Online Knowledge Acquisition and General Problem Solving in a Real World by Humanoid Robots

Size: px
Start display at page:

Download "Online Knowledge Acquisition and General Problem Solving in a Real World by Humanoid Robots"

Transcription

1 Online Knowledge Acquisition and General Problem Solving in a Real World by Humanoid Robots Naoya Makibuchi 1, Furao Shen 2, and Osamu Hasegawa 1 1 Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama , Japan {makibuchi.n.aa,hasegawa.o.aa}@m.titech.ac.jp 2 The State Key Laboratory for Novel Software Technology, Nanjing University, China frshen@nju.edu.cn Abstract. In this paper, the authors propose a three-layer architecture using an existing planner, which is designed to build a general problemsolving system in a real world. A robot, which has implemented the proposed method, forms the concepts of objects using the Self-Organizing Incremental Neural Network, and then acquires knowledge, online and incrementally, through interaction with the environment or with humans. In addition, it can solve general-purpose problems in a real world by actively working with the various acquired knowledge using the General Problem Solver. In the experiment, the authors show that the proposed method is effective for solving general-purpose problems in a real world using a humanoid robot. Keywords: Real World Intelligence, Humanoid Robot, Self-Organizing Incremental Neural Network, General Problem Solver. 1 Introduction To enable humanoid robots to act intelligently in a real world, not only a control theory for robot motion or an information theory for robot intelligence, but also a close collaboration of various fields of study is needed. For the field of motion control of humanoid robots, many studies have been vigorously performed in private enterprises or research organizations, such as the study of an autonomy bipedal robot represented by ASIMO of Honda Motors, or the study of objecthandling learning by a small humanoid robot [1]. However, on the other hand, in the field of intelligent information processing of humanoid robots, studies that can say able to execute non-programmed operations autonomously have not been reported so far. Therefore, this study proposes an architecture based on a keyword, that is, the intelligence of humanoid robots, specifically used for general-purpose problem solving in a real world. K. Diamantaras, W. Duch, L.S. Iliadis (Eds.): ICANN 2010, Part III, LNCS 6354, pp , c Springer-Verlag Berlin Heidelberg 2010

2 552 N. Makibuchi, F. Shen, and O. Hasegawa Designers have traditionally created intelligent robots by incorporating any possible situations and actions in advance. However, for a real world that continuously changes in a complex way, it is impossible to incorporate appropriate actions every time in advance. Instead of such a conventional method, there is an approach called Cognitive Developmental Robotics (CDR) [2] that focuses on robots embodiment, in other words, it uses a process where the robots make contact with the environment through their own bodies, and then understand the information obtained from a real world. On the other hand, in terms of robot intelligence development, Weng and his followers have concluded that the following properties are required for a developmental system [3]: I. The system is not specific to tasks. II. The tasks are unknown to the system designers. III. The system can generate approaches for unknown tasks. IV. The system has an online learning ability. V. The system has an open-ended learning ability. An approach based on CDR could meet all the properties, except for property III because this property is obviously different from the others in terms of the intelligence level required. In particular, it demands not only the ability to acquire knowledge (solutions for tasks that are then expressed as knowledge), but also the ability to generate knowledge autonomously. To achieve this, in addition to the basic concept of CDR, a mechanism to generate new knowledge from existing knowledge is needed. 1.1 Purpose of This Study The purpose of this study is to build a general problem-solving system in a real world that meets all the properties, including property III as defined by Weng. The proposed method is an architecture shown in Figure 1; a robot implemented using this architecture displays the following features: The robot forms the concepts of objects (symbols) from patterns obtained by seeing and hearing. The robot can acquire cause-effect relationships between actions and environmental changes in form of knowledge, both online and incrementally, through interaction with the environment or with humans. The robot can generate approaches for unknown tasks by combining existing knowledge. 2 Proposed Method The architecture of the proposed method is shown in Figure 1. It is a three-layer architecture consisting of an Input Layer, a Pattern Memory Layer, and a Symbol Memory Layer. Among these, the Input Layer consists of three phases: a Symbol Grounding Phase, a Knowledge Acquisition Phase, and a Problem Solving Phase.

3 Online Knowledge Acquisition and General Problem Solving 553 t D W D / ^K/EE W K < > ^ ^K/EE > d ^ D > W D > d d d / > ^ ' W < W W^ W Fig. 1. Architecture of the proposed method. The black arrow in the Input Layer indicates the flow of processing. Arrows between each layer indicate the flow of data. A white arrow in the Symbol Memory Layer signifies the generation of operators (knowledge). In addition, a border in the Pattern Memory Layer means that the robot s movement information is kept in a space separate from the SOINN spaces. In these phases, image and sound patterns are input from real environments. In addition, concept information added to each pattern in the Symbol Grounding Phase and the time-series data of the robot s joint angles (Act1, Act2, Act3...) in the Knowledge Acquisition Phase are input. In Figure 1, a circle, a triangle and a square in the Input Layer means that the type of each pattern is different by phases, as described. The Pattern Memory Layer stores patterns sent from the Input Layer, so that it functions as an interface for mapping a pattern to a symbol. The Symbol Memory Layer retains World Models and Operators, which include predicates (pred) that get symbols (A, B,..) as arguments from the Pattern Memory Layer, which are used for planning. 1. Symbol Grounding Phase In this phase, a robot forms the concepts of image and sound objects, which are used in later phases, using input patterns from real environments. This is realized by employing the Self-Organizing Incremental Neural Network (SOINN) [5]. The SOINN is capable of online incremental learning, that is, it can learn new input data without both storing all the previous ones and destroying the old learned knowledge. In this study, we prepare two SOINN spaces (Image SOINN and Sound SOINN) for image and sound patterns in the Pattern Memory Layer. A robot inputs each pattern to each SOINN along with the concept information provided by the experimenters. 2. Knowledge Acquisition Phase In this phase, a robot acquires, both online and incrementally, cause-effect relationships in the form of knowledge from the changes to real environments that have been caused by its own actions. These cause-effect relationships are expressed, respectively, as one operator by the Attention Model. In particular, the Attention Model constructs an

