CS295-1 Final Project : AIBO

Size: px
Start display at page:

Download "CS295-1 Final Project : AIBO"

Transcription

1 CS295-1 Final Project : AIBO Mert Akdere, Ethan F. Leland December 20, 2005 Abstract This document is the final report for our CS295-1 Sensor Data Management Course Final Project: Project AIBO. The main objective of this project is to investigate the Robocup Soccer domain [12] and to explore the possible research oppurtunities in that area. In our project we have tried to build an application in which two AIBO robots [11] pass the ball to each other and finally score a goal on a soccer field while avoiding obstacles on the playing field. For this reason, we are using Sony AIBO Robots as our hardware and OPEN- R SDK [10] and Tekkotsu framework [9] as our software development environment. This document describes our progress in this project and the information we have gathered about Robocup Soccer in general. 1 Introduction Project AIBO is our course project to fill the requirements of CS295-1 Sensor Data Magement course offered in Department of Computer Science, at Brown University. In this project, we have tried to build an application in which two AIBO robots pass the ball to each other and finally score a goal on a soccer field while avoiding obstacles on the playing field. The main objective underlying this project is to investigate the Robocup Soccer domain and to explore the possible research oppurtunities in that area. In this document, we describe our project progress and present our system design. We also talk about Robocup Soccer domain whenever possible and mention the possible research directions we have discovered while working on this project. This document is structured as follows: In section 2 we describe the application that we propose for this project in detail. In section 3 we explain the development environment and the tools we have used in this project. Then in section 4 we talk about our current progress on the project, describe our 1

2 system design and present our successes and failures in this project. We also talk about our team behaviour selection mechanism. In section 5, we provide related work in Robocup Soccer and give some examples of research in this area. Finally, in section 6 we make our final comments and conclude this report. 2 Aibo Project Description This project consists of development of an application using Sony AIBO robots in order to get familiar with Robocup Soccer domain, to understand the basic requirements of this domain and to grasp the fundamental research issues. Our application can be described as follows: two AIBO robots pass the ball to each other and finally score a goal on a soccer field while avoiding obstacles on the playing field. A successful implementation of this project would require many components such as image processing, object recognition, sensor data observation, behavior modeling, and robot kinematics to work together successfully. Hence, in this simple application we are able to investigate many different areas of computer science (such as robotics, wireless networking, distributed systems and artificial intelligence) and see how they work together to establish a common goal. This diversity of computer science areas involved in Robocup applications and research is fascinating and not easily found in other projects or works. However, it is also the reason why it is difficult to successfully implement such applications and make them work. We believe that a research group for joining the Robocup Soccer should be pretty large, involve both faculty and students from diverse areas in computer science as well as engineering. 3 Methodology We use the AIBO robots and the Open-R programming environment along with Tekkotsu framework in this project. We currently have two AIBO robots in our department. We have setup a Robocup soccer field in the AI Lab according to the formal specification described in the Robocup specification documents. The field includes two goals, four markers on sides of the field, a pink ball and white lines on the field. AIBO robots are actually commercially available entertainment robots produced by Sony. Yet, there is an annual competition, Robocup Soccer, being done using the Aibo Robots. In addition, there is a fair amount of research being done on this domain using the robots. The research groups working 2

3 on this area include Dutch AIBO Team, Carnegie Mellon Robocup Team, University of Pennsylvania AIBO Team and many others. Some of these research groups actually involve sub-groups from more than one universities. Open-R SDK is the programming interface provided by SONY to be used in developing applications with the AIBO Robots. Open-R SDK is a development environment based on gcc (c++) where one can make software to run on AIBO (ERS-7, ERS-210, ERS-220, ERS-210A, and ERS-220A). It provides basic low-level functions to program the robot and access its hardware, memory and other units. Tekkotsu framework is an open source development framework for the Sony AIBO developed by Carnegie Mellon University Tekkotsu Team. The aim of Tekkotsu framework is to build a structure on top of OPEN-R SDK environment using which people can develop more complex applications in a more easy and flexible way. That is it handles routine taks for the user, so that he or she can focus on higher level programming. Since there are many issues to consider while developing an application using AIBO robots, we tried to make use of available projects and see how they work in order to get more things done in this project. For motion component, we are borrowing techniques from other well-established robocup teams such as UPenn and CMU which are already partly implemented in the Tekkotsu environment. Our localization is based on a Monte Carlo Localization routine [13] implementing a particle filter. To achieve the low level vision, we have very distinct markers in the field that we are able to identify through simple vision techniques, which aids us in localization. 4 Current Progress In this section, we will describe the system design that we made for this application and talk about what we have implemented and what parts are missing. Unfortunately, we have not been able to successfully implement all parts of this project. So we don t have a completely working system. Below is the description of our system design: 4.1 System Design After analyzing Robocup Soccer projects of various universities we came up with the design sketched in Figure 1. Below we describe the functionality of each component of the system. 3

4 Figure 1: System Model and Structure Basic Skills Basic skills consists of player-to-ball interaction skills such as kicking and holding the ball, and other player skills such as moving on the field. Any other movement related functionality is also implemented in this component. All these basic skills are provided by Tekkotsu framework. We only had to figure out how to make use of available functionality. We successfully made the robot move around, turn his head around or do any other moves. We can also use available kicking moves of Upenn Robocup team in our project successfully Individual Behavior This module focuses on executing the role (specified by play) of the robot on which it runs. It provides its current state in execution of the role and other related information. We don t have this layer implemented yet World Model World model component keeps information about the game state. Currently, this information includes location of ball, goal and robots on the field. Information sources of this information are: communication, vision and distance sensors. This component uses other components to achieve its functionality such as localization, communication and vision components Communication Component Communication component is the interface to the wireless communication medium. Supported communication protocols include UDP and TCP. We currently have a WLAN setup in the AI Lab. There is a PC connected to an access point, called AIBONET. We can ssh into that pc and communicate 4

