Team-NUST. Team Description for RoboCup-SPL 2014 in João Pessoa, Brazil

Size: px
Start display at page:

Download "Team-NUST. Team Description for RoboCup-SPL 2014 in João Pessoa, Brazil"

Transcription

1 Team-NUST Team Description for RoboCup-SPL 2014 in João Pessoa, Brazil Dr. Yasar Ayaz 1, Sajid Gul Khawaja 2, 1 RISE Research Center Department of Robotics and AI School of Mechanical and Manufacturing Engineering 2 Department of Computer Engineering, College of Electrical and Mechanical Engineering National University of Sciences and Technology, Islamabad, Pakistan yasar@smme.nust.edu.pk { sajid.gul.2009, teamnust}@gmail.com Abstract. The paper discusses the current status of the team, progress of the software development and the future work of Team-NUST. We will give a brief overview of Software architecture and its modules like vision, motion, behavior, kick, prediction and communication. Team-NUST is representing National University of Sciences and Technology (NUST) from Pakistan.

2 1. INTRODUCTION Team-NUST is an interdisciplinary team in its inception phase, consisting of student and researchers of National University of Sciences and Technology, Pakistan. The team was assembled in early 2013 with the aim of carrying out research in the exciting and rapidly progressing field of humanoid robots, artificial intelligence, machine vision, motion planning, and navigation in partially observable stochastic environments; and with the motivation to participate in the international event of RoboCup Standard Platforms League. The team s supervisor: Dr. Yasar Ayaz (PhD Tohoku University, Japan), is a well known name in the field of humanoid robotics. His papers on Humanoid Robot Footstep Planning, Navigation and Control have been cited by leading universities in more than 12 countries including USA, Japan, France, Germany, Hungary, South Korea, China, Canada, Iran, Croatia, Singapore, Pakistan etc. He has also been included in Top 100 Educators of the World 2013 by IBC of Cambridge and has featured in Marquis Who s Who in the World 2013 as a notable academician and researcher in the field of robotics. A list of selected relevant publications of Dr. Yasar Ayaz can be seen at Appendix A. The focus of this project is to teach NAOs how to act as a team in multi-agent cooperative environment. RoboCup-SPL provides the best opportunity to further our research. 2. TEAM MEMBERS Active members of Team-NUST include students from Department of Computer Engineering and Department of Mechanical Engineering. They are as following Khawaja Waleed Iqbal, (Team Leader) Student of B.E. Computer Engineering Alamgir Nasir, Student of B.E. Computer Engineering Dania Murad, Student of B.E. Computer Engineering Amal Rauf, Student of B.E. Computer Engineering Osama Aftab, Student of B.E. Computer Engineering Umair Hassan, Student of B.E. Mechanical Engineering Syed Hammad Ullah AlQadry, Student of B.E. Mechanical Engineering Team-NUST is currently working in RISE-LAB 1 under the supervision of Dr. Yasar Ayaz and Sajid Gul Khawaja acting as co-supervisor. RISE-LAB is a celebrated part of SMME-NUST with several publications in the field of cognitive robotics and machine intelligence with a special focus on design, control and motion planning for robotic systems including mobile robots, humanoid robots, multi-legged robots, intelligent bionics and robotic manipulators etc. 1

3 Team-NUST currently has two V4(H25) and one V2(H21) Aldebaran s NAOs and intends to buy 3 more. Webots is being used as simulator. We are looking forward to participate in team competition (Soccer), technical and drop-in player challenge. 3. SOFTWARE ARCHITECTURE The Software architecture of our system follows a modular approach where different modules work collaboratively to actuate the agents (NAOs). In our architecture, vision acts our main module and its outputs provide input to several other modules. Other modules include motion, kick, prediction, obstacle avoidance, path planning, behavior, communication. Vision has specially designed outputs; so that other modules get the required input hence they don t require pre-processing the data. We will be incorporating multi-threaded processing to make our software design more efficient and will prioritize the process based on the given state and positions of the agents. We are utilizing Aldebaran s NAOqi architecture as the basis. We are using C++ to code our modules. 4. RESEARCH Team-NUST main area of research is Artificial Intelligence and mobile robots with focus on humanoid robots and navigation. 4.1 Prediction Purpose of this module is to predict the future location of the ball and positions of other NAOs, to calculate their velocities and further use this information in decision making. Hence making it a high priority and time critical task. Currently Kalman Filter is being used for this purpose with the aim to get the precise location of the ball and robots to predict their next possible position. 4.2 Strategy Team-NUST is focusing on artificial potential field based localization strategy development. The concept is to assign potential to the object (positive and negative) to the team members and opponents. Ball has a separate potential and goal keeper has the strongest field. The strength of the potentials depends on the distance between robots (between team members of same and opposite team) and current position on the field (towards opponents goal or away from it) by minimizing noise from values of their location via Kalman Filter.

4 4.3 Communication In some cases vision is not enough to know the location of the team members, especially when they are behind a robot, hence while passing ball (especially backpass) can only be done by using communication modules by transmitting data packets having ID and name of the robot along with the current location of the robot. A proposed solution to the know the difference in the goal posts is by determining by the respective color of jersey worn by the goal keeper standing in front of the goal or by listening to the packets sent by the goal keeper of the team and determining the distance between sender and listeners Similar techniques are being constructed for the cooperation between team members to develop the winning strategies. 4.4 Vision Our primary focus is to make NAO understand its surroundings. To recognize ball, goal post, field lines and specially to differentiate among team members and opponents. We are using OpenCV [1] for segmentation and shape based object recognition. We will use dynamic probabilistic model to detect different objects. Purely color based analysis is not feasible due to difference of lighting condition and carpet in different location. Hence it will be very hard to classify object solely based on colors, so we will use a combined probabilistic model of color and shape based recognition and Neural networks for machine learning and pattern recognition. OpenCV has a large number of built in libraries and NAO can be made to learn the objects on the field using these libraries. In the following figures; we have shown the recognition of goal posts and the ball in the environment based on our vision techniques. Goal Post Detection Orange Ball Detection

5 This approach will not require any calibration for a new environment, but will automatically configure its parameters based on the new environment. Our work in the vision module will also provide help in navigation, prediction, walk and kick modules as well. By following our algorithm, NAO is able to detect blue and pink color, the color of jerseys worn during the match. Using this, NAO is capable of distinguishing between its own team mates and the opposing team members. Live video is obtained by taking frames after specific intervals (not all frames). For the consecutive frames, loops are traversed to identify the aforementioned colors. After detection of colors, Scale Invariant Feature Transform [2] will be applied to detect only the blue/pink color worn by the robots and occurrence of these colors in the rest of the world will be ignored. Similar pattern will be used for the detection of goal posts. 4.5 Kick Kick is a combination of dynamics, kinematics, joint movements and stability. Stability of the robot during kick plays a major role. For static kick, there is no feedback from the camera. Once ball is perceived and the robot is positioned accordingly relative to the ball, the kick motion starts. Keyframe based approach is used. For dynamic kick [3], NAO uses gyroscope feedback and decides for itself the next movement based on the stability of the next keyframe arrival. The working of kick module is divided in small phases. 1) Detection of goal. The image from the NAO s camera is converted to HSV space after which, a color detection algorithm is used and goal is detected. NAO then changes its position accordingly towards the goal. This phase is in process.