4 554 N. Makibuchi, F. Shen, and O. Hasegawa operator by obtaining three elements necessary for its composition (a precondition (precond), a deletion list (dellist), and an addition list (addlist)) from the changes to a real environment and then by combining these elements with taught movement information (Act). 3. Problem Solving Phase In this phase, a robot solves general-purpose problems in real environments by working operators acquired in the Knowledge Acquisition Phase. This is achieved by employing the General Problem Solver (GPS) [4], which is a well-known planner for actively approaching working knowledge. First, a robot judges whether there are appropriate approaches for a task presented in a real environment. If such approaches exist, the robot chooses an approach according to a constant evaluation criterion, and then executes the approach in real environments. In this case, the robot repeats executing an operator and observing the changes to a real environment until it reaches a goal state. 3 Experiments In this experiment, a robot acquires operators, both online and incrementally, as shown in Figure 2, such as, If the robot raises its right/left hand, an apple/a bell will be put in his hand, If the robot presses the bell, it will ring, and If the robot makes a give me gesture while the bell is ringing, the apple will move in front of it. We then presented tasks to the robot such as, Put an apple in front of it when there is nothing on the table, which it had not directly experienced previously. As a consequence, as shown in Figure 3, the robot could perform the tasks by combining existing knowledge without direct teaching from the experimenters. Fig. 2. An example of operators that the robot acquired Fig. 3. An example of tasks that the robot performed. The last figure shows the robot nodding its head with satisfaction that it was able to reach a goal state.

5 4 Discussions Online Knowledge Acquisition and General Problem Solving 555 The proposed method meets all the properties, including property III as proposed by Weng, so that a robot implemented with it can act appropriately for tasks that it has not experienced directly, using actively acquired knowledge. The SOINN is a key technology of the proposed method. Regarding only the symbolization of sense data, approaches using the Self-Organizing Map (SOM), the Recurrent Neural Network with Parametric Bias (RNNPB), or the Hidden Markov Model (HMM) are also conceivable (e.g., [6,7,8]). However, because it is generally necessary to define their internal structure beforehand, such as the number of nodes or states, they are not appropriate for online incremental learning. Although some of these approaches are, in principle, capable of online incremental learning, in fact, the performance of incremental learning using the SOM or RNNPB depends considerably on the number of nodes composing the network. Besides, since statistical methods such the HMM need a large amount of learning data, these methods are undesirable for robots in a real world from a practical standpoint. On the other hand, in an online incremental learning using the SOINN, not only it is unnecessary to define its size in advance, but also adaptation capability in a self-organizational way and high robustness to noise can be expected. These properties are essential to meet all the properties proposed by Weng. Because it employs a layer structure that includes SOINNs, following are some superior aspects of the proposed method: It is capable of behaving robustly in the handling of unstable patterns in a real world. In addition, the concepts of objects can be also formed online and incrementally, which is necessary for knowledge acquisition and problem solving. It is capable of multimodal information processing required by robots, using multiple senses such as sight and sound. This study deals only with image and sound data, but in fact, other sensory data can be easily incorporated by preparing another SOINN space in the Pattern Memory Layer. A pattern set expressing the concepts of objects is not kept in individual operators but in the Pattern Memory Layer. Hence, concepts formed in the Pattern Memory Layer can be shared as a symbol from the Symbol Memory Layer, which results in significant savings in the memory capacity of operators in the Symbol Memory Layer. 5 Conclusion and Future Work In this paper, the authors propose a three-layer architecture using an existing planner, which is designed to build a general problem-solving system in a real world. We consider this study as an important basis for the creation of humanoid robots that act intelligently in a real world. In terms of future studies, we will mainly focus on discussions of the following topics:

6 556 N. Makibuchi, F. Shen, and O. Hasegawa 1. Automatic actions by getting used to tasks In the current method, the more the number of operators acquired, the longer the time taken to plan. Namely, a robot that has a large amount of knowledge does not act at once when a task is presented to it. Therefore, by extending the architecture, we are now discussing a mechanism to cope automatically with the tasks that a robot has experienced before, without involving a planner. 2. Task instructions using languages In the current method, task instructions are performed by presenting the goal states of tasks to a robot in real environments. However, it is paradoxical that we must prepare the goal states in advance of tasks that we want the robot to perform. Therefore, we are now discussing a mechanism to give the goal states of tasks to a robot using languages. Acknowledgment This study was supported by the Industrial Technology Research Grant Program in 2010 from the New Energy and Industrial Technology Development Organization (NEDO) of Japan. References 1. Ito, M., Noda, K., Hoshino, Y., Tani, J.: Dynamic and interactive generation of object handling behaviors by a small humanoid robot using a dynamic neural network model. Neural Networks 19, (2006) 2. Asada, M., Hosoda, K., Kuniyoshi, Y., Ishiguro, H., Inui, T., Yoshikawa, Y., Ogino, M., Yoshida, C.: Cognitive Developmental Robotics: A Survey. IEEE Trans. Autonomous Mental Development 1(1), (2009) 3. Weng, J., McClelland, J., Pentland, A., Sporns, O., Stockman, I., Sur, M., Thelen, E.: Autonomous mental development by robots and animals. Science 291(5504), (2001) 4. Ernst, G.W., Newell, A.: GPS: A Case Study in Generality and Problem Solving. Academic Press, New York (1969) 5. Shen, F., Hasegawa, O.: An Incremental Network for On-line Unsupervised Classification and Topology Learning. Neural Networks 19, (2006) 6. Minamino, K., Aoyama, K., Shimomura, H.: Voice Imitation based on self-organizing maps with HMMs. In: Proc. International Workshop on Intelligence Dynamics at Humanoids, pp (2005) 7. Inamura, T., Shibata, T.: Interpolation and Extrapolation of Motion Patterns in the Proto-symbol Space. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds.) ICONIP 2007, Part II. LNCS, vol. 4985, pp Springer, Heidelberg (2008) 8. Ogata, T., Matsumoto, S., Tani, J., Komatani, K., Okuno, H.G.: Human-Robot Cooperation using Quasi-symbols Generated by RNNPB Model. In: Proc. IEEE International Conference on Robotics and Automation, pp (2007)

Policy Forum. Science 26 January 2001: Vol no. 5504, pp DOI: /science Prev Table of Contents Next

Policy Forum. Science 26 January 2001: Vol no. 5504, pp DOI: /science Prev Table of Contents Next Science 26 January 2001: Vol. 291. no. 5504, pp. 599-600 DOI: 10.1126/science.291.5504.599 Prev Table of Contents Next Policy Forum ARTIFICIAL INTELLIGENCE: Autonomous Mental Development by Robots and