5 with AIBO robots over that pc using the WLAN. In our project, we have implemented the communication interface and we are able to send and receive UDP packages over wireless Localization Module The localization module takes information from the vision component and attempts to accurately locate the positions of the ball and the two robots on the field. It does this using a Monte Carlo Localization (MCL) model called a particle filter. A particle filter is a probabilistic model which maintains a collection of guesses as to the location of the robots in the form of x and y location on the field as well as the bearing of the robot from -PI/2 to PI/2. Data comes into the particle filter from the vision component as a set of objects that are recognized by the robot, and where they are in relation to the robot. Using this information and the known locations of these objects such as the goal, the particle filter updates the probability of each sample location, and resample around the more likely samples. The specific approach implemented in this project is a form of MCL known as Adaptive MCL (AMCL). This means that the number of particles in each model can be changed on the fly to account for more uncertain information. If the standard deviation of the particles grows too large, more particles are evenly distributed over the field as to try to localize over a broader area. In order to localize the ball, there is one particle filter running on each robot, and these two models share data between them. The location of the ball is determined to be the most likely position given all of the data from both robots. However, if one robot cannot see the ball, then it learns the location from the other robot Vision Module The vision module is actually a very complicated module and none of us has background in computer vision. However, we have figured out how to detect the location of ball and goal, as well as markers on the field. We have benefited from Tekkotsu framework a lot in the implementation of this component. Tekkotsu implements a vision component developed by Carnegie Mellon University, called CMVision [1], [4]. The technique used in object recognition in this component is called segmented vision. Segmentating can be considered as the process by which information on the images are extracted through color codes. The images are encoded in the YUV color space [2]. Color thresholds are applied on images in constructing connected regions of colors. For example, we have a goal which is blue. To locate the location of 5

6 the blue goal first, we need to make our system understand what blue color is, that is we define color thresholds. Color thresholds are defined using sample images. Then segmenation process will provide us with regions of blue color extracted from camera images. Eventually an algorithm that takes in blue regions and decides which one is the blue goal is run on these regions and the result is the location of the goal on the image Sensor Interface This is the system interface to various sensor data including distance sensors, joint sensors, pressure sensors, and all other sensors available in AIBO. This interface is provided by Tekkotsu framework and we have figured out how to take values from it. Hence, we are able to get sensor data from the robot successfully Team Behavior Component This component takes the world state from the world state component, maps it to a play [3] in the strategy database and then orders robots to execute the selected play. We implemented a nearest neighbor algorithm to choose the play that is most suitable for the current world state. So this component is pretty much complete. However, since we don t have all of its subcomponents ready, we cannot test it properly. We expect that there will be oscillations between different plays during gameplay. In other words, team behaviour component may switch between different plays before they are finished. This would be an undesirable result. However, this can be avoided with an additional constraint that prevents such frequent switches between different plays Strategy DB Strategy DB keeps a list of plays that the Team Behaviour component makes use of. Plays describe roles for each robot. A role for a robot consists of a sequence of basic skills. We have made up some plays and mapped them to world states so that team bahaviour component can choose the appropriate play for each different world state. A world state basically describes the game state, i.e. the location of the dogs, and ball. 4.2 Team Play Demonstration The team behavior component chooses the best play to execute for a given game state. In our strategy database, we have a predefined set of plays that 6

7 the team behaviour component can use. To demonstrate the execution of play selection mechanism we have made a visualizer component. Below is a screenshot: In this picture, the right side shows the plays currently in our strategy Figure 2: Play Selection Visualizer database, and the left shows the current state of the world and how the play is planned to be executed. The red and blue boxes are the two robots, and the pink box is the ball. The red line and blue lines are the paths that the robots should take, and the pink line is the ball s path. This play is showing that the red robot will pass the ball to the blue one, who will then shoot it towards the goal. On the right you can also see which play is being run, which is designated with the red star. 5 Related Work Lots of research is being done in Robocup soccer domain. Research in this domain is diversed in many different areas of computer science. One branch of research is computer vision. In our project we have made use of Carnegie Mellon s vision component, CMVision. Information gathered via camera is still a noisy information, however it is the one that is used mostly and provides a huge portion of the gathered information. Color segmentation is used to recognize color coded objects. Therefore, everything in the robocup world is color coded. Another dimension of research is coordinated team behavior. It includes coordinating a multi-robot team towards a common goal [6], [7], [8]. This component both has to plan ahead to achieve the ultimate common goal and at the same time make use of short term advantages. Therefore, it has to make acurate decisions and keep the system responsive to environmental 7

8 changes. One other direction of research includes making use of statistical measures to learn opponent strategies and adapt the gameplay to make most out of available information. Probabilistic opponent modeling techniques are utilized in predicting location, movement and behavior of opponent team. 6 Conclusion and Future Work This project s ultimate goal was to learn about the Robocup Soccer, and to understand possible directions of research in the domain. We have tried to develop an application to learn the available tools and methods in AIBO application development. As results of our efforts, we have : 1. figured out the basic development environment 2. learnt what others are doing and what projects are being done 3. setup a aibo lab and a network 4. found the Tekkotsu framework and learnt how to use it 5. learnt about various fields of computer science involved in Robocup Soccer 6. implemented most parts of the project Unfortunately, we have not been able to implement all the project. Therefore, we don t have a completely working system. In addition, there are issues we have come across in the development of the project, that we have not been able to handle ourselves and need further help with. Such details are usually omitted from research papers, but are crucial in practice. Moreover, we think if the ultimate goal is to join the Robocup competition, it is required to setup a large Robocup team with people from diverse backgrounds. Yet we are pleased to have worked in this field and had fun in the process. Future work in this project includes: completing implementation of the project, eliminating the bugs, and basically making every part work together as a whole. References [1] CMVision Web Site: jbruce/cmvision/ 8

