncated. If you use these request for energy readings, then, to avoid overflow, limit the energy roll value (see Device Options Setup) to digits if you use kvarh net reading or to 8 digits if you do not use it. 4 For negative power factor, the minus sign is transmitted before a decimal point as shown in the table. 5 In LL wiring mode the Harmonics calculations are not supported. Type

. Device Control and Status Offset Leng th Description ange Units Type esetclear Message Type 4 equest Body (hexadecimal): + eset function F + Target F esponse the same as request arm estart Message Type 8 equest Body No esponse Body No Firmware Version Message Type 9 equest Body No esponse Body + 4 Firmware version number -99 Two higher decimal digits = major version number, two lower decimal digits = minor version number +4 Firmware build number -99 Device Status Message Type? equest Body No esponse Body + 4 elay status (bitmap) x-x +4 4 Not used x +8 4 Digital (status) inputs (bitmap) x-x + 4 Setpoints status (bitmap) x-xffff +6 4 Not used x. Device Setup Offset Leng th ead Basic Setup Message Type equest Body (decimal): + Parameter ID F Description ange Units Type 8

Offset Leng th Description ange Units Type esponse Body (decimal) + Parameter ID F + 4 Not used. + 6 Parameter value See Basic Setup in Section 4.5 rite Basic Setup Message Type equest Body (decimal): + Parameter ID F + 4 Not used. + 6 Parameter value See Basic Setup in Section 4.5 esponse the same as request ead Analog Output Setup Message Type B equest Body + Analog channel number -=channel AO-AO esponse Body (hexadecimal) + Analog channel number -=channel AO-AO + 4 Output parameter point ID F8 +6 8 Zero scale (4 ma) See Section 4. +4 8 Full scale ( ma) See Section 4. rite Analog Output Setup Message Type b equest Body (hexadecimal) + Analog channel number -=channel AO-AO + 4 Output parameter point ID F8 +6 8 Zero scale (4 ma) See Section 4. +4 8 Full scale ( ma) See Section 4. esponse Body the same as request ead Pulse Counter Setup Message Type J equest Body + Counter ID -=counter #-#4 esponse Body (hexadecimal) + Counter ID -=counter #-#4 + Source ID =not assigned, -4=DI-DI4 +4 4 Multiplier -9999 rite Pulse Counter Setup Message Type j equest Body (hexadecimal) + Counter ID -=counter #-#4 + Source ID =not assigned, -=DI-DI 9

Offset Leng th Description ange Units Type +4 4 Multiplier -9999 + 4 Timer interval -9999, =timer disabled esponse Body the same as request ead File Setup E Message Type K equest Body (hexadecimal) + File ID F8 esponse Body (hexadecimal) + File ID F8 + 8 Allocated file size, bytes + 4 Number of records in the file -6555 +4 4 File record size, bytes +8 The number of parameters per record -6 + File attributes F rite File Setup E Message Type k equest Body (hexadecimal) + File ID F8 + 4 Number of records in the file -6555, =delete a file +6 The number of parameters per record -9 rite for event log and waveform log +8 File attributes F esponse Body (hexadecimal) + File ID F8 ead Data Log Setup E Message Type L equest Body (hexadecimal) + Data log ID =Data log #, 5=Data log #6 esponse Body (hexadecimal) + Data log ID =Data log #, 5=Data log #6 + Number of parameters per record -9, =file does not exist +4 4 Data log parameter # point ID See Section 4. +8 4 Data log parameter # point ID + 4 Data log parameter # point ID +6 4 Data log parameter #4 point ID + 4 Data log parameter #5 point ID +4 4 Data log parameter #6 point ID +8 4 Data log parameter # point ID + 4 Data log parameter #8 point ID