6 2) Detection of ball. NAO's head-pitch angle is changed so that it could look down to get the accurate position of the ball using the bottom camera. The ball is detected using color and shape detection algorithms. NAO then move left, right or back accordingly to adjust itself in front of the ball. 3) Kick: We have implemented different types of kicks using the keyframes strategy. There are four phases of kick as shown in the pictures. Back Kick Front Kick 4) Lean Phase: Using the current values of the angle joints, ZMP (Zero Moment Point) is calculated initially. The ZMP needs to be shifted to the center of the support polygon for the kick. So using inverse kinematics theories, new ZMP is calculated and after finding the right joint angles, the angles of knee pitch, hip pitch and ankle pitch of the robot are changed accordingly. We have made the left leg as the stable leg. The ZMP is shifted toward the center of the support polygon. 2) Raise phase: The kick foot of the robot is raised. 3) Execution phase: The robot performs the desired kick using keyframe motions. It is the main phase. 4) Return back phase: The kick foot comes back to its initial state after performing the kick. The ZMP is shifted between the two legs of the robot. The stability and the Inverse kinematics modules have been implemented. The path planning module [4] is still in process and we will be working on it to make the kicks more accurate. We will also be working more on the dynamic kick as well. 4.6 Behavior This module is mainly based on the guide lines provided by Intelligent Autonomous Robotics: A Robot Soccer Case Study [5]. Although it is not the latest study, but it provides basic techniques for A.I. development of strategy for beginners. Using bottom up approach the basic thing is an action or skill i.e. action that can be performed by an agent (robot). Skill set contains a number of skills. For mutual behavior skills of individual robots are used to form a play. For state of the game,

7 there is a combination of skills for multiple robots to behave cooperatively. Robots execute these maneuvers based on the conditions on the field. 5. CONCLUSION Team-NUST is a new team in RoboCup-SPL, and the only SPL-team from Pakistan. Team-NUST is very enthusiastic and fully committed to participate in RoboCup We are hoping to learn a lot from this experience which will serve as a very strong foundation for our future research work. The aim is to make advancements in A.I. for adversarial environment for mobile robots. Team-NUST is eagerly looking forward to performing well in RoboCup ACKNOWLEDGEMENTS We would like to thank National University of Sciences and Technology (NUST), Pakistan for sponsoring our RoboCup SPL research. Our inspiration comes from teams like B-Human from Bremen University, UT Austin Villa from University of Texas at Austin, NAO-Devils and several other teams who are excelling in this field and whose work we have frequently been reading. The BHuman research paper [6] is being used as basis for our kick module. We would like to thank all of them. 7. REFERENCES [1] OpenCV version [2] David G. Lowe (2004) Distinctive Image Features from Scale Invariant Key Points [3] Lovish, Rahul (2013) Penalty Shootouts by Aldebaran Nao [4] Rui Ferreira, Luis Paulo Reis, Antonio Paulo Moreira, Nuno Lau (2012) Development of an Omnidirectional Kick for a NAO Humanoid Robot [5] Peter Stone (2007) Intelligent Autonomous Robotics: A Robot Soccer Case Study ISBN: , (ebook) [6] F. Wenk, T.Röfer (2013). Online Generated Kick Motions for the NAO Balanced Using Inverse Dynamics.

8 Appendix A List of Selected Relevant Publications of Dr. Yasar Ayaz 1. Teppei Tsujita, Atsushi Konno, Shunsuke Komuzunai, Yuki Nomura, Tomoya Myojin, Yasar Ayaz and Masaru Uchiyama, Humanoid Robot Motion Generation Scheme for Tasks Utilizing Impulsive Force, International Journal of Humanoid Robotics (IJHR), World Scientific Publishing Company, Vol. 9, No. 2, pp to , Yasar Ayaz, Atsushi Konno, Khalid Munawar, Teppei Tsujita, Shunsuke Komizunai and Masaru Uchiyama, "A Human-Like Approach Towards Humanoid Robot Footstep Planning", International Journal of Advanced Robotic Systems (IJARS), Vol. 8, No. 4, pp , Teppei Tsujita, Atsushi Konno, Yuki Nomura, Shunsuke Komizunai, Yasar Ayaz and Masaru Uchiyama, "An Impact Motion Generation Support Software", Chapter 11, Cutting Edge Robotics 2010, Advanced Robotic Systems Journal and In-Tech Publishing Company, pp , Yasar Ayaz, Atsushi Konno, Khalid Munawar, Teppei Tsujita and Masaru Uchiyama, "Navigation Planning with a Human-like Approach", Chapter 11, Mobile Robots Navigation, Advanced Robotic Systems Journal and In-Tech Publishing Company, pp , Yasar Ayaz, Takuya Owa, Teppei Tsujita, Atsushi Konno, Khalid Munawar and Masaru Uchiyama, "Footstep Planning for Humanoid Robots Among Obstacles of Various Types,", Proceedings of IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp , Paris, December Yasar Ayaz, Atsushi Konno, Khalid Munawar, Teppei Tsujita and Masaru Uchiyama, "Planning Footsteps in Obstacle Cluttered Environments," Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp , Singapore, July Yasar Ayaz, Footstep Planning Among Obstacles for Humanoid Robots, Doctoral Thesis (Robotics and Machine Intelligence), Graduate School of Engineering, Tohoku University, Japan. 8. Teppei Tsujita, Atsushi Konno, Shunsuke Komizunai, Yuki Nomura, Takuya Owa, Tomoya Myojin, Yasar Ayaz and Masaru Uchiyama, "Analysis of Nailing Task Motion for a Humanoid Robot," Proceedings of IEEE/RSJ