9 [2] C. Poynton. Poynton s color FAQ ( and gamma/colorfaq.html). [3] Brett Browning, James Bruce, Michael Bowling, and Manuela Veloso. STP: Skills, tactics and plays for multi-robot control in adversarial environments. IEEE Journal of Control and Systems Engineering, 219:33-52, [4] James Bruce and Manuela Veloso. Fast and Accurate Vision-Based Pattern Detection and Identification. In Proceedings of ICRA 03, the 2003 IEEE International Conference on Robotics and Automation, Taiwan, May [5] Brett Browning and Manuela Veloso. Real-time, adaptive color-based robot vision. In In Proceedings of IROS 05, [6] Maayan Roth, Douglas Vail, and Manuela Veloso. A World Model for Multi-Robot Teams with Communication. In IROS-2003, [7] Douglas Vail and Manuela Veloso. Dynamic Multi-Robot Coordination. In Multi-Robot Systems, Kluwer, [8] James Bruce, Michael Bowling, Brett Browning, and Manuela Veloso. Multi-Robot Team Response to a Multi-Robot Opponent Team. In Proceedings of the IROS-2002 Workshop on Collaborative Robots, Switzerland, October [9] Tekkotsu Web Page : tekkotsu/ [10] Open-r SDK: [11] Sony AIBO: [12] Robocup Organization: [13] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, Monte Carlo Localization for Mobile Robots, IEEE International Conference on Robotics and Automation (ICRA99), May,

CMDragons 2009 Team Description

CMDragons 2009 Team Description CMDragons 2009 Team Description Stefan Zickler, Michael Licitra, Joydeep Biswas, and Manuela Veloso Carnegie Mellon University {szickler,mmv}@cs.cmu.edu {mlicitra,joydeep}@andrew.cmu.edu Abstract. In this

More information

Learning and Using Models of Kicking Motions for Legged Robots

Learning and Using Models of Kicking Motions for Legged Robots Learning and Using Models of Kicking Motions for Legged Robots Sonia Chernova and Manuela Veloso Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213 {soniac, mmv}@cs.cmu.edu Abstract

More information

Keywords: Multi-robot adversarial environments, real-time autonomous robots

Keywords: Multi-robot adversarial environments, real-time autonomous robots ROBOT SOCCER: A MULTI-ROBOT CHALLENGE EXTENDED ABSTRACT Manuela M. Veloso School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213, USA veloso@cs.cmu.edu Abstract Robot soccer opened

More information

Learning and Using Models of Kicking Motions for Legged Robots

Learning and Using Models of Kicking Motions for Legged Robots Learning and Using Models of Kicking Motions for Legged Robots Sonia Chernova and Manuela Veloso Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213 {soniac, mmv}@cs.cmu.edu Abstract

More information

CMDragons 2008 Team Description

CMDragons 2008 Team Description CMDragons 2008 Team Description Stefan Zickler, Douglas Vail, Gabriel Levi, Philip Wasserman, James Bruce, Michael Licitra, and Manuela Veloso Carnegie Mellon University {szickler,dvail2,jbruce,mlicitra,mmv}@cs.cmu.edu

More information

Multi Robot Localization assisted by Teammate Robots and Dynamic Objects

Multi Robot Localization assisted by Teammate Robots and Dynamic Objects Multi Robot Localization assisted by Teammate Robots and Dynamic Objects Anil Kumar Katti Department of Computer Science University of Texas at Austin akatti@cs.utexas.edu ABSTRACT This paper discusses

More information

CMDragons 2006 Team Description

CMDragons 2006 Team Description CMDragons 2006 Team Description James Bruce, Stefan Zickler, Mike Licitra, and Manuela Veloso Carnegie Mellon University Pittsburgh, Pennsylvania, USA {jbruce,szickler,mlicitra,mmv}@cs.cmu.edu Abstract.

More information

FAST GOAL NAVIGATION WITH OBSTACLE AVOIDANCE USING A DYNAMIC LOCAL VISUAL MODEL

FAST GOAL NAVIGATION WITH OBSTACLE AVOIDANCE USING A DYNAMIC LOCAL VISUAL MODEL FAST GOAL NAVIGATION WITH OBSTACLE AVOIDANCE USING A DYNAMIC LOCAL VISUAL MODEL Juan Fasola jfasola@andrew.cmu.edu Manuela M. Veloso veloso@cs.cmu.edu School of Computer Science Carnegie Mellon University

More information

Autonomous Robot Soccer Teams

Autonomous Robot Soccer Teams Soccer-playing robots could lead to completely autonomous intelligent machines. Autonomous Robot Soccer Teams Manuela Veloso Manuela Veloso is professor of computer science at Carnegie Mellon University.

More information

NTU Robot PAL 2009 Team Report

NTU Robot PAL 2009 Team Report NTU Robot PAL 2009 Team Report Chieh-Chih Wang, Shao-Chen Wang, Hsiao-Chieh Yen, and Chun-Hua Chang The Robot Perception and Learning Laboratory Department of Computer Science and Information Engineering

More information

Multi-Humanoid World Modeling in Standard Platform Robot Soccer

Multi-Humanoid World Modeling in Standard Platform Robot Soccer Multi-Humanoid World Modeling in Standard Platform Robot Soccer Brian Coltin, Somchaya Liemhetcharat, Çetin Meriçli, Junyun Tay, and Manuela Veloso Abstract In the RoboCup Standard Platform League (SPL),

More information

S.P.Q.R. Legged Team Report from RoboCup 2003

S.P.Q.R. Legged Team Report from RoboCup 2003 S.P.Q.R. Legged Team Report from RoboCup 2003 L. Iocchi and D. Nardi Dipartimento di Informatica e Sistemistica Universitá di Roma La Sapienza Via Salaria 113-00198 Roma, Italy {iocchi,nardi}@dis.uniroma1.it,

More information

RoboCup. Presented by Shane Murphy April 24, 2003

RoboCup. Presented by Shane Murphy April 24, 2003 RoboCup Presented by Shane Murphy April 24, 2003 RoboCup: : Today and Tomorrow What we have learned Authors Minoru Asada (Osaka University, Japan), Hiroaki Kitano (Sony CS Labs, Japan), Itsuki Noda (Electrotechnical(

More information

Hierarchical Controller for Robotic Soccer

Hierarchical Controller for Robotic Soccer Hierarchical Controller for Robotic Soccer Byron Knoll Cognitive Systems 402 April 13, 2008 ABSTRACT RoboCup is an initiative aimed at advancing Artificial Intelligence (AI) and robotics research. This

More information

Find Kick Play An Innate Behavior for the Aibo Robot

Find Kick Play An Innate Behavior for the Aibo Robot Find Kick Play An Innate Behavior for the Aibo Robot Ioana Butoi 05 Advisors: Prof. Douglas Blank and Prof. Geoffrey Towell Bryn Mawr College, Computer Science Department Senior Thesis Spring 2005 Abstract