Offset Leng th Description ange Units Type +6 4 Data log parameter #9 point ID rite Data Log Setup E Message Type l equest Body (hexadecimal) + Data log ID =Data log #, 5=Data log #6 + Number of parameters per record -9 +4 4 Data log parameter # point ID See Section 4. +8 4 Data log parameter # point ID + 4 Data log parameter # point ID +6 4 Data log parameter #4 point ID + 4 Data log parameter #5 point ID +4 4 Data log parameter #6 point ID +8 4 Data log parameter # point ID + 4 Data log parameter #8 point ID +6 4 Data log parameter #9 point ID esponse Body (hexadecimal) + Data log ID =Data log #, 5=Data log #6 ead Clock Indication Message Type S equest Body No esponse Body (decimal) + Second -59 + Minute -59 +4 Hour - +6 Day - +8 Month - + Year -99 + Day of week - (=Sunday) rite Clock Setup Message Type T equest Body (decimal) + Second -59 + Minute -59 +4 Hour - +6 Day - +8 Month - + Year -99 + Day of week - (=Sunday) Ignored when written esponse Body the same as request

4 Direct eadrite equests 4. Protocol Setup egisters Point ID Description Optionsange Units Type Assignable egisters x8 egister contents -6555 UINT6 x8 egister contents -6555 UINT6... x8 egister 9 contents -6555 UINT6 Assignable egisters Map x8 Mapped point for register x8 x - xffff UINT6 x8 Mapped point for register x8 x - xffff UINT6... Mapped point for register x8 x - xffff UINT6 x8 Device Data Scales x8f Voltage scale, ondary volts 6-88 V UINT6 x8f Current scale, ondary amps -.A UINT6 Default 44V Default CT ondary 4. Analog egisters, Binary egisters and Counters Point ID x x x6 Description Optionsange Units None UINT6 Special Inputs Phase rotation order =error, =positive (ABC), UINT6 =negative (CBA) Digital Inputs DI-DI4 (bitmap) x-xf UINT6 Type

Point ID x8 xa xa xa xa xc xc xc xc xc 4 xc 5 xc 6 xc xc 8 xc 9 xc A xc B xc C xc D xc E Description Optionsange Units elay Outputs O-O (bitmap) x-x UINT6 Counters Counter # -99,999 Counter # -99,999 Counter # -99,999 Counter #4-99,999 -Cycle Phase Values VV Voltage -Vmax U VV Voltage -Vmax U VV Voltage -Vmax U I Current -Imax U I Current -Imax U I Current -Imax U k L -Pmax-Pmax U INT k L -Pmax-Pmax U INT k L -Pmax-Pmax U INT kvar L -Pmax-Pmax U INT kvar L -Pmax-Pmax U INT kvar L -Pmax-Pmax U INT kva L -Pmax U kva L -Pmax U kva L -Pmax U Type 4

Point ID Description Optionsange Units xc F Power factor L --. INT6 xc Power factor L --. INT6 xc Power factor L --. INT6 xc VV Voltage THD -9999. UINT6, 4 -cycle value xc VV Voltage THD -9999. UINT6, 4 -cycle value xc VV Voltage THD -9999. UINT6, 4 -cycle value 4 xc I Current THD -9999. UINT6 4 -cycle value 5 xc I Current THD -9999. UINT6 4 -cycle value 6 xc I Current THD -9999. UINT6 4 -cycle value xc I K-Factor -9999. UINT6 4 -cycle value 8 xc I K-Factor -9999. UINT6 4 -cycle value 9 xc I K-Factor -9999. UINT6 4 -cycle value A xc I Current TDD -. UINT6 4 -cycle value B xc I Current TDD -. UINT6 4 -cycle value C xc I Current TDD -. UINT6 4 -cycle value D xc V Voltage -Vmax U UINT6 E xc V Voltage -Vmax U UINT6 F xc V Voltage -Vmax U UINT6 -Cycle Total Values xf Total k -Pmax-Pmax U INT xf Total kvar -Pmax-Pmax U INT xf Total kva -Pmax U Type 5