9 International Conference on Intelligent Robots and Systems (IROS), pp , France, September Teppei Tsujita, Atsushi Konno, Shunsuke Komizunai, Yuki Nomura, Takuya Owa, Tomoya Myojin, Yasar Ayaz and Masaru Uchiyama, "Humanoid Robot Motion Generation for Nailing Task," Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp , China, July Yasar Ayaz, Atsushi Konno, Teppei Tsujita, Masaru Uchiyama and Khalid Munawar, "Obstacle Stepping Over Strategy for Humanoid Robots," Proceedings of SICE System Integration Division Annual International Conference (SI), pp , Hiroshima, December Yasar Ayaz, Khalid Munawar, Muhammad Bilal Malik, Atsushi Konno and Masaru Uchiyama, "A Human-like Approach towards Humanoid Robot Footstep Planning," Proceedings of JSME International Conference on Robotics and Mechatronics (RoboMec), 1A1-B02, Akita, May Yasar Ayaz, Khalid Munawar, Muhammad Bilal Malik, Atsushi Konno and Masaru Uchiyama, "Human-like Approach Towards Footstep Planning," Chapter 15, Humanoid Robots: Human-like Machines, Advanced Robotics Systems Journal and I-Tech Education and Publishing, Yasar Ayaz, Khalid Munawar, Muhammad Bilal Malik, Atsushi Konno and Masaru Uchiyama, "Human-like Approach to Footstep Planning Among Obstacles for Humanoid Robots," International Journal of Humanoid Robotics(IJHR), vol. 4, no. 1, pp , Yasar Ayaz, Khalid Munawar, Muhammad Bilal Malik, Atsushi Konno and Masaru Uchiyama, "Human-like Approach to Footstep Planning Among Obstacles for Humanoid Robots," Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp , Beijing, China, October Yasar Ayaz, Autonomous footstep planning for humanoid robots, Master s Thesis (Electrical Engineering: Controls and Signal Processing), College of Electrical and Mechanical Engineering, National University of Sciences and Technology (NUST), Pakistan, Yasar Ayaz, Bilal Afzal, Mannan Saeed and Saeed-ur-Rehman, "Design, Fabrication and Control of a Two-Legged Walking Robot", Proceedings Of IEEE International Workshop on Robot Motion & Control (RoMoCo), pp 73-78, Poland, June, 2004.

Humanoid Robot NAO: Developing Behaviors for Football Humanoid Robots

Humanoid Robot NAO: Developing Behaviors for Football Humanoid Robots Humanoid Robot NAO: Developing Behaviors for Football Humanoid Robots State of the Art Presentation Luís Miranda Cruz Supervisors: Prof. Luis Paulo Reis Prof. Armando Sousa Outline 1. Context 1.1. Robocup

More information

Keywords: Multi-robot adversarial environments, real-time autonomous robots

Keywords: Multi-robot adversarial environments, real-time autonomous robots ROBOT SOCCER: A MULTI-ROBOT CHALLENGE EXTENDED ABSTRACT Manuela M. Veloso School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213, USA veloso@cs.cmu.edu Abstract Robot soccer opened

More information

Optic Flow Based Skill Learning for A Humanoid to Trap, Approach to, and Pass a Ball

Optic Flow Based Skill Learning for A Humanoid to Trap, Approach to, and Pass a Ball Optic Flow Based Skill Learning for A Humanoid to Trap, Approach to, and Pass a Ball Masaki Ogino 1, Masaaki Kikuchi 1, Jun ichiro Ooga 1, Masahiro Aono 1 and Minoru Asada 1,2 1 Dept. of Adaptive Machine

More information

Baset Adult-Size 2016 Team Description Paper

Baset Adult-Size 2016 Team Description Paper Baset Adult-Size 2016 Team Description Paper Mojtaba Hosseini, Vahid Mohammadi, Farhad Jafari 2, Dr. Esfandiar Bamdad 1 1 Humanoid Robotic Laboratory, Robotic Center, Baset Pazhuh Tehran company. No383,

More information

Nao Devils Dortmund. Team Description for RoboCup Matthias Hofmann, Ingmar Schwarz, and Oliver Urbann

Nao Devils Dortmund. Team Description for RoboCup Matthias Hofmann, Ingmar Schwarz, and Oliver Urbann Nao Devils Dortmund Team Description for RoboCup 2014 Matthias Hofmann, Ingmar Schwarz, and Oliver Urbann Robotics Research Institute Section Information Technology TU Dortmund University 44221 Dortmund,

More information

UChile Team Research Report 2009

UChile Team Research Report 2009 UChile Team Research Report 2009 Javier Ruiz-del-Solar, Rodrigo Palma-Amestoy, Pablo Guerrero, Román Marchant, Luis Alberto Herrera, David Monasterio Department of Electrical Engineering, Universidad de

More information

Hierarchical Controller for Robotic Soccer

Hierarchical Controller for Robotic Soccer Hierarchical Controller for Robotic Soccer Byron Knoll Cognitive Systems 402 April 13, 2008 ABSTRACT RoboCup is an initiative aimed at advancing Artificial Intelligence (AI) and robotics research. This

More information

Robo-Erectus Jr-2013 KidSize Team Description Paper.

Robo-Erectus Jr-2013 KidSize Team Description Paper. Robo-Erectus Jr-2013 KidSize Team Description Paper. Buck Sin Ng, Carlos A. Acosta Calderon and Changjiu Zhou. Advanced Robotics and Intelligent Control Centre, Singapore Polytechnic, 500 Dover Road, 139651,

More information

NUST FALCONS. Team Description for RoboCup Small Size League, 2011

NUST FALCONS. Team Description for RoboCup Small Size League, 2011 1. Introduction: NUST FALCONS Team Description for RoboCup Small Size League, 2011 Arsalan Akhter, Muhammad Jibran Mehfooz Awan, Ali Imran, Salman Shafqat, M. Aneeq-uz-Zaman, Imtiaz Noor, Kanwar Faraz,

More information

The UT Austin Villa 3D Simulation Soccer Team 2008

The UT Austin Villa 3D Simulation Soccer Team 2008 UT Austin Computer Sciences Technical Report AI09-01, February 2009. The UT Austin Villa 3D Simulation Soccer Team 2008 Shivaram Kalyanakrishnan, Yinon Bentor and Peter Stone Department of Computer Sciences

More information

NTU Robot PAL 2009 Team Report

NTU Robot PAL 2009 Team Report NTU Robot PAL 2009 Team Report Chieh-Chih Wang, Shao-Chen Wang, Hsiao-Chieh Yen, and Chun-Hua Chang The Robot Perception and Learning Laboratory Department of Computer Science and Information Engineering

More information

FalconBots RoboCup Humanoid Kid -Size 2014 Team Description Paper. Minero, V., Juárez, J.C., Arenas, D. U., Quiroz, J., Flores, J.A.

FalconBots RoboCup Humanoid Kid -Size 2014 Team Description Paper. Minero, V., Juárez, J.C., Arenas, D. U., Quiroz, J., Flores, J.A. FalconBots RoboCup Humanoid Kid -Size 2014 Team Description Paper Minero, V., Juárez, J.C., Arenas, D. U., Quiroz, J., Flores, J.A. Robotics Application Workshop, Instituto Tecnológico Superior de San

More information

Team Description for Humanoid KidSize League of RoboCup Stephen McGill, Seung Joon Yi, Yida Zhang, Aditya Sreekumar, and Professor Dan Lee

Team Description for Humanoid KidSize League of RoboCup Stephen McGill, Seung Joon Yi, Yida Zhang, Aditya Sreekumar, and Professor Dan Lee Team DARwIn Team Description for Humanoid KidSize League of RoboCup 2013 Stephen McGill, Seung Joon Yi, Yida Zhang, Aditya Sreekumar, and Professor Dan Lee GRASP Lab School of Engineering and Applied Science,