More information

4D-Particle filter localization for a simulated UAV

4D-Particle filter localization for a simulated UAV 4D-Particle filter localization for a simulated UAV Anna Chiara Bellini annachiara.bellini@gmail.com Abstract. Particle filters are a mathematical method that can be used to build a belief about the location

More information

Distributed, Play-Based Coordination for Robot Teams in Dynamic Environments

Distributed, Play-Based Coordination for Robot Teams in Dynamic Environments Distributed, Play-Based Coordination for Robot Teams in Dynamic Environments Colin McMillen and Manuela Veloso School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, U.S.A. fmcmillen,velosog@cs.cmu.edu

More information

Multi-Robot Team Response to a Multi-Robot Opponent Team

Multi-Robot Team Response to a Multi-Robot Opponent Team Multi-Robot Team Response to a Multi-Robot Opponent Team James Bruce, Michael Bowling, Brett Browning, and Manuela Veloso {jbruce,mhb,brettb,mmv}@cs.cmu.edu Carnegie Mellon University 5000 Forbes Avenue

More information

Multi-Fidelity Robotic Behaviors: Acting With Variable State Information

Multi-Fidelity Robotic Behaviors: Acting With Variable State Information From: AAAI-00 Proceedings. Copyright 2000, AAAI (www.aaai.org). All rights reserved. Multi-Fidelity Robotic Behaviors: Acting With Variable State Information Elly Winner and Manuela Veloso Computer Science

More information

Multi-Platform Soccer Robot Development System

Multi-Platform Soccer Robot Development System Multi-Platform Soccer Robot Development System Hui Wang, Han Wang, Chunmiao Wang, William Y. C. Soh Division of Control & Instrumentation, School of EEE Nanyang Technological University Nanyang Avenue,

More information

CS 378: Autonomous Intelligent Robotics. Instructor: Jivko Sinapov

CS 378: Autonomous Intelligent Robotics. Instructor: Jivko Sinapov CS 378: Autonomous Intelligent Robotics Instructor: Jivko Sinapov http://www.cs.utexas.edu/~jsinapov/teaching/cs378/ Semester Schedule C++ and Robot Operating System (ROS) Learning to use our robots Computational

More information

Reactive Cooperation of AIBO Robots. Iñaki Navarro Oiza

Reactive Cooperation of AIBO Robots. Iñaki Navarro Oiza Reactive Cooperation of AIBO Robots Iñaki Navarro Oiza October 2004 Abstract The aim of the project is to study how cooperation of AIBO robots could be achieved. In order to do that a specific problem,

More information

CS 393R. Lab Introduction. Todd Hester

CS 393R. Lab Introduction. Todd Hester CS 393R Lab Introduction Todd Hester todd@cs.utexas.edu Outline The Lab: ENS 19N Website Software: Tekkotsu Robots: Aibo ERS-7 M3 Assignment 1 Lab Rules My information Office hours Wednesday 11-noon ENS

More information

Task Allocation: Role Assignment. Dr. Daisy Tang

Task Allocation: Role Assignment. Dr. Daisy Tang Task Allocation: Role Assignment Dr. Daisy Tang Outline Multi-robot dynamic role assignment Task Allocation Based On Roles Usually, a task is decomposed into roleseither by a general autonomous planner,

More information

AGENT PLATFORM FOR ROBOT CONTROL IN REAL-TIME DYNAMIC ENVIRONMENTS. Nuno Sousa Eugénio Oliveira

AGENT PLATFORM FOR ROBOT CONTROL IN REAL-TIME DYNAMIC ENVIRONMENTS. Nuno Sousa Eugénio Oliveira AGENT PLATFORM FOR ROBOT CONTROL IN REAL-TIME DYNAMIC ENVIRONMENTS Nuno Sousa Eugénio Oliveira Faculdade de Egenharia da Universidade do Porto, Portugal Abstract: This paper describes a platform that enables

More information

A World Model for Multi-Robot Teams with Communication

A World Model for Multi-Robot Teams with Communication 1 A World Model for Multi-Robot Teams with Communication Maayan Roth, Douglas Vail, and Manuela Veloso School of Computer Science Carnegie Mellon University Pittsburgh PA, 15213-3891 {mroth, dvail2, mmv}@cs.cmu.edu

More information

A Vision Based System for Goal-Directed Obstacle Avoidance

A Vision Based System for Goal-Directed Obstacle Avoidance ROBOCUP2004 SYMPOSIUM, Instituto Superior Técnico, Lisboa, Portugal, July 4-5, 2004. A Vision Based System for Goal-Directed Obstacle Avoidance Jan Hoffmann, Matthias Jüngel, and Martin Lötzsch Institut

More information

Statement May, 2014 TUCKER BALCH, ASSOCIATE PROFESSOR SCHOOL OF INTERACTIVE COMPUTING, COLLEGE OF COMPUTING GEORGIA INSTITUTE OF TECHNOLOGY

Statement May, 2014 TUCKER BALCH, ASSOCIATE PROFESSOR SCHOOL OF INTERACTIVE COMPUTING, COLLEGE OF COMPUTING GEORGIA INSTITUTE OF TECHNOLOGY TUCKER BALCH, ASSOCIATE PROFESSOR SCHOOL OF INTERACTIVE COMPUTING, COLLEGE OF COMPUTING GEORGIA INSTITUTE OF TECHNOLOGY Research on robot teams Beginning with Tucker s Ph.D. research at Georgia Tech with

More information

Multi-Robot Dynamic Role Assignment and Coordination Through Shared Potential Fields

Multi-Robot Dynamic Role Assignment and Coordination Through Shared Potential Fields 1 Multi-Robot Dynamic Role Assignment and Coordination Through Shared Potential Fields Douglas Vail Manuela Veloso Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213 USA {dvail2,

More information

Automatic acquisition of robot motion and sensor models

Automatic acquisition of robot motion and sensor models Automatic acquisition of robot motion and sensor models A. Tuna Ozgelen, Elizabeth Sklar, and Simon Parsons Department of Computer & Information Science Brooklyn College, City University of New York 2900