More information

Distributed Vision System: A Perceptual Information Infrastructure for Robot Navigation

Distributed Vision System: A Perceptual Information Infrastructure for Robot Navigation Distributed Vision System: A Perceptual Information Infrastructure for Robot Navigation Hiroshi Ishiguro Department of Information Science, Kyoto University Sakyo-ku, Kyoto 606-01, Japan E-mail: ishiguro@kuis.kyoto-u.ac.jp

More information

Interaction rule learning with a human partner based on an imitation faculty with a simple visuo-motor mapping

Interaction rule learning with a human partner based on an imitation faculty with a simple visuo-motor mapping Robotics and Autonomous Systems 54 (2006) 414 418 www.elsevier.com/locate/robot Interaction rule learning with a human partner based on an imitation faculty with a simple visuo-motor mapping Masaki Ogino

More information

Evolved Neurodynamics for Robot Control

Evolved Neurodynamics for Robot Control Evolved Neurodynamics for Robot Control Frank Pasemann, Martin Hülse, Keyan Zahedi Fraunhofer Institute for Autonomous Intelligent Systems (AiS) Schloss Birlinghoven, D-53754 Sankt Augustin, Germany Abstract

More information

Optic Flow Based Skill Learning for A Humanoid to Trap, Approach to, and Pass a Ball

Optic Flow Based Skill Learning for A Humanoid to Trap, Approach to, and Pass a Ball Optic Flow Based Skill Learning for A Humanoid to Trap, Approach to, and Pass a Ball Masaki Ogino 1, Masaaki Kikuchi 1, Jun ichiro Ooga 1, Masahiro Aono 1 and Minoru Asada 1,2 1 Dept. of Adaptive Machine

More information

HMM-based Error Recovery of Dance Step Selection for Dance Partner Robot

HMM-based Error Recovery of Dance Step Selection for Dance Partner Robot 27 IEEE International Conference on Robotics and Automation Roma, Italy, 1-14 April 27 ThA4.3 HMM-based Error Recovery of Dance Step Selection for Dance Partner Robot Takahiro Takeda, Yasuhisa Hirata,

More information

Associated Emotion and its Expression in an Entertainment Robot QRIO

Associated Emotion and its Expression in an Entertainment Robot QRIO Associated Emotion and its Expression in an Entertainment Robot QRIO Fumihide Tanaka 1. Kuniaki Noda 1. Tsutomu Sawada 2. Masahiro Fujita 1.2. 1. Life Dynamics Laboratory Preparatory Office, Sony Corporation,

More information

Body Movement Analysis of Human-Robot Interaction

Body Movement Analysis of Human-Robot Interaction Body Movement Analysis of Human-Robot Interaction Takayuki Kanda, Hiroshi Ishiguro, Michita Imai, and Tetsuo Ono ATR Intelligent Robotics & Communication Laboratories 2-2-2 Hikaridai, Seika-cho, Soraku-gun,

More information

IN MOST human robot coordination systems that have

IN MOST human robot coordination systems that have IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 54, NO. 2, APRIL 2007 699 Dance Step Estimation Method Based on HMM for Dance Partner Robot Takahiro Takeda, Student Member, IEEE, Yasuhisa Hirata, Member,

More information

Converting Motion between Different Types of Humanoid Robots Using Genetic Algorithms

Converting Motion between Different Types of Humanoid Robots Using Genetic Algorithms Converting Motion between Different Types of Humanoid Robots Using Genetic Algorithms Mari Nishiyama and Hitoshi Iba Abstract The imitation between different types of robots remains an unsolved task for

More information

Birth of An Intelligent Humanoid Robot in Singapore

Birth of An Intelligent Humanoid Robot in Singapore Birth of An Intelligent Humanoid Robot in Singapore Ming Xie Nanyang Technological University Singapore 639798 Email: mmxie@ntu.edu.sg Abstract. Since 1996, we have embarked into the journey of developing

More information

Human-robot relation. Human-robot relation

Human-robot relation. Human-robot relation Town Robot { Toward social interaction technologies of robot systems { Hiroshi ISHIGURO and Katsumi KIMOTO Department of Information Science Kyoto University Sakyo-ku, Kyoto 606-01, JAPAN Email: ishiguro@kuis.kyoto-u.ac.jp

More information

3D-Position Estimation for Hand Gesture Interface Using a Single Camera

3D-Position Estimation for Hand Gesture Interface Using a Single Camera 3D-Position Estimation for Hand Gesture Interface Using a Single Camera Seung-Hwan Choi, Ji-Hyeong Han, and Jong-Hwan Kim Department of Electrical Engineering, KAIST, Gusung-Dong, Yusung-Gu, Daejeon, Republic

More information

Insertion of Pause in Drawing from Babbling for Robot s Developmental Imitation Learning

Insertion of Pause in Drawing from Babbling for Robot s Developmental Imitation Learning 2014 IEEE International Conference on Robotics & Automation (ICRA) Hong Kong Convention and Exhibition Center May 31 - June 7, 2014. Hong Kong, China Insertion of Pause in Drawing from Babbling for Robot

More information

Service Robots in an Intelligent House

Service Robots in an Intelligent House Service Robots in an Intelligent House Jesus Savage Bio-Robotics Laboratory biorobotics.fi-p.unam.mx School of Engineering Autonomous National University of Mexico UNAM 2017 OUTLINE Introduction A System

More information

Intent Imitation using Wearable Motion Capturing System with On-line Teaching of Task Attention

Intent Imitation using Wearable Motion Capturing System with On-line Teaching of Task Attention Intent Imitation using Wearable Motion Capturing System with On-line Teaching of Task Attention Tetsunari Inamura, Naoki Kojo, Tomoyuki Sonoda, Kazuyuki Sakamoto, Kei Okada and Masayuki Inaba Department

More information

Concept and Architecture of a Centaur Robot

Concept and Architecture of a Centaur Robot Concept and Architecture of a Centaur Robot Satoshi Tsuda, Yohsuke Oda, Kuniya Shinozaki, and Ryohei Nakatsu Kwansei Gakuin University, School of Science and Technology 2-1 Gakuen, Sanda, 669-1337 Japan

More information

Learning and Using Models of Kicking Motions for Legged Robots

Learning and Using Models of Kicking Motions for Legged Robots Learning and Using Models of Kicking Motions for Legged Robots Sonia Chernova and Manuela Veloso Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213 {soniac, mmv}@cs.cmu.edu Abstract