More information

Robotic Systems ECE 401RB Fall 2007

Robotic Systems ECE 401RB Fall 2007 The following notes are from: Robotic Systems ECE 401RB Fall 2007 Lecture 14: Cooperation among Multiple Robots Part 2 Chapter 12, George A. Bekey, Autonomous Robots: From Biological Inspiration to Implementation

More information

Courses on Robotics by Guest Lecturing at Balkan Countries

Courses on Robotics by Guest Lecturing at Balkan Countries Courses on Robotics by Guest Lecturing at Balkan Countries Hans-Dieter Burkhard Humboldt University Berlin With Great Thanks to all participating student teams and their institutes! 1 Courses on Balkan

More information

BehRobot Humanoid Adult Size Team

BehRobot Humanoid Adult Size Team BehRobot Humanoid Adult Size Team Team Description Paper 2014 Mohammadreza Mohades Kasaei, Mohsen Taheri, Mohammad Rahimi, Ali Ahmadi, Ehsan Shahri, Saman Saraf, Yousof Geramiannejad, Majid Delshad, Farsad

More information

The UPennalizers RoboCup Standard Platform League Team Description Paper 2017

The UPennalizers RoboCup Standard Platform League Team Description Paper 2017 The UPennalizers RoboCup Standard Platform League Team Description Paper 2017 Yongbo Qian, Xiang Deng, Alex Baucom and Daniel D. Lee GRASP Lab, University of Pennsylvania, Philadelphia PA 19104, USA, https://www.grasp.upenn.edu/

More information

Task Allocation: Role Assignment. Dr. Daisy Tang

Task Allocation: Role Assignment. Dr. Daisy Tang Task Allocation: Role Assignment Dr. Daisy Tang Outline Multi-robot dynamic role assignment Task Allocation Based On Roles Usually, a task is decomposed into roleseither by a general autonomous planner,

More information

ZJUDancer Team Description Paper

ZJUDancer Team Description Paper ZJUDancer Team Description Paper Tang Qing, Xiong Rong, Li Shen, Zhan Jianbo, and Feng Hao State Key Lab. of Industrial Technology, Zhejiang University, Hangzhou, China Abstract. This document describes

More information

Team TH-MOS. Liu Xingjie, Wang Qian, Qian Peng, Shi Xunlei, Cheng Jiakai Department of Engineering physics, Tsinghua University, Beijing, China

Team TH-MOS. Liu Xingjie, Wang Qian, Qian Peng, Shi Xunlei, Cheng Jiakai Department of Engineering physics, Tsinghua University, Beijing, China Team TH-MOS Liu Xingjie, Wang Qian, Qian Peng, Shi Xunlei, Cheng Jiakai Department of Engineering physics, Tsinghua University, Beijing, China Abstract. This paper describes the design of the robot MOS

More information

Multi-Humanoid World Modeling in Standard Platform Robot Soccer

Multi-Humanoid World Modeling in Standard Platform Robot Soccer Multi-Humanoid World Modeling in Standard Platform Robot Soccer Brian Coltin, Somchaya Liemhetcharat, Çetin Meriçli, Junyun Tay, and Manuela Veloso Abstract In the RoboCup Standard Platform League (SPL),

More information

SPQR RoboCup 2016 Standard Platform League Qualification Report

SPQR RoboCup 2016 Standard Platform League Qualification Report SPQR RoboCup 2016 Standard Platform League Qualification Report V. Suriani, F. Riccio, L. Iocchi, D. Nardi Dipartimento di Ingegneria Informatica, Automatica e Gestionale Antonio Ruberti Sapienza Università

More information

Multi-Platform Soccer Robot Development System

Multi-Platform Soccer Robot Development System Multi-Platform Soccer Robot Development System Hui Wang, Han Wang, Chunmiao Wang, William Y. C. Soh Division of Control & Instrumentation, School of EEE Nanyang Technological University Nanyang Avenue,

More information

Dutch Nao Team. Team Description for Robocup Eindhoven, The Netherlands November 8, 2012

Dutch Nao Team. Team Description for Robocup Eindhoven, The Netherlands  November 8, 2012 Dutch Nao Team Team Description for Robocup 2013 - Eindhoven, The Netherlands http://www.dutchnaoteam.nl November 8, 2012 Duncan ten Velthuis, Camiel Verschoor, Auke Wiggers, Hessel van der Molen, Tijmen

More information

Kid-Size Humanoid Soccer Robot Design by TKU Team

Kid-Size Humanoid Soccer Robot Design by TKU Team Kid-Size Humanoid Soccer Robot Design by TKU Team Ching-Chang Wong, Kai-Hsiang Huang, Yueh-Yang Hu, and Hsiang-Min Chan Department of Electrical Engineering, Tamkang University Tamsui, Taipei, Taiwan E-mail:

More information

Team KMUTT: Team Description Paper

Team KMUTT: Team Description Paper Team KMUTT: Team Description Paper Thavida Maneewarn, Xye, Pasan Kulvanit, Sathit Wanitchaikit, Panuvat Sinsaranon, Kawroong Saktaweekulkit, Nattapong Kaewlek Djitt Laowattana King Mongkut s University

More information

Active Stabilization of a Humanoid Robot for Impact Motions with Unknown Reaction Forces

Active Stabilization of a Humanoid Robot for Impact Motions with Unknown Reaction Forces 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems October 7-12, 2012. Vilamoura, Algarve, Portugal Active Stabilization of a Humanoid Robot for Impact Motions with Unknown Reaction

More information

RoboCup TDP Team ZSTT

RoboCup TDP Team ZSTT RoboCup 2018 - TDP Team ZSTT Jaesik Jeong 1, Jeehyun Yang 1, Yougsup Oh 2, Hyunah Kim 2, Amirali Setaieshi 3, Sourosh Sedeghnejad 3, and Jacky Baltes 1 1 Educational Robotics Centre, National Taiwan Noremal

More information

CORC 3303 Exploring Robotics. Why Teams?

CORC 3303 Exploring Robotics. Why Teams? Exploring Robotics Lecture F Robot Teams Topics: 1) Teamwork and Its Challenges 2) Coordination, Communication and Control 3) RoboCup Why Teams? It takes two (or more) Such as cooperative transportation:

More information

ROBOTICS ENG YOUSEF A. SHATNAWI INTRODUCTION

ROBOTICS ENG YOUSEF A. SHATNAWI INTRODUCTION ROBOTICS INTRODUCTION THIS COURSE IS TWO PARTS Mobile Robotics. Locomotion (analogous to manipulation) (Legged and wheeled robots). Navigation and obstacle avoidance algorithms. Robot Vision Sensors and

More information

CS295-1 Final Project : AIBO

CS295-1 Final Project : AIBO CS295-1 Final Project : AIBO Mert Akdere, Ethan F. Leland December 20, 2005 Abstract This document is the final report for our CS295-1 Sensor Data Management Course Final Project: Project AIBO. The main

More information

Nao Devils Dortmund. Team Description for RoboCup Stefan Czarnetzki, Gregor Jochmann, and Sören Kerner