More information

Team Edinferno Description Paper for RoboCup 2011 SPL

Team Edinferno Description Paper for RoboCup 2011 SPL Team Edinferno Description Paper for RoboCup 2011 SPL Subramanian Ramamoorthy, Aris Valtazanos, Efstathios Vafeias, Christopher Towell, Majd Hawasly, Ioannis Havoutis, Thomas McGuire, Seyed Behzad Tabibian,

More information

Hanuman KMUTT: Team Description Paper

Hanuman KMUTT: Team Description Paper Hanuman KMUTT: Team Description Paper Wisanu Jutharee, Sathit Wanitchaikit, Boonlert Maneechai, Natthapong Kaewlek, Thanniti Khunnithiwarawat, Pongsakorn Polchankajorn, Nakarin Suppakun, Narongsak Tirasuntarakul,

More information

Multi Robot Object Tracking and Self Localization

Multi Robot Object Tracking and Self Localization Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems October 9-5, 2006, Beijing, China Multi Robot Object Tracking and Self Localization Using Visual Percept Relations

More information

FU-Fighters. The Soccer Robots of Freie Universität Berlin. Why RoboCup? What is RoboCup?

FU-Fighters. The Soccer Robots of Freie Universität Berlin. Why RoboCup? What is RoboCup? The Soccer Robots of Freie Universität Berlin We have been building autonomous mobile robots since 1998. Our team, composed of students and researchers from the Mathematics and Computer Science Department,

More information

Hierarchical Case-Based Reasoning Behavior Control for Humanoid Robot

Hierarchical Case-Based Reasoning Behavior Control for Humanoid Robot Annals of University of Craiova, Math. Comp. Sci. Ser. Volume 36(2), 2009, Pages 131 140 ISSN: 1223-6934 Hierarchical Case-Based Reasoning Behavior Control for Humanoid Robot Bassant Mohamed El-Bagoury,

More information

International Journal of Informative & Futuristic Research ISSN (Online):

International Journal of Informative & Futuristic Research ISSN (Online): Reviewed Paper Volume 2 Issue 4 December 2014 International Journal of Informative & Futuristic Research ISSN (Online): 2347-1697 A Survey On Simultaneous Localization And Mapping Paper ID IJIFR/ V2/ E4/

More information

ZJUDancer Team Description Paper Humanoid Kid-Size League of Robocup 2014

ZJUDancer Team Description Paper Humanoid Kid-Size League of Robocup 2014 ZJUDancer Team Description Paper Humanoid Kid-Size League of Robocup 2014 Yu DongDong, Xiang Chuan, Zhou Chunlin, and Xiong Rong State Key Lab. of Industrial Control Technology, Zhejiang University, Hangzhou,

More information

2 Our Hardware Architecture

2 Our Hardware Architecture RoboCup-99 Team Descriptions Middle Robots League, Team NAIST, pages 170 174 http: /www.ep.liu.se/ea/cis/1999/006/27/ 170 Team Description of the RoboCup-NAIST NAIST Takayuki Nakamura, Kazunori Terada,

More information

Robo-Erectus Jr-2013 KidSize Team Description Paper.

Robo-Erectus Jr-2013 KidSize Team Description Paper. Robo-Erectus Jr-2013 KidSize Team Description Paper. Buck Sin Ng, Carlos A. Acosta Calderon and Changjiu Zhou. Advanced Robotics and Intelligent Control Centre, Singapore Polytechnic, 500 Dover Road, 139651,

More information

Optic Flow Based Skill Learning for A Humanoid to Trap, Approach to, and Pass a Ball

Optic Flow Based Skill Learning for A Humanoid to Trap, Approach to, and Pass a Ball Optic Flow Based Skill Learning for A Humanoid to Trap, Approach to, and Pass a Ball Masaki Ogino 1, Masaaki Kikuchi 1, Jun ichiro Ooga 1, Masahiro Aono 1 and Minoru Asada 1,2 1 Dept. of Adaptive Machine

More information

Confidence-Based Multi-Robot Learning from Demonstration

Confidence-Based Multi-Robot Learning from Demonstration Int J Soc Robot (2010) 2: 195 215 DOI 10.1007/s12369-010-0060-0 Confidence-Based Multi-Robot Learning from Demonstration Sonia Chernova Manuela Veloso Accepted: 5 May 2010 / Published online: 19 May 2010

More information

Team Description Paper: Darmstadt Dribblers & Hajime Team (KidSize) and Darmstadt Dribblers (TeenSize)

Team Description Paper: Darmstadt Dribblers & Hajime Team (KidSize) and Darmstadt Dribblers (TeenSize) Team Description Paper: Darmstadt Dribblers & Hajime Team (KidSize) and Darmstadt Dribblers (TeenSize) Martin Friedmann 1, Jutta Kiener 1, Robert Kratz 1, Sebastian Petters 1, Hajime Sakamoto 2, Maximilian

More information

NuBot Team Description Paper 2008

NuBot Team Description Paper 2008 NuBot Team Description Paper 2008 1 Hui Zhang, 1 Huimin Lu, 3 Xiangke Wang, 3 Fangyi Sun, 2 Xiucai Ji, 1 Dan Hai, 1 Fei Liu, 3 Lianhu Cui, 1 Zhiqiang Zheng College of Mechatronics and Automation National

More information

Prof. Emil M. Petriu 17 January 2005 CEG 4392 Computer Systems Design Project (Winter 2005)

Prof. Emil M. Petriu 17 January 2005 CEG 4392 Computer Systems Design Project (Winter 2005) Project title: Optical Path Tracking Mobile Robot with Object Picking Project number: 1 A mobile robot controlled by the Altera UP -2 board and/or the HC12 microprocessor will have to pick up and drop

More information

Fuzzy Logic for Behaviour Co-ordination and Multi-Agent Formation in RoboCup

Fuzzy Logic for Behaviour Co-ordination and Multi-Agent Formation in RoboCup Fuzzy Logic for Behaviour Co-ordination and Multi-Agent Formation in RoboCup Hakan Duman and Huosheng Hu Department of Computer Science University of Essex Wivenhoe Park, Colchester CO4 3SQ United Kingdom