More information

Acquisition of Multi-Modal Expression of Slip through Pick-Up Experiences

Acquisition of Multi-Modal Expression of Slip through Pick-Up Experiences Acquisition of Multi-Modal Expression of Slip through Pick-Up Experiences Yasunori Tada* and Koh Hosoda** * Dept. of Adaptive Machine Systems, Osaka University ** Dept. of Adaptive Machine Systems, HANDAI

More information

Development of an Interactive Humanoid Robot Robovie - An interdisciplinary research approach between cognitive science and robotics -

Development of an Interactive Humanoid Robot Robovie - An interdisciplinary research approach between cognitive science and robotics - Development of an Interactive Humanoid Robot Robovie - An interdisciplinary research approach between cognitive science and robotics - Hiroshi Ishiguro 1,2, Tetsuo Ono 1, Michita Imai 1, Takayuki Kanda

More information

Autonomic gaze control of avatars using voice information in virtual space voice chat system

Autonomic gaze control of avatars using voice information in virtual space voice chat system Autonomic gaze control of avatars using voice information in virtual space voice chat system Kinya Fujita, Toshimitsu Miyajima and Takashi Shimoji Tokyo University of Agriculture and Technology 2-24-16

More information

Learning Behaviors for Environment Modeling by Genetic Algorithm

Learning Behaviors for Environment Modeling by Genetic Algorithm Learning Behaviors for Environment Modeling by Genetic Algorithm Seiji Yamada Department of Computational Intelligence and Systems Science Interdisciplinary Graduate School of Science and Engineering Tokyo

More information

MULTI-LAYERED HYBRID ARCHITECTURE TO SOLVE COMPLEX TASKS OF AN AUTONOMOUS MOBILE ROBOT

MULTI-LAYERED HYBRID ARCHITECTURE TO SOLVE COMPLEX TASKS OF AN AUTONOMOUS MOBILE ROBOT MULTI-LAYERED HYBRID ARCHITECTURE TO SOLVE COMPLEX TASKS OF AN AUTONOMOUS MOBILE ROBOT F. TIECHE, C. FACCHINETTI and H. HUGLI Institute of Microtechnology, University of Neuchâtel, Rue de Tivoli 28, CH-2003

More information

Estimating Group States for Interactive Humanoid Robots

Estimating Group States for Interactive Humanoid Robots Estimating Group States for Interactive Humanoid Robots Masahiro Shiomi, Kenta Nohara, Takayuki Kanda, Hiroshi Ishiguro, and Norihiro Hagita Abstract In human-robot interaction, interactive humanoid robots

More information

Live Feeling on Movement of an Autonomous Robot Using a Biological Signal

Live Feeling on Movement of an Autonomous Robot Using a Biological Signal Live Feeling on Movement of an Autonomous Robot Using a Biological Signal Shigeru Sakurazawa, Keisuke Yanagihara, Yasuo Tsukahara, Hitoshi Matsubara Future University-Hakodate, System Information Science,

More information

Behavior generation for a mobile robot based on the adaptive fitness function

Behavior generation for a mobile robot based on the adaptive fitness function Robotics and Autonomous Systems 40 (2002) 69 77 Behavior generation for a mobile robot based on the adaptive fitness function Eiji Uchibe a,, Masakazu Yanase b, Minoru Asada c a Human Information Science

More information

SIGVerse - A Simulation Platform for Human-Robot Interaction Jeffrey Too Chuan TAN and Tetsunari INAMURA National Institute of Informatics, Japan The

SIGVerse - A Simulation Platform for Human-Robot Interaction Jeffrey Too Chuan TAN and Tetsunari INAMURA National Institute of Informatics, Japan The SIGVerse - A Simulation Platform for Human-Robot Interaction Jeffrey Too Chuan TAN and Tetsunari INAMURA National Institute of Informatics, Japan The 29 th Annual Conference of The Robotics Society of

More information

Bringing up robot: Fundamental mechanisms for creating a self-motivated, self-organizing architecture

Bringing up robot: Fundamental mechanisms for creating a self-motivated, self-organizing architecture Cybernetics and Systems (2005), Volume 36, Number 2. Bringing up robot: Fundamental mechanisms for creating a self-motivated, self-organizing architecture Douglas Blank & Deepak Kumar Lisa Meeden James

More information

Simulating development in a real robot

Simulating development in a real robot Simulating development in a real robot Gabriel Gómez, Max Lungarella, Peter Eggenberger Hotz, Kojiro Matsushita and Rolf Pfeifer Artificial Intelligence Laboratory Department of Information Technology,

More information

Learning Interaction Rules through Compression of Sensori-Motor Causality Space

Learning Interaction Rules through Compression of Sensori-Motor Causality Space Johansson, B.,!ahin, E. & Balkenius, C. (2010). Proceedings of the Tenth International Conference on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems. Lund University Cognitive Studies,

More information

Multi-Platform Soccer Robot Development System

Multi-Platform Soccer Robot Development System Multi-Platform Soccer Robot Development System Hui Wang, Han Wang, Chunmiao Wang, William Y. C. Soh Division of Control & Instrumentation, School of EEE Nanyang Technological University Nanyang Avenue,

More information

CS 730/830: Intro AI. Prof. Wheeler Ruml. TA Bence Cserna. Thinking inside the box. 5 handouts: course info, project info, schedule, slides, asst 1

CS 730/830: Intro AI. Prof. Wheeler Ruml. TA Bence Cserna. Thinking inside the box. 5 handouts: course info, project info, schedule, slides, asst 1 CS 730/830: Intro AI Prof. Wheeler Ruml TA Bence Cserna Thinking inside the box. 5 handouts: course info, project info, schedule, slides, asst 1 Wheeler Ruml (UNH) Lecture 1, CS 730 1 / 23 My Definition

More information

Cognitive robots and emotional intelligence Cloud robotics Ethical, legal and social issues of robotic Construction robots Human activities in many

Cognitive robots and emotional intelligence Cloud robotics Ethical, legal and social issues of robotic Construction robots Human activities in many Preface The jubilee 25th International Conference on Robotics in Alpe-Adria-Danube Region, RAAD 2016 was held in the conference centre of the Best Western Hotel M, Belgrade, Serbia, from 30 June to 2 July