Nao Devils Dortmund. Team Description for RoboCup Stefan Czarnetzki, Gregor Jochmann, and Sören Kerner Nao Devils Dortmund Team Description for RoboCup 21 Stefan Czarnetzki, Gregor Jochmann, and Sören Kerner Robotics Research Institute Section Information Technology TU Dortmund University 44221 Dortmund,

More information

RoboCup 2012 Best Humanoid Award Winner NimbRo TeenSize

RoboCup 2012 Best Humanoid Award Winner NimbRo TeenSize RoboCup 2012, Robot Soccer World Cup XVI, Springer, LNCS. RoboCup 2012 Best Humanoid Award Winner NimbRo TeenSize Marcell Missura, Cedrick Mu nstermann, Malte Mauelshagen, Michael Schreiber and Sven Behnke

More information

CAMBADA 2015: Team Description Paper

CAMBADA 2015: Team Description Paper CAMBADA 2015: Team Description Paper B. Cunha, A. J. R. Neves, P. Dias, J. L. Azevedo, N. Lau, R. Dias, F. Amaral, E. Pedrosa, A. Pereira, J. Silva, J. Cunha and A. Trifan Intelligent Robotics and Intelligent

More information

Eagle Knights 2009: Standard Platform League

Eagle Knights 2009: Standard Platform League Eagle Knights 2009: Standard Platform League Robotics Laboratory Computer Engineering Department Instituto Tecnologico Autonomo de Mexico - ITAM Rio Hondo 1, CP 01000 Mexico City, DF, Mexico 1 Team The

More information

Team Description Paper

Team Description Paper Team Description Paper Rico Tilgner Thomas Reinhardt Daniel Borkmann Stefan Seering Tobias Kalbitz Robert Fritzsche Katja Zeißler Christoph Vitz Sandra Unger Manuel Bellersen Hannah Müller Samuel Eckermann

More information

ROMEO Humanoid for Action and Communication. Rodolphe GELIN Aldebaran Robotics

ROMEO Humanoid for Action and Communication. Rodolphe GELIN Aldebaran Robotics ROMEO Humanoid for Action and Communication Rodolphe GELIN Aldebaran Robotics 7 th workshop on Humanoid November Soccer 2012 Robots Osaka, November 2012 Overview French National Project labeled by Cluster

More information

ZJUDancer Team Description Paper Humanoid Kid-Size League of Robocup 2014

ZJUDancer Team Description Paper Humanoid Kid-Size League of Robocup 2014 ZJUDancer Team Description Paper Humanoid Kid-Size League of Robocup 2014 Yu DongDong, Xiang Chuan, Zhou Chunlin, and Xiong Rong State Key Lab. of Industrial Control Technology, Zhejiang University, Hangzhou,

More information

Overview Agents, environments, typical components

Overview Agents, environments, typical components Overview Agents, environments, typical components CSC752 Autonomous Robotic Systems Ubbo Visser Department of Computer Science University of Miami January 23, 2017 Outline 1 Autonomous robots 2 Agents

More information

Nao Devils Dortmund. Team Description for RoboCup 2013

Nao Devils Dortmund. Team Description for RoboCup 2013 Nao Devils Dortmund Team Description for RoboCup 2013 Matthias Hofmann, Ingmar Schwarz, Oliver Urbann, Elena Erdmann, Bastian Böhm, and Yuri Struszczynski Robotics Research Institute Section Information

More information

S.P.Q.R. Legged Team Report from RoboCup 2003

S.P.Q.R. Legged Team Report from RoboCup 2003 S.P.Q.R. Legged Team Report from RoboCup 2003 L. Iocchi and D. Nardi Dipartimento di Informatica e Sistemistica Universitá di Roma La Sapienza Via Salaria 113-00198 Roma, Italy {iocchi,nardi}@dis.uniroma1.it,

More information

Hierarchical Case-Based Reasoning Behavior Control for Humanoid Robot

Hierarchical Case-Based Reasoning Behavior Control for Humanoid Robot Annals of University of Craiova, Math. Comp. Sci. Ser. Volume 36(2), 2009, Pages 131 140 ISSN: 1223-6934 Hierarchical Case-Based Reasoning Behavior Control for Humanoid Robot Bassant Mohamed El-Bagoury,

More information

Robo-Erectus Tr-2010 TeenSize Team Description Paper.

Robo-Erectus Tr-2010 TeenSize Team Description Paper. Robo-Erectus Tr-2010 TeenSize Team Description Paper. Buck Sin Ng, Carlos A. Acosta Calderon, Nguyen The Loan, Guohua Yu, Chin Hock Tey, Pik Kong Yue and Changjiu Zhou. Advanced Robotics and Intelligent

More information

Team Description 2006 for Team RO-PE A

Team Description 2006 for Team RO-PE A Team Description 2006 for Team RO-PE A Chew Chee-Meng, Samuel Mui, Lim Tongli, Ma Chongyou, and Estella Ngan National University of Singapore, 119260 Singapore {mpeccm, g0500307, u0204894, u0406389, u0406316}@nus.edu.sg

More information

Perception. Read: AIMA Chapter 24 & Chapter HW#8 due today. Vision

Perception. Read: AIMA Chapter 24 & Chapter HW#8 due today. Vision 11-25-2013 Perception Vision Read: AIMA Chapter 24 & Chapter 25.3 HW#8 due today visual aural haptic & tactile vestibular (balance: equilibrium, acceleration, and orientation wrt gravity) olfactory taste

More information

Team Description Paper & Research Report 2016

Team Description Paper & Research Report 2016 Team Description Paper & Research Report 2016 Shu Li, Zhiying Zeng, Ruiming Zhang, Zhongde Chen, and Dairong Li Robotics and Artificial Intelligence Lab, Tongji University, Cao an Rd. 4800,201804 Shanghai,

More information

Motion Control of a Three Active Wheeled Mobile Robot and Collision-Free Human Following Navigation in Outdoor Environment

Motion Control of a Three Active Wheeled Mobile Robot and Collision-Free Human Following Navigation in Outdoor Environment Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,, March 16-18, 2016, Hong Kong Motion Control of a Three Active Wheeled Mobile Robot and Collision-Free

More information

NaOISIS : A 3-D Behavioural Simulator for the NAO Humanoid Robot

NaOISIS : A 3-D Behavioural Simulator for the NAO Humanoid Robot NaOISIS : A 3-D Behavioural Simulator for the NAO Humanoid Robot Aris Valtazanos and Subramanian Ramamoorthy School of Informatics University of Edinburgh Edinburgh EH8 9AB, United Kingdom a.valtazanos@sms.ed.ac.uk,

More information

Team TH-MOS Abstract. Keywords. 1 Introduction 2 Hardware and Electronics

Team TH-MOS Abstract. Keywords. 1 Introduction 2 Hardware and Electronics Team TH-MOS Pei Ben, Cheng Jiakai, Shi Xunlei, Zhang wenzhe, Liu xiaoming, Wu mian Department of Mechanical Engineering, Tsinghua University, Beijing, China Abstract. This paper describes the design of