More information

LEVELS OF MULTI-ROBOT COORDINATION FOR DYNAMIC ENVIRONMENTS

LEVELS OF MULTI-ROBOT COORDINATION FOR DYNAMIC ENVIRONMENTS LEVELS OF MULTI-ROBOT COORDINATION FOR DYNAMIC ENVIRONMENTS Colin P. McMillen, Paul E. Rybski, Manuela M. Veloso School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213, U.S.A. mcmillen@cs.cmu.edu,

More information

CMRoboBits: Creating an Intelligent AIBO Robot

CMRoboBits: Creating an Intelligent AIBO Robot CMRoboBits: Creating an Intelligent AIBO Robot Manuela Veloso, Scott Lenser, Douglas Vail, Paul Rybski, Nick Aiwazian, and Sonia Chernova - Thanks to James Bruce Computer Science Department Carnegie Mellon

More information

Robocup Electrical Team 2006 Description Paper

Robocup Electrical Team 2006 Description Paper Robocup Electrical Team 2006 Description Paper Name: Strive2006 (Shanghai University, P.R.China) Address: Box.3#,No.149,Yanchang load,shanghai, 200072 Email: wanmic@163.com Homepage: robot.ccshu.org Abstract:

More information

Using Reactive and Adaptive Behaviors to Play Soccer

Using Reactive and Adaptive Behaviors to Play Soccer AI Magazine Volume 21 Number 3 (2000) ( AAAI) Articles Using Reactive and Adaptive Behaviors to Play Soccer Vincent Hugel, Patrick Bonnin, and Pierre Blazevic This work deals with designing simple behaviors

More information

Creating a 3D environment map from 2D camera images in robotics

Creating a 3D environment map from 2D camera images in robotics Creating a 3D environment map from 2D camera images in robotics J.P. Niemantsverdriet jelle@niemantsverdriet.nl 4th June 2003 Timorstraat 6A 9715 LE Groningen student number: 0919462 internal advisor:

More information

The Sony AIBO: Using IR for Maze Navigation

The Sony AIBO: Using IR for Maze Navigation The Sony AIBO: Using IR for Maze Navigation Kyle Lawton and Elizabeth Shrecengost Abstract The goal of this project was to design a behavior that allows the Sony AIBO to navigate and explore a maze. This

More information

RoboCup: Not Only a Robotics Soccer Game but also a New Market Created for Future

RoboCup: Not Only a Robotics Soccer Game but also a New Market Created for Future RoboCup: Not Only a Robotics Soccer Game but also a New Market Created for Future Kuo-Yang Tu Institute of Systems and Control Engineering National Kaohsiung First University of Science and Technology

More information

Dutch Nao Team. Team Description for Robocup Eindhoven, The Netherlands November 8, 2012

Dutch Nao Team. Team Description for Robocup Eindhoven, The Netherlands  November 8, 2012 Dutch Nao Team Team Description for Robocup 2013 - Eindhoven, The Netherlands http://www.dutchnaoteam.nl November 8, 2012 Duncan ten Velthuis, Camiel Verschoor, Auke Wiggers, Hessel van der Molen, Tijmen

More information

High Speed vslam Using System-on-Chip Based Vision. Jörgen Lidholm Mälardalen University Västerås, Sweden

High Speed vslam Using System-on-Chip Based Vision. Jörgen Lidholm Mälardalen University Västerås, Sweden High Speed vslam Using System-on-Chip Based Vision Jörgen Lidholm Mälardalen University Västerås, Sweden jorgen.lidholm@mdh.se February 28, 2007 1 The ChipVision Project Within the ChipVision project we

More information

Chapter 31. Intelligent System Architectures

Chapter 31. Intelligent System Architectures Chapter 31. Intelligent System Architectures The Quest for Artificial Intelligence, Nilsson, N. J., 2009. Lecture Notes on Artificial Intelligence, Spring 2012 Summarized by Jang, Ha-Young and Lee, Chung-Yeon

More information

Ensuring the Safety of an Autonomous Robot in Interaction with Children

Ensuring the Safety of an Autonomous Robot in Interaction with Children Machine Learning in Robot Assisted Therapy Ensuring the Safety of an Autonomous Robot in Interaction with Children Challenges and Considerations Stefan Walke stefan.walke@tum.de SS 2018 Overview Physical

More information

Using Reactive Deliberation for Real-Time Control of Soccer-Playing Robots

Using Reactive Deliberation for Real-Time Control of Soccer-Playing Robots Using Reactive Deliberation for Real-Time Control of Soccer-Playing Robots Yu Zhang and Alan K. Mackworth Department of Computer Science, University of British Columbia, Vancouver B.C. V6T 1Z4, Canada,

More information

Handling Diverse Information Sources: Prioritized Multi-Hypothesis World Modeling

Handling Diverse Information Sources: Prioritized Multi-Hypothesis World Modeling Handling Diverse Information Sources: Prioritized Multi-Hypothesis World Modeling Paul E. Rybski December 2006 CMU-CS-06-182 Manuela M. Veloso School of Computer Science Carnegie Mellon University Pittsburgh,

More information

The Future of AI A Robotics Perspective

The Future of AI A Robotics Perspective The Future of AI A Robotics Perspective Wolfram Burgard Autonomous Intelligent Systems Department of Computer Science University of Freiburg Germany The Future of AI My Robotics Perspective Wolfram Burgard

More information

Global Variable Team Description Paper RoboCup 2018 Rescue Virtual Robot League

Global Variable Team Description Paper RoboCup 2018 Rescue Virtual Robot League Global Variable Team Description Paper RoboCup 2018 Rescue Virtual Robot League Tahir Mehmood 1, Dereck Wonnacot 2, Arsalan Akhter 3, Ammar Ajmal 4, Zakka Ahmed 5, Ivan de Jesus Pereira Pinto 6,,Saad Ullah

More information

Physics-Based Manipulation in Human Environments

Physics-Based Manipulation in Human Environments Vol. 31 No. 4, pp.353 357, 2013 353 Physics-Based Manipulation in Human Environments Mehmet R. Dogar Siddhartha S. Srinivasa The Robotics Institute, School of Computer Science, Carnegie Mellon University