More information

Situated Robotics INTRODUCTION TYPES OF ROBOT CONTROL. Maja J Matarić, University of Southern California, Los Angeles, CA, USA

Situated Robotics INTRODUCTION TYPES OF ROBOT CONTROL. Maja J Matarić, University of Southern California, Los Angeles, CA, USA This article appears in the Encyclopedia of Cognitive Science, Nature Publishers Group, Macmillian Reference Ltd., 2002. Situated Robotics Level 2 Maja J Matarić, University of Southern California, Los

More information

Extracting Multimodal Dynamics of Objects Using RNNPB

Extracting Multimodal Dynamics of Objects Using RNNPB Paper: Tetsuya Ogata Λ, Hayato Ohba Λ, Jun Tani ΛΛ, Kazunori Komatani Λ, and Hiroshi G. Okuno Λ Λ Graduate School of Informatics, Kyoto University, Kyoto, Japan E-mail: fogata, hayato, komatani, okunog@kuis.kyoto-u.ac.jp

More information

Flexible Cooperation between Human and Robot by interpreting Human Intention from Gaze Information

Flexible Cooperation between Human and Robot by interpreting Human Intention from Gaze Information Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems September 28 - October 2, 2004, Sendai, Japan Flexible Cooperation between Human and Robot by interpreting Human

More information

Cooperative Behavior Acquisition in A Multiple Mobile Robot Environment by Co-evolution

Cooperative Behavior Acquisition in A Multiple Mobile Robot Environment by Co-evolution Cooperative Behavior Acquisition in A Multiple Mobile Robot Environment by Co-evolution Eiji Uchibe, Masateru Nakamura, Minoru Asada Dept. of Adaptive Machine Systems, Graduate School of Eng., Osaka University,

More information

Concept and Architecture of a Centaur Robot

Concept and Architecture of a Centaur Robot Concept and Architecture of a Centaur Robot Satoshi Tsuda, Yohsuke Oda, Kuniya Shinozaki, and Ryohei Nakatsu Kwansei Gakuin University, School of Science and Technology 2-1 Gakuen, Sanda, 669-1337 Japan

More information

CMSC 372 Artificial Intelligence. Fall Administrivia

CMSC 372 Artificial Intelligence. Fall Administrivia CMSC 372 Artificial Intelligence Fall 2017 Administrivia Instructor: Deepak Kumar Lectures: Mon& Wed 10:10a to 11:30a Labs: Fridays 10:10a to 11:30a Pre requisites: CMSC B206 or H106 and CMSC B231 or permission

More information

Adaptive Action Selection without Explicit Communication for Multi-robot Box-pushing

Adaptive Action Selection without Explicit Communication for Multi-robot Box-pushing Adaptive Action Selection without Explicit Communication for Multi-robot Box-pushing Seiji Yamada Jun ya Saito CISS, IGSSE, Tokyo Institute of Technology 4259 Nagatsuta, Midori, Yokohama 226-8502, JAPAN

More information

Safe and Efficient Autonomous Navigation in the Presence of Humans at Control Level

Safe and Efficient Autonomous Navigation in the Presence of Humans at Control Level Safe and Efficient Autonomous Navigation in the Presence of Humans at Control Level Klaus Buchegger 1, George Todoran 1, and Markus Bader 1 Vienna University of Technology, Karlsplatz 13, Vienna 1040,

More information

Neural Models for Multi-Sensor Integration in Robotics

Neural Models for Multi-Sensor Integration in Robotics Department of Informatics Intelligent Robotics WS 2016/17 Neural Models for Multi-Sensor Integration in Robotics Josip Josifovski 4josifov@informatik.uni-hamburg.de Outline Multi-sensor Integration: Neurally

More information

Development and Evaluation of a Centaur Robot

Development and Evaluation of a Centaur Robot Development and Evaluation of a Centaur Robot 1 Satoshi Tsuda, 1 Kuniya Shinozaki, and 2 Ryohei Nakatsu 1 Kwansei Gakuin University, School of Science and Technology 2-1 Gakuen, Sanda, 669-1337 Japan {amy65823,

More information

* Intelli Robotic Wheel Chair for Specialty Operations & Physically Challenged

* Intelli Robotic Wheel Chair for Specialty Operations & Physically Challenged ADVANCED ROBOTICS SOLUTIONS * Intelli Mobile Robot for Multi Specialty Operations * Advanced Robotic Pick and Place Arm and Hand System * Automatic Color Sensing Robot using PC * AI Based Image Capturing

More information

A Robust Neural Robot Navigation Using a Combination of Deliberative and Reactive Control Architectures

A Robust Neural Robot Navigation Using a Combination of Deliberative and Reactive Control Architectures A Robust Neural Robot Navigation Using a Combination of Deliberative and Reactive Control Architectures D.M. Rojas Castro, A. Revel and M. Ménard * Laboratory of Informatics, Image and Interaction (L3I)

More information

Context-Aware Interaction in a Mobile Environment

Context-Aware Interaction in a Mobile Environment Context-Aware Interaction in a Mobile Environment Daniela Fogli 1, Fabio Pittarello 2, Augusto Celentano 2, and Piero Mussio 1 1 Università degli Studi di Brescia, Dipartimento di Elettronica per l'automazione

More information

Assess how research on the construction of cognitive functions in robotic systems is undertaken in Japan, China, and Korea

Assess how research on the construction of cognitive functions in robotic systems is undertaken in Japan, China, and Korea Sponsor: Assess how research on the construction of cognitive functions in robotic systems is undertaken in Japan, China, and Korea Understand the relationship between robotics and the human-centered sciences

More information

Cost Oriented Humanoid Robots

Cost Oriented Humanoid Robots Cost Oriented Humanoid Robots P. Kopacek Vienna University of Technology, Intelligent Handling and Robotics- IHRT, Favoritenstrasse 9/E325A6; A-1040 Wien kopacek@ihrt.tuwien.ac.at Abstract. Currently there

More information

YUMI IWASHITA

YUMI IWASHITA YUMI IWASHITA yumi@ieee.org http://robotics.ait.kyushu-u.ac.jp/~yumi/index-e.html RESEARCH INTERESTS Computer vision for robotics applications, such as motion capture system using multiple cameras and