More information

András László Majdik. MSc. in Eng., PhD Student

András László Majdik. MSc. in Eng., PhD Student András László Majdik MSc. in Eng., PhD Student Address: 71-73 Dorobantilor Street, room C24, 400609 Cluj-Napoca, Romania Phone: 0040 264 401267 (office); 0040 740 135876 (mobile) Email: andras.majdik@aut.utcluj.ro;

More information

CMDragons 2009 Team Description

CMDragons 2009 Team Description CMDragons 2009 Team Description Stefan Zickler, Michael Licitra, Joydeep Biswas, and Manuela Veloso Carnegie Mellon University {szickler,mmv}@cs.cmu.edu {mlicitra,joydeep}@andrew.cmu.edu Abstract. In this

More information

HfutEngine3D Soccer Simulation Team Description Paper 2012

HfutEngine3D Soccer Simulation Team Description Paper 2012 HfutEngine3D Soccer Simulation Team Description Paper 2012 Pengfei Zhang, Qingyuan Zhang School of Computer and Information Hefei University of Technology, China Abstract. This paper simply describes the

More information

How Students Teach Robots to Think The Example of the Vienna Cubes a Robot Soccer Team

How Students Teach Robots to Think The Example of the Vienna Cubes a Robot Soccer Team How Students Teach Robots to Think The Example of the Vienna Cubes a Robot Soccer Team Robert Pucher Paul Kleinrath Alexander Hofmann Fritz Schmöllebeck Department of Electronic Abstract: Autonomous Robot

More information

Using Reactive and Adaptive Behaviors to Play Soccer

Using Reactive and Adaptive Behaviors to Play Soccer AI Magazine Volume 21 Number 3 (2000) ( AAAI) Articles Using Reactive and Adaptive Behaviors to Play Soccer Vincent Hugel, Patrick Bonnin, and Pierre Blazevic This work deals with designing simple behaviors

More information

The UT Austin Villa 3D Simulation Soccer Team 2007

The UT Austin Villa 3D Simulation Soccer Team 2007 UT Austin Computer Sciences Technical Report AI07-348, September 2007. The UT Austin Villa 3D Simulation Soccer Team 2007 Shivaram Kalyanakrishnan and Peter Stone Department of Computer Sciences The University

More information

RoboCup. Presented by Shane Murphy April 24, 2003

RoboCup. Presented by Shane Murphy April 24, 2003 RoboCup Presented by Shane Murphy April 24, 2003 RoboCup: : Today and Tomorrow What we have learned Authors Minoru Asada (Osaka University, Japan), Hiroaki Kitano (Sony CS Labs, Japan), Itsuki Noda (Electrotechnical(

More information

Technical issues of MRL Virtual Robots Team RoboCup 2016, Leipzig Germany

Technical issues of MRL Virtual Robots Team RoboCup 2016, Leipzig Germany Technical issues of MRL Virtual Robots Team RoboCup 2016, Leipzig Germany Mohammad H. Shayesteh 1, Edris E. Aliabadi 1, Mahdi Salamati 1, Adib Dehghan 1, Danial JafaryMoghaddam 1 1 Islamic Azad University

More information

KUDOS Team Description Paper for Humanoid Kidsize League of RoboCup 2016

KUDOS Team Description Paper for Humanoid Kidsize League of RoboCup 2016 KUDOS Team Description Paper for Humanoid Kidsize League of RoboCup 2016 Hojin Jeon, Donghyun Ahn, Yeunhee Kim, Yunho Han, Jeongmin Park, Soyeon Oh, Seri Lee, Junghun Lee, Namkyun Kim, Donghee Han, ChaeEun

More information

KI-SUNG SUH USING NAO INTRODUCTION TO INTERACTIVE HUMANOID ROBOTS

KI-SUNG SUH USING NAO INTRODUCTION TO INTERACTIVE HUMANOID ROBOTS KI-SUNG SUH USING NAO INTRODUCTION TO INTERACTIVE HUMANOID ROBOTS 2 WORDS FROM THE AUTHOR Robots are both replacing and assisting people in various fields including manufacturing, extreme jobs, and service

More information

Vishnu Nath. Usage of computer vision and humanoid robotics to create autonomous robots. (Ximea Currera RL04C Camera Kit)

Vishnu Nath. Usage of computer vision and humanoid robotics to create autonomous robots. (Ximea Currera RL04C Camera Kit) Vishnu Nath Usage of computer vision and humanoid robotics to create autonomous robots (Ximea Currera RL04C Camera Kit) Acknowledgements Firstly, I would like to thank Ivan Klimkovic of Ximea Corporation,

More information

Team Edinferno Description Paper for RoboCup 2011 SPL

Team Edinferno Description Paper for RoboCup 2011 SPL Team Edinferno Description Paper for RoboCup 2011 SPL Subramanian Ramamoorthy, Aris Valtazanos, Efstathios Vafeias, Christopher Towell, Majd Hawasly, Ioannis Havoutis, Thomas McGuire, Seyed Behzad Tabibian,

More information

ZJUDancer Team Description Paper Humanoid Kid-Size League of Robocup 2015

ZJUDancer Team Description Paper Humanoid Kid-Size League of Robocup 2015 ZJUDancer Team Description Paper Humanoid Kid-Size League of Robocup 2015 Yu DongDong, Liu Yun, Zhou Chunlin, and Xiong Rong State Key Lab. of Industrial Control Technology, Zhejiang University, Hangzhou,

More information

Multi Robot Localization assisted by Teammate Robots and Dynamic Objects

Multi Robot Localization assisted by Teammate Robots and Dynamic Objects Multi Robot Localization assisted by Teammate Robots and Dynamic Objects Anil Kumar Katti Department of Computer Science University of Texas at Austin akatti@cs.utexas.edu ABSTRACT This paper discusses

More information

Using Reactive Deliberation for Real-Time Control of Soccer-Playing Robots

Using Reactive Deliberation for Real-Time Control of Soccer-Playing Robots Using Reactive Deliberation for Real-Time Control of Soccer-Playing Robots Yu Zhang and Alan K. Mackworth Department of Computer Science, University of British Columbia, Vancouver B.C. V6T 1Z4, Canada,

More information

Bogobots-TecMTY humanoid kid-size team 2009

Bogobots-TecMTY humanoid kid-size team 2009 Bogobots-TecMTY humanoid kid-size team 2009 Erick Cruz-Hernández 1, Guillermo Villarreal-Pulido 1, Salvador Sumohano-Verdeja 1, Alejandro Aceves-López 1 1 Tecnológico de Monterrey, Campus Estado de México,

More information

Multi Robot Systems: The EagleKnights/RoboBulls Small- Size League RoboCup Architecture