Point ID xf xf 4 xf 5 xf 6 xf xf 8 xf 9 xf A xf B xf C Description Optionsange Units Total PF --. INT6 Total PF lag -. UINT6 Total PF lead -. UINT6 Total k import -Pmax U Total k export -Pmax U Total kvar import -Pmax U Total kvar export -Pmax U -phase average L-NL-L voltage -Vmax U -phase average L-L voltage -Vmax U -phase average current -Imax U -Cycle Auxiliary Values x Not used x In (neutral) Current -Imax U x Frequency -Fmax. UINT6 Hz x Voltage unbalance -. UINT6 x Current unbalance -. UINT6 4 Phasor x8 VV Voltage magnitude -Vmax U x8 VV Voltage magnitude -Vmax U x8 VV Voltage magnitude -Vmax U x8 Not used x8 I Current magnitude -Imax U Type 6

Point ID 4 x8 5 x8 6 x8 x8 8 x8 9 x8 A x8 B x8 C x8 D x8 E x8 F x x x x x 4 x 5 x 6 x x 8 Description Optionsange Units I Current magnitude -Imax U I Current magnitude -Imax U Not used VV Voltage angle -8-8.º INT6 VV Voltage angle -8-8.º INT6 VV Voltage angle -8-8.º INT6 Not used INT6 I Current angle -8-8.º INT6 I Current angle -8-8.º INT6 I Current angle -8-8.º INT6 Not used INT6 -Second Phase Values VV Voltage -Vmax U VV Voltage -Vmax U VV Voltage -Vmax U I Current -Imax U I Current -Imax U I Current -Imax U k L -Pmax-Pmax U INT k L -Pmax-Pmax U INT k L -Pmax-Pmax U INT Type

Point ID x 9 x A x B x C x D x E x F x x x x x 4 x 5 x 6 x x 8 x 9 x A x B x C x D Description Optionsange Units kvar L -Pmax-Pmax U INT kvar L -Pmax-Pmax U INT kvar L -Pmax-Pmax U INT kva L -Pmax U kva L -Pmax U kva L -Pmax U Power factor L --. INT6 Power factor L --. INT6 Power factor L --. INT6 VV Voltage THD -9999. UINT6, 4 - value VV Voltage THD -9999. UINT6, 4 - value VV Voltage THD -9999. UINT6, 4 - value I Current THD -9999. UINT6 4 - value I Current THD -9999. UINT6 4 - value I Current THD -9999. UINT6 4 - value I K-Factor -9999. UINT6 4 - value I K-Factor -9999. UINT6 4 - value I K-Factor -9999. UINT6 4 - value I Current TDD -. I Current TDD -. I Current TDD -. Type UINT6 4 - value UINT6 4 - value UINT6 4 - value 8

Point ID x E x F x x4 x4 x4 x4 x4 4 x4 5 x4 6 x4 x4 8 x4 9 x4 A x4 B x4 C x5 x5 x5 x5 Description Optionsange Units V Voltage -Vmax U UINT6 V Voltage -Vmax U UINT6 V Voltage -Vmax U UINT6 -Second Total Values Total k -Pmax-Pmax U INT Total kvar -Pmax-Pmax U INT Total kva -Pmax U Total PF --. INT6 Total PF lag -. UINT6 Total PF lead -. UINT6 Total k import -Pmax U Total k export -Pmax U Total kvar import -Pmax U Total kvar export -Pmax U -phase average L-NL-L voltage -Vmax U -phase average L-L voltage -Vmax U -phase average current -Imax U -Second Auxiliary Values Not used In (neutral) Current -Imax U Frequency -Fmax. Hz Voltage unbalance -. Type UINT6 UINT6 9

Point ID x5 4 x6 x6 x6 x6 x6 4 x6 5 x6 6 x6 x6 8 x6 9 x6 A x6 B x6 C x6 D x6 E x6 F x6 x6 x6 Description Optionsange Units Current unbalance -. UINT6 Present Volt, Ampere and Power Demands VV Volt demand -Vmax U VV Volt demand -Vmax U VV Volt demand -Vmax U I Ampere demand -Imax U I Ampere demand -Imax U I Ampere demand -Imax U k import block demand -Pmax U kvar import block demand -Pmax U kva block demand -Pmax U k import sliding window demand -Pmax U kvar import sliding window demand -Pmax U kva sliding window demand -Pmax U Not used Not used Not used k import accumulated demand -Pmax U kvar import accumulated demand -Pmax U kva accumulated demand -Pmax U k import predicted sliding window demand -Pmax U Type