More information

Fuzzy-Heuristic Robot Navigation in a Simulated Environment

Fuzzy-Heuristic Robot Navigation in a Simulated Environment Fuzzy-Heuristic Robot Navigation in a Simulated Environment S. K. Deshpande, M. Blumenstein and B. Verma School of Information Technology, Griffith University-Gold Coast, PMB 50, GCMC, Bundall, QLD 9726,

More information

Intelligent Modeling Method for Development of Shape Centered Products in Collaborative Engineering

Intelligent Modeling Method for Development of Shape Centered Products in Collaborative Engineering See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/228449414 Intelligent Modeling Method for Development of Shape Centered Products in Collaborative

More information

Graphical Simulation and High-Level Control of Humanoid Robots

Graphical Simulation and High-Level Control of Humanoid Robots In Proc. 2000 IEEE RSJ Int l Conf. on Intelligent Robots and Systems (IROS 2000) Graphical Simulation and High-Level Control of Humanoid Robots James J. Kuffner, Jr. Satoshi Kagami Masayuki Inaba Hirochika

More information

NCCT IEEE PROJECTS ADVANCED ROBOTICS SOLUTIONS. Latest Projects, in various Domains. Promise for the Best Projects

NCCT IEEE PROJECTS ADVANCED ROBOTICS SOLUTIONS. Latest Projects, in various Domains. Promise for the Best Projects NCCT Promise for the Best Projects IEEE PROJECTS in various Domains Latest Projects, 2009-2010 ADVANCED ROBOTICS SOLUTIONS EMBEDDED SYSTEM PROJECTS Microcontrollers VLSI DSP Matlab Robotics ADVANCED ROBOTICS

More information

Human Robot Interaction (HRI)

Human Robot Interaction (HRI) Brief Introduction to HRI Batu Akan batu.akan@mdh.se Mälardalen Högskola September 29, 2008 Overview 1 Introduction What are robots What is HRI Application areas of HRI 2 3 Motivations Proposed Solution

More information

Cynthia Breazeal and Brian Scassellati

Cynthia Breazeal and Brian Scassellati Cynthia Breazeal and Brian Scassellati The study of social learning in robotics has been motivated by both scientific interest in the learning process and practical desires to produce machines that are

More information

Implementation of Self-adaptive System using the Algorithm of Neural Network Learning Gain

Implementation of Self-adaptive System using the Algorithm of Neural Network Learning Gain International Journal Implementation of Control, of Automation, Self-adaptive and System Systems, using vol. the 6, Algorithm no. 3, pp. of 453-459, Neural Network June 2008 Learning Gain 453 Implementation

More information

Affordance based Human Motion Synthesizing System

Affordance based Human Motion Synthesizing System Affordance based Human Motion Synthesizing System H. Ishii, N. Ichiguchi, D. Komaki, H. Shimoda and H. Yoshikawa Graduate School of Energy Science Kyoto University Uji-shi, Kyoto, 611-0011, Japan Abstract

More information

Anthropomorphic action in robotics

Anthropomorphic action in robotics Anthropomorphic action in robotics Jean-Paul Laumond To cite this version: Jean-Paul Laumond. Anthropomorphic action in robotics. Rapport LAAS n 16339. 2016. HAL Id: hal-01376765 https://hal.archives-ouvertes.fr/hal-01376765

More information

Rapid Development System for Humanoid Vision-based Behaviors with Real-Virtual Common Interface

Rapid Development System for Humanoid Vision-based Behaviors with Real-Virtual Common Interface Rapid Development System for Humanoid Vision-based Behaviors with Real-Virtual Common Interface Kei Okada 1, Yasuyuki Kino 1, Fumio Kanehiro 2, Yasuo Kuniyoshi 1, Masayuki Inaba 1, Hirochika Inoue 1 1

More information

Research on Hand Gesture Recognition Using Convolutional Neural Network

Research on Hand Gesture Recognition Using Convolutional Neural Network Research on Hand Gesture Recognition Using Convolutional Neural Network Tian Zhaoyang a, Cheng Lee Lung b a Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China E-mail address:

More information

Complex-valued neural networks fertilize electronics

Complex-valued neural networks fertilize electronics 1 Complex-valued neural networks fertilize electronics The complex-valued neural networks are the networks that deal with complexvalued information by using complex-valued parameters and variables. They

More information

Artificial Neural Networks. Artificial Intelligence Santa Clara, 2016

Artificial Neural Networks. Artificial Intelligence Santa Clara, 2016 Artificial Neural Networks Artificial Intelligence Santa Clara, 2016 Simulate the functioning of the brain Can simulate actual neurons: Computational neuroscience Can introduce simplified neurons: Neural

More information

PHYSICAL ROBOTS PROGRAMMING BY IMITATION USING VIRTUAL ROBOT PROTOTYPES

PHYSICAL ROBOTS PROGRAMMING BY IMITATION USING VIRTUAL ROBOT PROTOTYPES Bulletin of the Transilvania University of Braşov Series I: Engineering Sciences Vol. 6 (55) No. 2-2013 PHYSICAL ROBOTS PROGRAMMING BY IMITATION USING VIRTUAL ROBOT PROTOTYPES A. FRATU 1 M. FRATU 2 Abstract:

More information

Robot: icub This humanoid helps us study the brain

Robot: icub This humanoid helps us study the brain ProfileArticle Robot: icub This humanoid helps us study the brain For the complete profile with media resources, visit: http://education.nationalgeographic.org/news/robot-icub/ Program By Robohub Tuesday,

More information

Learning Reactive Neurocontrollers using Simulated Annealing for Mobile Robots

Learning Reactive Neurocontrollers using Simulated Annealing for Mobile Robots Learning Reactive Neurocontrollers using Simulated Annealing for Mobile Robots Philippe Lucidarme, Alain Liégeois LIRMM, University Montpellier II, France, lucidarm@lirmm.fr Abstract This paper presents

More information

Rearrangement task realization by multiple mobile robots with efficient calculation of task constraints

Rearrangement task realization by multiple mobile robots with efficient calculation of task constraints 2007 IEEE International Conference on Robotics and Automation Roma, Italy, 10-14 April 2007 WeA1.2 Rearrangement task realization by multiple mobile robots with efficient calculation of task constraints

More information

Emergence of Interactive Behaviors between Two Robots by Prediction Error Minimization Mechanism