Multi Robot Systems: The EagleKnights/RoboBulls Small- Size League RoboCup Architecture Multi Robot Systems: The EagleKnights/RoboBulls Small- Size League RoboCup Architecture Alfredo Weitzenfeld University of South Florida Computer Science and Engineering Department Tampa, FL 33620-5399

More information

Stabilize humanoid robot teleoperated by a RGB-D sensor

Stabilize humanoid robot teleoperated by a RGB-D sensor Stabilize humanoid robot teleoperated by a RGB-D sensor Andrea Bisson, Andrea Busatto, Stefano Michieletto, and Emanuele Menegatti Intelligent Autonomous Systems Lab (IAS-Lab) Department of Information

More information

Team MU-L8 Humanoid League TeenSize Team Description Paper 2014

Team MU-L8 Humanoid League TeenSize Team Description Paper 2014 Team MU-L8 Humanoid League TeenSize Team Description Paper 2014 Adam Stroud, Kellen Carey, Raoul Chinang, Nicole Gibson, Joshua Panka, Wajahat Ali, Matteo Brucato, Christopher Procak, Matthew Morris, John

More information

FU-Fighters. The Soccer Robots of Freie Universität Berlin. Why RoboCup? What is RoboCup?

FU-Fighters. The Soccer Robots of Freie Universität Berlin. Why RoboCup? What is RoboCup? The Soccer Robots of Freie Universität Berlin We have been building autonomous mobile robots since 1998. Our team, composed of students and researchers from the Mathematics and Computer Science Department,

More information

Intelligent Humanoid Robot

Intelligent Humanoid Robot Intelligent Humanoid Robot Prof. Mayez Al-Mouhamed 22-403, Fall 2007 http://www.ccse.kfupm,.edu.sa/~mayez Computer Engineering Department King Fahd University of Petroleum and Minerals 1 RoboCup : Goal

More information

Learning and Using Models of Kicking Motions for Legged Robots

Learning and Using Models of Kicking Motions for Legged Robots Learning and Using Models of Kicking Motions for Legged Robots Sonia Chernova and Manuela Veloso Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213 {soniac, mmv}@cs.cmu.edu Abstract

More information

Content. 3 Preface 4 Who We Are 6 The RoboCup Initiative 7 Our Robots 8 Hardware 10 Software 12 Public Appearances 14 Achievements 15 Interested?

Content. 3 Preface 4 Who We Are 6 The RoboCup Initiative 7 Our Robots 8 Hardware 10 Software 12 Public Appearances 14 Achievements 15 Interested? Content 3 Preface 4 Who We Are 6 The RoboCup Initiative 7 Our Robots 8 Hardware 10 Software 12 Public Appearances 14 Achievements 15 Interested? 2 Preface Dear reader, Robots are in everyone's minds nowadays.

More information

Team Description Paper: HuroEvolution Humanoid Robot for Robocup 2010 Humanoid League

Team Description Paper: HuroEvolution Humanoid Robot for Robocup 2010 Humanoid League Team Description Paper: HuroEvolution Humanoid Robot for Robocup 2010 Humanoid League Chung-Hsien Kuo 1, Hung-Chyun Chou 1, Jui-Chou Chung 1, Po-Chung Chia 2, Shou-Wei Chi 1, Yu-De Lien 1 1 Department

More information

UvA-DARE (Digital Academic Repository)

UvA-DARE (Digital Academic Repository) UvA-DARE (Digital Academic Repository) Dutch Nao Team: team description for Robocup 2013, Eindhoven, The Netherlands ten Velthuis, D.; Verschoor, C.; Wiggers, A.; van der Molen, H.; Blankenvoort, T.; Cabot,

More information

SPQR RoboCup 2014 Standard Platform League Team Description Paper

SPQR RoboCup 2014 Standard Platform League Team Description Paper SPQR RoboCup 2014 Standard Platform League Team Description Paper G. Gemignani, F. Riccio, L. Iocchi, D. Nardi Department of Computer, Control, and Management Engineering Sapienza University of Rome, Italy

More information

Tsinghua Hephaestus 2016 AdultSize Team Description

Tsinghua Hephaestus 2016 AdultSize Team Description Tsinghua Hephaestus 2016 AdultSize Team Description Mingguo Zhao, Kaiyuan Xu, Qingqiu Huang, Shan Huang, Kaidan Yuan, Xueheng Zhang, Zhengpei Yang, Luping Wang Tsinghua University, Beijing, China mgzhao@mail.tsinghua.edu.cn

More information

Information and Program

Information and Program Robotics 1 Information and Program Prof. Alessandro De Luca Robotics 1 1 Robotics 1 2017/18! First semester (12 weeks)! Monday, October 2, 2017 Monday, December 18, 2017! Courses of study (with this course

More information

Curriculum Vitae. Abd El Khalick Mohammad, 17 Nov Doctor of Engineering H-index: 6 and Citation: 107 (Google Scholar) 1.

Curriculum Vitae. Abd El Khalick Mohammad, 17 Nov Doctor of Engineering H-index: 6 and Citation: 107 (Google Scholar) 1. Curriculum Vitae Abd El Khalick Mohammad, 17 Nov. 1984 Doctor of Engineering H-index: 6 and Citation: 107 (Google Scholar) Previous position: Research Fellow Centre for E-City EXQUISITUS, Electrical and

More information

Team Description Paper: Darmstadt Dribblers & Hajime Team (KidSize) and Darmstadt Dribblers (TeenSize)

Team Description Paper: Darmstadt Dribblers & Hajime Team (KidSize) and Darmstadt Dribblers (TeenSize) Team Description Paper: Darmstadt Dribblers & Hajime Team (KidSize) and Darmstadt Dribblers (TeenSize) Martin Friedmann 1, Jutta Kiener 1, Robert Kratz 1, Sebastian Petters 1, Hajime Sakamoto 2, Maximilian

More information

Making Representations: From Sensation to Perception

Making Representations: From Sensation to Perception Making Representations: From Sensation to Perception Mary-Anne Williams Innovation and Enterprise Research Lab University of Technology, Sydney Australia Overview Understanding Cognition Understanding

More information

A Differential Steering System for Humanoid Robots

A Differential Steering System for Humanoid Robots A Differential Steering System for Humanoid Robots Shahriar Asta and Sanem Sariel-alay Computer Engineering Department Istanbul echnical University, Istanbul, urkey {asta, sariel}@itu.edu.tr Abstract-

More information

Sensor system of a small biped entertainment robot

Sensor system of a small biped entertainment robot Advanced Robotics, Vol. 18, No. 10, pp. 1039 1052 (2004) VSP and Robotics Society of Japan 2004. Also available online - www.vsppub.com Sensor system of a small biped entertainment robot Short paper TATSUZO

More information

Hanuman KMUTT: Team Description Paper

Hanuman KMUTT: Team Description Paper Hanuman KMUTT: Team Description Paper Wisanu Jutharee, Sathit Wanitchaikit, Boonlert Maneechai, Natthapong Kaewlek, Thanniti Khunnithiwarawat, Pongsakorn Polchankajorn, Nakarin Suppakun, Narongsak Tirasuntarakul,