Point ID Description Optionsange Units x6 kvar import predicted sliding window demand -Pmax U x6 kva predicted sliding window demand -Pmax U 4 x6 PF (import) at Max. kva sliding window -. UINT6 5 demand x6 k export block demand -Pmax U 6 x6 kvar export block demand -Pmax U x6 k export sliding window demand -Pmax U 8 x6 kvar export sliding window demand -Pmax U 9 x6 k export accumulated demand -Pmax U A x6 kvar export accumulated demand -Pmax U B x6 k export predicted sliding window demand -Pmax U C x6 kvar export predicted sliding window demand -Pmax U D x6 Not used E x6 Not used F x6 Not used x6 Not used x6 In Ampere demand -Imax U Total Energies E x kh import -999,999,999 kh x kh export -999,999,999 kh x Not used INT x Not used x kvarh import -999,999,999 kvarh Type

Point ID 4 x 5 x 6 x x 8 x 9 x A x B x C x D x E x F x x x x x 4 x 5 x8 x8 x8 Description Optionsange Units kvarh export -999,999,999 kvarh Not used INT Not used kvah total -999,999,999 kvah Not used Not used kvah import -999,999,999 kvah kvah export -999,999,999 kvah Not used Not used Not used Not used Not used kvarh Q -999,999,999 kvarh kvarh Q -999,999,999 kvarh kvarh Q -999,999,999 kvarh kvarh Q4-999,999,999 kvarh Summary Energy egisters E Summary energy register # -999,999,999 kh Summary energy register # -999,999,999 kh Summary energy register # -999,999,999 kh Type

Point ID x8 x8 x8 x8 x8 x8 4 x8 5 x8 6 x8 x8 8 x9 x9 x9 xa xa xa xb xb Description Optionsange Units Summary energy register #4-999,999,999 kh Phase Energies E kh import L -999,999,999 kh kh import L -999,999,999 kh kh import L -999,999,999 kh kvarh import L -999,999,999 kvarh kvarh import L -999,999,999 kvarh kvarh import L -999,999,999 kvarh kvah total L -999,999,999 kvah kvah total L -999,999,999 kvah kvah total L -999,999,999 kvah VV Harmonic Distortion EH, 4 H Harmonic distortion -. UINT6 H Harmonic distortion -. UINT6... H4 Harmonic distortion -. UINT6 VV Harmonic Distortion EH, 4 H Harmonic distortion -. UINT6 H Harmonic distortion -. UINT6... H4 Harmonic distortion -. UINT6 VV Harmonic Distortion EH, 4 H Harmonic distortion -. UINT6 H Harmonic distortion -. UINT6 Type

Point ID xb xc xc xc xd xd xd xe xe xe x9 x9 x9 x9 x9 4 x9 5 x9 6 Description Optionsange Units... H4 Harmonic distortion -. UINT6 I Harmonic Distortion EH 4 H Harmonic distortion -. UINT6 H Harmonic distortion -. UINT6... H4 Harmonic distortion -. UINT6 I Harmonic Distortion EH 4 H Harmonic distortion -. UINT6 H Harmonic distortion -. UINT6... H4 Harmonic distortion -. UINT6 I Harmonic Distortion EH 4 H Harmonic distortion -. UINT6 H Harmonic distortion -. UINT6... H4 Harmonic distortion -. UINT6 Fundamental Phase Values EH -cycle values VV Voltage -Vmax U VV Voltage -Vmax U VV Voltage -Vmax U I Current -Imax U I Current -Imax U I Current -Imax U k L -Pmax-Pmax U INT Type 4