Emergence of Interactive Behaviors between Two Robots by Prediction Error Minimization Mechanism (Presented at IEEE Int. Conf. ICDL-Epirob 2016) Emergence of Interactive Behaviors between Two Robots by Prediction Error Minimization Mechanism Yiwen Chen, Shingo Murata, Hiroaki Arie, Tetsuya Ogata,

More information

EMERGENCE OF COMMUNICATION IN TEAMS OF EMBODIED AND SITUATED AGENTS

EMERGENCE OF COMMUNICATION IN TEAMS OF EMBODIED AND SITUATED AGENTS EMERGENCE OF COMMUNICATION IN TEAMS OF EMBODIED AND SITUATED AGENTS DAVIDE MAROCCO STEFANO NOLFI Institute of Cognitive Science and Technologies, CNR, Via San Martino della Battaglia 44, Rome, 00185, Italy

More information

High-Level Programming for Industrial Robotics: using Gestures, Speech and Force Control

High-Level Programming for Industrial Robotics: using Gestures, Speech and Force Control High-Level Programming for Industrial Robotics: using Gestures, Speech and Force Control Pedro Neto, J. Norberto Pires, Member, IEEE Abstract Today, most industrial robots are programmed using the typical

More information

ROBOTICS ENG YOUSEF A. SHATNAWI INTRODUCTION

ROBOTICS ENG YOUSEF A. SHATNAWI INTRODUCTION ROBOTICS INTRODUCTION THIS COURSE IS TWO PARTS Mobile Robotics. Locomotion (analogous to manipulation) (Legged and wheeled robots). Navigation and obstacle avoidance algorithms. Robot Vision Sensors and

More information

GPU Computing for Cognitive Robotics

GPU Computing for Cognitive Robotics GPU Computing for Cognitive Robotics Martin Peniak, Davide Marocco, Angelo Cangelosi GPU Technology Conference, San Jose, California, 25 March, 2014 Acknowledgements This study was financed by: EU Integrating

More information

System of Systems Software Assurance

System of Systems Software Assurance System of Systems Software Assurance Introduction Under DoD sponsorship, the Software Engineering Institute has initiated a research project on system of systems (SoS) software assurance. The project s

More information

AI MAGAZINE AMER ASSOC ARTIFICIAL INTELL UNITED STATES English ANNALS OF MATHEMATICS AND ARTIFICIAL

AI MAGAZINE AMER ASSOC ARTIFICIAL INTELL UNITED STATES English ANNALS OF MATHEMATICS AND ARTIFICIAL Title Publisher ISSN Country Language ACM Transactions on Autonomous and Adaptive Systems ASSOC COMPUTING MACHINERY 1556-4665 UNITED STATES English ACM Transactions on Intelligent Systems and Technology

More information

Performance evaluation and benchmarking in EU-funded activities. ICRA May 2011

Performance evaluation and benchmarking in EU-funded activities. ICRA May 2011 Performance evaluation and benchmarking in EU-funded activities ICRA 2011 13 May 2011 Libor Král, Head of Unit Unit E5 - Cognitive Systems, Interaction, Robotics DG Information Society and Media European

More information

Capturing and Adapting Traces for Character Control in Computer Role Playing Games

Capturing and Adapting Traces for Character Control in Computer Role Playing Games Capturing and Adapting Traces for Character Control in Computer Role Playing Games Jonathan Rubin and Ashwin Ram Palo Alto Research Center 3333 Coyote Hill Road, Palo Alto, CA 94304 USA Jonathan.Rubin@parc.com,

More information

Transactions on Information and Communications Technologies vol 6, 1994 WIT Press, ISSN

Transactions on Information and Communications Technologies vol 6, 1994 WIT Press,   ISSN Application of artificial neural networks to the robot path planning problem P. Martin & A.P. del Pobil Department of Computer Science, Jaume I University, Campus de Penyeta Roja, 207 Castellon, Spain

More information

Biomimetic Design of Actuators, Sensors and Robots

Biomimetic Design of Actuators, Sensors and Robots Biomimetic Design of Actuators, Sensors and Robots Takashi Maeno, COE Member of autonomous-cooperative robotics group Department of Mechanical Engineering Keio University Abstract Biological life has greatly

More information

Framework for Simulating the Human Behavior for Intelligent Virtual Agents. Part I: Framework Architecture

Framework for Simulating the Human Behavior for Intelligent Virtual Agents. Part I: Framework Architecture Framework for Simulating the Human Behavior for Intelligent Virtual Agents. Part I: Framework Architecture F. Luengo 1,2 and A. Iglesias 2 1 Department of Computer Science, University of Zulia, Post Office

More information

/08/$25.00 c 2008 IEEE

/08/$25.00 c 2008 IEEE Abstract Fall detection for elderly and patient has been an active research topic due to that the healthcare industry has a big demand for products and technology of fall detection. This paper gives a

More information

Research on the Capability Maturity Model of Digital Library Knowledge. Management

Research on the Capability Maturity Model of Digital Library Knowledge. Management 2nd Information Technology and Mechatronics Engineering Conference (ITOEC 2016) Research on the Capability Maturity Model of Digital Library Knowledge Management Zhiyin Yang1 2,a,Ruibin Zhu1,b,Lina Zhang1,c*

More information

CB 2 : A Child Robot with Biomimetic Body for Cognitive Developmental Robotics

CB 2 : A Child Robot with Biomimetic Body for Cognitive Developmental Robotics CB 2 : A Child Robot with Biomimetic Body for Cognitive Developmental Robotics Takashi Minato #1, Yuichiro Yoshikawa #2, Tomoyuki da 3, Shuhei Ikemoto 4, Hiroshi Ishiguro # 5, and Minoru Asada # 6 # Asada

More information

HUMAN-COMPUTER INTERACTION: OVERVIEW ON STATE OF THE ART TECHNOLOGY

HUMAN-COMPUTER INTERACTION: OVERVIEW ON STATE OF THE ART TECHNOLOGY HUMAN-COMPUTER INTERACTION: OVERVIEW ON STATE OF THE ART TECHNOLOGY *Ms. S. VAISHNAVI, Assistant Professor, Sri Krishna Arts And Science College, Coimbatore. TN INDIA **SWETHASRI. L., Final Year B.Com

More information

Physical and Affective Interaction between Human and Mental Commit Robot

Physical and Affective Interaction between Human and Mental Commit Robot Proceedings of the 21 IEEE International Conference on Robotics & Automation Seoul, Korea May 21-26, 21 Physical and Affective Interaction between Human and Mental Commit Robot Takanori Shibata Kazuo Tanie