More information

Strategy for Collaboration in Robot Soccer

Strategy for Collaboration in Robot Soccer Strategy for Collaboration in Robot Soccer Sng H.L. 1, G. Sen Gupta 1 and C.H. Messom 2 1 Singapore Polytechnic, 500 Dover Road, Singapore {snghl, SenGupta }@sp.edu.sg 1 Massey University, Auckland, New

More information

Artificial Beacons with RGB-D Environment Mapping for Indoor Mobile Robot Localization

Artificial Beacons with RGB-D Environment Mapping for Indoor Mobile Robot Localization Sensors and Materials, Vol. 28, No. 6 (2016) 695 705 MYU Tokyo 695 S & M 1227 Artificial Beacons with RGB-D Environment Mapping for Indoor Mobile Robot Localization Chun-Chi Lai and Kuo-Lan Su * Department

More information

EXPLORING THE PERFORMANCE OF THE IROBOT CREATE FOR OBJECT RELOCATION IN OUTER SPACE

EXPLORING THE PERFORMANCE OF THE IROBOT CREATE FOR OBJECT RELOCATION IN OUTER SPACE EXPLORING THE PERFORMANCE OF THE IROBOT CREATE FOR OBJECT RELOCATION IN OUTER SPACE Mr. Hasani Burns Advisor: Dr. Chutima Boonthum-Denecke Hampton University Abstract This research explores the performance

More information

Cooperative Distributed Vision for Mobile Robots Emanuele Menegatti, Enrico Pagello y Intelligent Autonomous Systems Laboratory Department of Informat

Cooperative Distributed Vision for Mobile Robots Emanuele Menegatti, Enrico Pagello y Intelligent Autonomous Systems Laboratory Department of Informat Cooperative Distributed Vision for Mobile Robots Emanuele Menegatti, Enrico Pagello y Intelligent Autonomous Systems Laboratory Department of Informatics and Electronics University ofpadua, Italy y also

More information

SPQR RoboCup 2016 Standard Platform League Qualification Report

SPQR RoboCup 2016 Standard Platform League Qualification Report SPQR RoboCup 2016 Standard Platform League Qualification Report V. Suriani, F. Riccio, L. Iocchi, D. Nardi Dipartimento di Ingegneria Informatica, Automatica e Gestionale Antonio Ruberti Sapienza Università

More information

MINHO ROBOTIC FOOTBALL TEAM. Carlos Machado, Sérgio Sampaio, Fernando Ribeiro

MINHO ROBOTIC FOOTBALL TEAM. Carlos Machado, Sérgio Sampaio, Fernando Ribeiro MINHO ROBOTIC FOOTBALL TEAM Carlos Machado, Sérgio Sampaio, Fernando Ribeiro Grupo de Automação e Robótica, Department of Industrial Electronics, University of Minho, Campus de Azurém, 4800 Guimarães,

More information

The magmaoffenburg 2013 RoboCup 3D Simulation Team

The magmaoffenburg 2013 RoboCup 3D Simulation Team The magmaoffenburg 2013 RoboCup 3D Simulation Team Klaus Dorer, Stefan Glaser 1 Hochschule Offenburg, Elektrotechnik-Informationstechnik, Germany Abstract. This paper describes the magmaoffenburg 3D simulation

More information

Field Rangers Team Description Paper

Field Rangers Team Description Paper Field Rangers Team Description Paper Yusuf Pranggonoh, Buck Sin Ng, Tianwu Yang, Ai Ling Kwong, Pik Kong Yue, Changjiu Zhou Advanced Robotics and Intelligent Control Centre (ARICC), Singapore Polytechnic,

More information

Team KMUTT: Team Description Paper

Team KMUTT: Team Description Paper Team KMUTT: Team Description Paper Thavida Maneewarn, Xye, Pasan Kulvanit, Sathit Wanitchaikit, Panuvat Sinsaranon, Kawroong Saktaweekulkit, Nattapong Kaewlek Djitt Laowattana King Mongkut s University

More information

An Experimental Comparison of Path Planning Techniques for Teams of Mobile Robots

An Experimental Comparison of Path Planning Techniques for Teams of Mobile Robots An Experimental Comparison of Path Planning Techniques for Teams of Mobile Robots Maren Bennewitz Wolfram Burgard Department of Computer Science, University of Freiburg, 7911 Freiburg, Germany maren,burgard

More information

Plan Execution Monitoring through Detection of Unmet Expectations about Action Outcomes

Plan Execution Monitoring through Detection of Unmet Expectations about Action Outcomes Plan Execution Monitoring through Detection of Unmet Expectations about Action Outcomes Juan Pablo Mendoza 1, Manuela Veloso 2 and Reid Simmons 3 Abstract Modeling the effects of actions based on the state

More information

Multi-Agent Control Structure for a Vision Based Robot Soccer System

Multi-Agent Control Structure for a Vision Based Robot Soccer System Multi- Control Structure for a Vision Based Robot Soccer System Yangmin Li, Wai Ip Lei, and Xiaoshan Li Department of Electromechanical Engineering Faculty of Science and Technology University of Macau

More information

Team TH-MOS. Liu Xingjie, Wang Qian, Qian Peng, Shi Xunlei, Cheng Jiakai Department of Engineering physics, Tsinghua University, Beijing, China

Team TH-MOS. Liu Xingjie, Wang Qian, Qian Peng, Shi Xunlei, Cheng Jiakai Department of Engineering physics, Tsinghua University, Beijing, China Team TH-MOS Liu Xingjie, Wang Qian, Qian Peng, Shi Xunlei, Cheng Jiakai Department of Engineering physics, Tsinghua University, Beijing, China Abstract. This paper describes the design of the robot MOS

More information

Robotic Systems ECE 401RB Fall 2007

Robotic Systems ECE 401RB Fall 2007 The following notes are from: Robotic Systems ECE 401RB Fall 2007 Lecture 14: Cooperation among Multiple Robots Part 2 Chapter 12, George A. Bekey, Autonomous Robots: From Biological Inspiration to Implementation

More information

Artificial Neural Network based Mobile Robot Navigation

Artificial Neural Network based Mobile Robot Navigation Artificial Neural Network based Mobile Robot Navigation István Engedy Budapest University of Technology and Economics, Department of Measurement and Information Systems, Magyar tudósok körútja 2. H-1117,

More information

FalconBots RoboCup Humanoid Kid -Size 2014 Team Description Paper. Minero, V., Juárez, J.C., Arenas, D. U., Quiroz, J., Flores, J.A.