Point ID x9 x9 8 x9 9 x9 A x9 B x9 C x9 D x9 E x9 F x9 x9 xa xa xa xa xc xc xc xc xc 4 Description Optionsange Units k L -Pmax-Pmax U INT k L -Pmax-Pmax U INT kvar L -Pmax-Pmax U INT kvar L -Pmax-Pmax U INT kvar L -Pmax-Pmax U INT kva L -Pmax U kva L -Pmax U kva L -Pmax U Power factor L --. INT6 Power factor L --. INT6 Power factor L --. INT6 Fundamental Total Values EH Total fundamental k -Pmax-Pmax U INT Total fundamental kvar -Pmax-Pmax U INT Total fundamental kva -Pmax U Total fundamental PF --. INT6 Minimum -Cycle Phase Values VV Voltage -Vmax U VV Voltage -Vmax U VV Voltage -Vmax U I Current -Imax U I Current -Imax U Type -cycle values 5

Point ID xc 5 xd xd xd xd xe xe xe x4 x4 x4 x4 x4 4 x4 5 Description Optionsange Units I Current -Imax U Minimum -Cycle Total Values Total k -Pmax-Pmax U INT Total kvar -Pmax-Pmax U INT Total kva -Pmax U Total PF -. Absolute value Minimum -Cycle Auxiliary Values Not used In Current -Imax U Frequency -Fmax. Hz Maximum -Cycle Phase Values VV Voltage -Vmax U VV Voltage -Vmax U VV Voltage -Vmax U I Current -Imax U I Current -Imax U I Current -Imax U Maximum -Cycle Total Values x5 Total k -Pmax-Pmax U INT x5 Total kvar -Pmax-Pmax U INT x5 Total kva -Pmax U x5 Total PF -. Absolute value Maximum -Cycle Auxiliary Values x6 Not used Type 6

Point ID x6 x6 x x x x x 4 x 5 x 6 x x 8 x 9 x A x B x x D x E x F x x Description Optionsange Units In Current -Imax U Frequency -Fmax. Hz Maximum Demands VV Maximum volt demand -Vmax U VV Maximum volt demand -Vmax U VV Maximum volt demand -Vmax U I Maximum ampere demand -Imax U I Maximum ampere demand -Imax U I Maximum ampere demand -Imax U Not used Not used Not used Maximum k import sliding window demand -Pmax U Maximum kvar import sliding window demand -Pmax U Maximum kva sliding window demand -Pmax U Not used Not used Not used Maximum k export sliding window demand -Pmax U Maximum kvar export sliding window demand -Pmax U Not used Type

Point ID x x x 4 x 5 xc xc xc8 xc8 xd xd xd xe xe xe xf xf Description Optionsange Units Not used Not used Not used In Maximum ampere demand -Imax U TOU Parameters E Active tariff - Active profile -5: - = Season Profile #-4, 4- = Season Profile #-4, 8- = Season Profile #-4, -5 = Season 4 Profile #-4 Scaled Analog Outputs Analog output AO -495 Analog output AO -495 TOU Energy egister # E Tariff # register -999,999,999 kh Tariff # register -999,999,999 kh Tariff #8 register -999,999,999 kh TOU Energy egister # E Tariff # register -999,999,999 kh Tariff # register -999,999,999 kh Tariff #8 register -999,999,999 kh TOU Energy egister # E Tariff # register -999,999,999 kh Tariff # register -999,999,999 kh Type 8

Point ID xf x4 x4 x4 x45 x45 x45 x45 x458 x458 x458 x458 Description Optionsange Units Tariff #8 register -999,999,999 kh TOU Energy egister #4 E Tariff # register -999,999,999 kh Tariff # register -999,999,999 kh Tariff #8 register -999,999,999 kh Summary Energy Accumulated Demands E Summary register # demand -Pmax U Summary register # demand -Pmax U Summary register # demand -Pmax U Summary register #4 demand -Pmax U Summary Energy Block Demands E Summary register # demand -Pmax U Summary register # demand -Pmax U Summary register # demand -Pmax U Summary register #4 demand -Pmax U Summary Energy Sliding indow Demands E x46 Summary register # demand -Pmax U x46 Summary register # demand -Pmax U x46 Summary register # demand -Pmax U x46 Summary register #4 demand -Pmax U Summary Energy Maximum Demands E x48 Summary register # maximum demand -Pmax U Type 9