More information

The User Activity Reasoning Model Based on Context-Awareness in a Virtual Living Space

The User Activity Reasoning Model Based on Context-Awareness in a Virtual Living Space , pp.62-67 http://dx.doi.org/10.14257/astl.2015.86.13 The User Activity Reasoning Model Based on Context-Awareness in a Virtual Living Space Bokyoung Park, HyeonGyu Min, Green Bang and Ilju Ko Department

More information

Development of a Simulator of Environment and Measurement for Autonomous Mobile Robots Considering Camera Characteristics

Development of a Simulator of Environment and Measurement for Autonomous Mobile Robots Considering Camera Characteristics Development of a Simulator of Environment and Measurement for Autonomous Mobile Robots Considering Camera Characteristics Kazunori Asanuma 1, Kazunori Umeda 1, Ryuichi Ueda 2, and Tamio Arai 2 1 Chuo University,

More information

RoboCup. Presented by Shane Murphy April 24, 2003

RoboCup. Presented by Shane Murphy April 24, 2003 RoboCup Presented by Shane Murphy April 24, 2003 RoboCup: : Today and Tomorrow What we have learned Authors Minoru Asada (Osaka University, Japan), Hiroaki Kitano (Sony CS Labs, Japan), Itsuki Noda (Electrotechnical(

More information

INTELLIGENT CONTROL OF AUTONOMOUS SIX-LEGGED ROBOTS BY NEURAL NETWORKS

INTELLIGENT CONTROL OF AUTONOMOUS SIX-LEGGED ROBOTS BY NEURAL NETWORKS INTELLIGENT CONTROL OF AUTONOMOUS SIX-LEGGED ROBOTS BY NEURAL NETWORKS Prof. Dr. W. Lechner 1 Dipl.-Ing. Frank Müller 2 Fachhochschule Hannover University of Applied Sciences and Arts Computer Science

More information

Chapter 31. Intelligent System Architectures

Chapter 31. Intelligent System Architectures Chapter 31. Intelligent System Architectures The Quest for Artificial Intelligence, Nilsson, N. J., 2009. Lecture Notes on Artificial Intelligence, Spring 2012 Summarized by Jang, Ha-Young and Lee, Chung-Yeon

More information

2280. Optimization of the control scheme for human extremity exoskeleton

2280. Optimization of the control scheme for human extremity exoskeleton 2280. Optimization of the control scheme for human extremity exoskeleton Yang Li 1, Cheng Xu 2, Xiaorong Guan 3, Zhong Li 4 School of Mechanical Engineering 105, Nanjing University of Science and Technology,

More information

Android (Child android)

Android (Child android) Social and ethical issue Why have I developed the android? Hiroshi ISHIGURO Department of Adaptive Machine Systems, Osaka University ATR Intelligent Robotics and Communications Laboratories JST ERATO Asada

More information

Co-evolution of agent-oriented conceptual models and CASO agent programs

Co-evolution of agent-oriented conceptual models and CASO agent programs University of Wollongong Research Online Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences 2006 Co-evolution of agent-oriented conceptual models and CASO agent programs

More information

Robot Personality from Perceptual Behavior Engine : An Experimental Study

Robot Personality from Perceptual Behavior Engine : An Experimental Study Robot Personality from Perceptual Behavior Engine : An Experimental Study Dongwook Shin, Jangwon Lee, Hun-Sue Lee and Sukhan Lee School of Information and Communication Engineering Sungkyunkwan University

More information

Changjiang Yang. Computer Vision, Pattern Recognition, Machine Learning, Robotics, and Scientific Computing.

Changjiang Yang. Computer Vision, Pattern Recognition, Machine Learning, Robotics, and Scientific Computing. Changjiang Yang Mailing Address: Department of Computer Science University of Maryland College Park, MD 20742 Lab Phone: (301)405-8366 Cell Phone: (410)299-9081 Fax: (301)314-9658 Email: yangcj@cs.umd.edu

More information

Keywords: Multi-robot adversarial environments, real-time autonomous robots

Keywords: Multi-robot adversarial environments, real-time autonomous robots ROBOT SOCCER: A MULTI-ROBOT CHALLENGE EXTENDED ABSTRACT Manuela M. Veloso School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213, USA veloso@cs.cmu.edu Abstract Robot soccer opened

More information

Essential Understandings with Guiding Questions Robotics Engineering

Essential Understandings with Guiding Questions Robotics Engineering Essential Understandings with Guiding Questions Robotics Engineering 1 st Quarter Theme: Orientation to a Successful Laboratory Experience Student Expectations Safety Emergency MSDS Organizational Systems

More information

Analog Circuit for Motion Detection Applied to Target Tracking System

Analog Circuit for Motion Detection Applied to Target Tracking System 14 Analog Circuit for Motion Detection Applied to Target Tracking System Kimihiro Nishio Tsuyama National College of Technology Japan 1. Introduction It is necessary for the system such as the robotics

More information

Cognition & Robotics. EUCog - European Network for the Advancement of Artificial Cognitive Systems, Interaction and Robotics

Cognition & Robotics. EUCog - European Network for the Advancement of Artificial Cognitive Systems, Interaction and Robotics Cognition & Robotics Recent debates in Cognitive Robotics bring about ways to seek a definitional connection between cognition and robotics, ponder upon the questions: EUCog - European Network for the

More information

Humanoid Robots: A New Kind of Tool

Humanoid Robots: A New Kind of Tool Humanoid Robots: A New Kind of Tool Bryan Adams, Cynthia Breazeal, Rodney Brooks, Brian Scassellati MIT Artificial Intelligence Laboratory 545 Technology Square Cambridge, MA 02139 USA {bpadams, cynthia,

More information

Multi-Agent Planning

Multi-Agent Planning 25 PRICAI 2000 Workshop on Teams with Adjustable Autonomy PRICAI 2000 Workshop on Teams with Adjustable Autonomy Position Paper Designing an architecture for adjustably autonomous robot teams David Kortenkamp

More information

MINE 432 Industrial Automation and Robotics

MINE 432 Industrial Automation and Robotics MINE 432 Industrial Automation and Robotics Part 3, Lecture 5 Overview of Artificial Neural Networks A. Farzanegan (Visiting Associate Professor) Fall 2014 Norman B. Keevil Institute of Mining Engineering

More information