More information

Cognition & Robotics. EUCog - European Network for the Advancement of Artificial Cognitive Systems, Interaction and Robotics

Cognition & Robotics. EUCog - European Network for the Advancement of Artificial Cognitive Systems, Interaction and Robotics Cognition & Robotics Recent debates in Cognitive Robotics bring about ways to seek a definitional connection between cognition and robotics, ponder upon the questions: EUCog - European Network for the

More information

Adaptive Motion Control with Visual Feedback for a Humanoid Robot

Adaptive Motion Control with Visual Feedback for a Humanoid Robot The 21 IEEE/RSJ International Conference on Intelligent Robots and Systems October 18-22, 21, Taipei, Taiwan Adaptive Motion Control with Visual Feedback for a Humanoid Robot Heinrich Mellmann* and Yuan

More information

The RoboCup 2013 Drop-In Player Challenges: Experiments in Ad Hoc Teamwork

The RoboCup 2013 Drop-In Player Challenges: Experiments in Ad Hoc Teamwork To appear in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Chicago, Illinois, USA, September 2014. The RoboCup 2013 Drop-In Player Challenges: Experiments in Ad Hoc Teamwork

More information

sin( x m cos( The position of the mass point D is specified by a set of state variables, (θ roll, θ pitch, r) related to the Cartesian coordinates by:

sin( x m cos( The position of the mass point D is specified by a set of state variables, (θ roll, θ pitch, r) related to the Cartesian coordinates by: Research Article International Journal of Current Engineering and Technology ISSN 77-46 3 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijcet Modeling improvement of a Humanoid

More information

GermanTeam The German National RoboCup Team

GermanTeam The German National RoboCup Team GermanTeam 2008 The German National RoboCup Team David Becker 2, Jörg Brose 2, Daniel Göhring 3, Matthias Jüngel 3, Max Risler 2, and Thomas Röfer 1 1 Deutsches Forschungszentrum für Künstliche Intelligenz,

More information

IRH 2017 / Group 10. Hosen Gakuen High School Risu inter. Takeru Saito, Akitaka Fujii. Theme3 Most advanced technologies of robots

IRH 2017 / Group 10. Hosen Gakuen High School Risu inter. Takeru Saito, Akitaka Fujii. Theme3 Most advanced technologies of robots IRH 2017 / Group 10 Hosen Gakuen High School Risu inter Takeru Saito, Akitaka Fujii Theme3 Most advanced technologies of robots Do you know this? Bipedal robot Double inverted pendulum model 1968 ZMP theory

More information

Development and Evaluation of a Centaur Robot

Development and Evaluation of a Centaur Robot Development and Evaluation of a Centaur Robot 1 Satoshi Tsuda, 1 Kuniya Shinozaki, and 2 Ryohei Nakatsu 1 Kwansei Gakuin University, School of Science and Technology 2-1 Gakuen, Sanda, 669-1337 Japan {amy65823,

More information

Interaction rule learning with a human partner based on an imitation faculty with a simple visuo-motor mapping

Interaction rule learning with a human partner based on an imitation faculty with a simple visuo-motor mapping Robotics and Autonomous Systems 54 (2006) 414 418 www.elsevier.com/locate/robot Interaction rule learning with a human partner based on an imitation faculty with a simple visuo-motor mapping Masaki Ogino

More information

Humanoid robot. Honda's ASIMO, an example of a humanoid robot

Humanoid robot. Honda's ASIMO, an example of a humanoid robot Humanoid robot Honda's ASIMO, an example of a humanoid robot A humanoid robot is a robot with its overall appearance based on that of the human body, allowing interaction with made-for-human tools or environments.

More information

Evaluating Ad Hoc Teamwork Performance in Drop-In Player Challenges

Evaluating Ad Hoc Teamwork Performance in Drop-In Player Challenges To appear in AAMAS Multiagent Interaction without Prior Coordination Workshop (MIPC 017), Sao Paulo, Brazil, May 017. Evaluating Ad Hoc Teamwork Performance in Drop-In Player Challenges Patrick MacAlpine,

More information

WF Wolves & Taura Bots Humanoid Kid Size Team Description for RoboCup 2016

WF Wolves & Taura Bots Humanoid Kid Size Team Description for RoboCup 2016 WF Wolves & Taura Bots Humanoid Kid Size Team Description for RoboCup 2016 Björn Anders 1, Frank Stiddien 1, Oliver Krebs 1, Reinhard Gerndt 1, Tobias Bolze 1, Tom Lorenz 1, Xiang Chen 1, Fabricio Tonetto

More information

MRL Team Description Paper for Humanoid KidSize League of RoboCup 2014

MRL Team Description Paper for Humanoid KidSize League of RoboCup 2014 MRL Team Description Paper for Humanoid KidSize League of RoboCup 2014 Mostafa E. Salehi 1, Reza Safdari, Erfan Abedi, Bahareh Foroughi, Amir Salimi, Emad Farokhi, Meisam Teimouri, and Roham Shakiba Mechatronics

More information

RoboCup: Not Only a Robotics Soccer Game but also a New Market Created for Future

RoboCup: Not Only a Robotics Soccer Game but also a New Market Created for Future RoboCup: Not Only a Robotics Soccer Game but also a New Market Created for Future Kuo-Yang Tu Institute of Systems and Control Engineering National Kaohsiung First University of Science and Technology

More information

Team RoBIU. Team Description for Humanoid KidSize League of RoboCup 2014

Team RoBIU. Team Description for Humanoid KidSize League of RoboCup 2014 Team RoBIU Team Description for Humanoid KidSize League of RoboCup 2014 Bartal Moshe, Chaimovich Yogev, Dar Nati, Druker Itai, Farbstein Yair, Levi Roi, Kabariti Shani, Kalily Elran, Mayaan Tal, Negrin

More information

KMUTT Kickers: Team Description Paper

KMUTT Kickers: Team Description Paper KMUTT Kickers: Team Description Paper Thavida Maneewarn, Xye, Korawit Kawinkhrue, Amnart Butsongka, Nattapong Kaewlek King Mongkut s University of Technology Thonburi, Institute of Field Robotics (FIBO)

More information

Self-learning Assistive Exoskeleton with Sliding Mode Admittance Control

Self-learning Assistive Exoskeleton with Sliding Mode Admittance Control 213 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) November 3-7, 213. Tokyo, Japan Self-learning Assistive Exoskeleton with Sliding Mode Admittance Control Tzu-Hao Huang, Ching-An

More information

MRL Team Description Paper for Humanoid KidSize League of RoboCup 2017

MRL Team Description Paper for Humanoid KidSize League of RoboCup 2017 MRL Team Description Paper for Humanoid KidSize League of RoboCup 2017 Meisam Teimouri 1, Amir Salimi, Ashkan Farhadi, Alireza Fatehi, Hamed Mahmoudi, Hamed Sharifi and Mohammad Hosseini Sefat Mechatronics

More information