Point ID x48 x48 x48 x48 x48 x48 x49 x49 x49 x4a x4a x4a x488 x488 x488 x64 Description Optionsange Units Summary register # maximum demand -Pmax U Summary register # maximum demand -Pmax U Summary register #4 maximum demand -Pmax U TOU Maximum Demand egister # E Tariff # maximum demand -Pmax U Tariff # maximum demand -Pmax U Tariff #8 maximum demand -Pmax U TOU Maximum Demand egister # E Tariff # maximum demand -Pmax U Tariff # maximum demand -Pmax U Tariff #8 maximum demand -Pmax U TOU Maximum Demand egister # E Tariff # maximum demand -Pmax U Tariff # maximum demand -Pmax U Tariff #8 maximum demand -Pmax U TOU Maximum Demand egister #4 E Tariff # maximum demand -Pmax U Tariff # maximum demand -Pmax U Tariff #8 maximum demand -Pmax U VV Harmonic Angles EH,, 4 H Harmonic angle -8-8.º INT6 Type 4

Point ID x64 x64 x65 x65 x65 x66 x66 x66 x6 x6 x6 x68 x68 x68 x69 x69 Description Optionsange Units H Harmonic angle -8-8.º INT6... H4 Harmonic angle -8-8.º INT6 VV Harmonic Angles EH,, 4 H Harmonic angle -8-8.º INT6 H Harmonic angle -8-8.º INT6... H4 Harmonic angle -8-8.º INT6 VV Harmonic Angles EH,, 4 H Harmonic angle -8-8.º INT6 H Harmonic angle -8-8.º INT6... H4 Harmonic angle -8-8.º INT6 I Harmonic Angles EH, 4 H Harmonic angle -8-8.º INT6 H Harmonic angle -8-8.º INT6... H4 Harmonic angle -8-8.º INT6 I Harmonic Angles EH, 4 H Harmonic angle -8-8.º INT6 H Harmonic angle -8-8.º INT6... H4 Harmonic angle -8-8.º INT6 I Harmonic Angles EH, 4 H Harmonic angle -8-8.º INT6 H Harmonic angle -8-8.º INT6 Type 4

Point ID x69 xc NOTES: Description Optionsange Units... H4 Harmonic angle -8-8.º INT6 Setpoint Status SP-SP6 (bitmap) x-xffff Type Energy and power demand readings are only available in PME and PMEH meters. Harmonics are only available in PMEH meters. Voltage and voltage harmonics readings: when the 4LN, LN or BLN wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode, they will be line-to-line voltages. For volts, amps, power and frequency scales and units, refer to Section 5 Data Scales and Units. Harmonic angles are referenced to the fundamental voltage harmonic H on phase L. 4 In LL wiring mode the Harmonics calculations are not supported. 4

4. MinimumMaximum Log egisters Point ID xb xb xb xb xb 4 xb 5 xb 6 xb xb 8 xb 9 xb A xb B xb8 xb8 xb8 xb8 xb8 4 xb8 5 xb8 6 Minimum Phase Values Min. VV Voltage Min. VV Voltage Min. VV Voltage Min. I Current Min. I Current Min. I Current Minimum Total Values Min. Total k Min. Total kvar Min. Total kva Min. Total PF Description OptionsangeFormat Units -Vmax F -Vmax F -Vmax F -Imax F -Imax -Imax -Pmax-Pmax -Pmax-Pmax -Pmax U U U U U U U U U --. Type INT INT INT 4

Point ID xb8 xb xb xb xb xb 4 xb 5 xb xb xb xb xb 4 xb 5 xb 6 xb xb 8 xb 9 xb A xb B xb Description OptionsangeFormat Units Minimum Auxiliary Values Not used Min. In Current Min. Frequency Maximum Phase Values Max. VV Voltage Max. VV Voltage Max. VV Voltage Max. I Current Max. I Current Max. I Current -Imax U -Fmax. Hz -Vmax -Vmax -Vmax -Imax -Imax -Imax U U U U U U Type Maximum Auxiliary Values Not used 44