FalconBots RoboCup Humanoid Kid -Size 2014 Team Description Paper. Minero, V., Juárez, J.C., Arenas, D. U., Quiroz, J., Flores, J.A. FalconBots RoboCup Humanoid Kid -Size 2014 Team Description Paper Minero, V., Juárez, J.C., Arenas, D. U., Quiroz, J., Flores, J.A. Robotics Application Workshop, Instituto Tecnológico Superior de San

More information

Task-Based Dialog Interactions of the CoBot Service Robots

Task-Based Dialog Interactions of the CoBot Service Robots Task-Based Dialog Interactions of the CoBot Service Robots Manuela Veloso, Vittorio Perera, Stephanie Rosenthal Computer Science Department Carnegie Mellon University Thanks to Joydeep Biswas, Brian Coltin,

More information

Robo-Erectus Tr-2010 TeenSize Team Description Paper.

Robo-Erectus Tr-2010 TeenSize Team Description Paper. Robo-Erectus Tr-2010 TeenSize Team Description Paper. Buck Sin Ng, Carlos A. Acosta Calderon, Nguyen The Loan, Guohua Yu, Chin Hock Tey, Pik Kong Yue and Changjiu Zhou. Advanced Robotics and Intelligent

More information

Does JoiTech Messi dream of RoboCup Goal?

Does JoiTech Messi dream of RoboCup Goal? Does JoiTech Messi dream of RoboCup Goal? Yuji Oshima, Dai Hirose, Syohei Toyoyama, Keisuke Kawano, Shibo Qin, Tomoya Suzuki, Kazumasa Shibata, Takashi Takuma and Minoru Asada Dept. of Adaptive Machine

More information

COMP219: Artificial Intelligence. Lecture 2: AI Problems and Applications

COMP219: Artificial Intelligence. Lecture 2: AI Problems and Applications COMP219: Artificial Intelligence Lecture 2: AI Problems and Applications 1 Introduction Last time General module information Characterisation of AI and what it is about Today Overview of some common AI

More information

How Students Teach Robots to Think The Example of the Vienna Cubes a Robot Soccer Team

How Students Teach Robots to Think The Example of the Vienna Cubes a Robot Soccer Team How Students Teach Robots to Think The Example of the Vienna Cubes a Robot Soccer Team Robert Pucher Paul Kleinrath Alexander Hofmann Fritz Schmöllebeck Department of Electronic Abstract: Autonomous Robot

More information

The UPennalizers RoboCup Standard Platform League Team Description Paper 2017

The UPennalizers RoboCup Standard Platform League Team Description Paper 2017 The UPennalizers RoboCup Standard Platform League Team Description Paper 2017 Yongbo Qian, Xiang Deng, Alex Baucom and Daniel D. Lee GRASP Lab, University of Pennsylvania, Philadelphia PA 19104, USA, https://www.grasp.upenn.edu/

More information

The Dutch AIBO Team 2004

The Dutch AIBO Team 2004 The Dutch AIBO Team 2004 Stijn Oomes 1, Pieter Jonker 2, Mannes Poel 3, Arnoud Visser 4, Marco Wiering 5 1 March 2004 1 DECIS Lab, Delft Cooperation on Intelligent Systems 2 Quantitative Imaging Group,

More information

An Open Robot Simulator Environment

An Open Robot Simulator Environment An Open Robot Simulator Environment Toshiyuki Ishimura, Takeshi Kato, Kentaro Oda, and Takeshi Ohashi Dept. of Artificial Intelligence, Kyushu Institute of Technology isshi@mickey.ai.kyutech.ac.jp Abstract.

More information

Autonomous Localization

Autonomous Localization Autonomous Localization Jennifer Zheng, Maya Kothare-Arora I. Abstract This paper presents an autonomous localization service for the Building-Wide Intelligence segbots at the University of Texas at Austin.

More information

The CMUnited-97 Robotic Soccer Team: Perception and Multiagent Control

The CMUnited-97 Robotic Soccer Team: Perception and Multiagent Control The CMUnited-97 Robotic Soccer Team: Perception and Multiagent Control Manuela Veloso Peter Stone Kwun Han Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213 mmv,pstone,kwunh @cs.cmu.edu

More information

CORC 3303 Exploring Robotics. Why Teams?

CORC 3303 Exploring Robotics. Why Teams? Exploring Robotics Lecture F Robot Teams Topics: 1) Teamwork and Its Challenges 2) Coordination, Communication and Control 3) RoboCup Why Teams? It takes two (or more) Such as cooperative transportation:

More information

MCT Susano Logics 2017 Team Description

MCT Susano Logics 2017 Team Description MCT Susano Logics 2017 Team Description Kazuhiro Fujihara, Hiroki Kadobayashi, Mitsuhiro Omura, Toru Komatsu, Koki Inoue, Masashi Abe, Toshiyuki Beppu National Institute of Technology, Matsue College,

More information

Team TH-MOS Abstract. Keywords. 1 Introduction 2 Hardware and Electronics

Team TH-MOS Abstract. Keywords. 1 Introduction 2 Hardware and Electronics Team TH-MOS Pei Ben, Cheng Jiakai, Shi Xunlei, Zhang wenzhe, Liu xiaoming, Wu mian Department of Mechanical Engineering, Tsinghua University, Beijing, China Abstract. This paper describes the design of

More information

Robot Motion Control and Planning

Robot Motion Control and Planning Robot Motion Control and Planning http://www.cs.bilkent.edu.tr/~saranli/courses/cs548 Lecture 1 Introduction and Logistics Uluç Saranlı http://www.cs.bilkent.edu.tr/~saranli CS548 - Robot Motion Control

More information

Turtlebot Laser Tag. Jason Grant, Joe Thompson {jgrant3, University of Notre Dame Notre Dame, IN 46556

Turtlebot Laser Tag. Jason Grant, Joe Thompson {jgrant3, University of Notre Dame Notre Dame, IN 46556 Turtlebot Laser Tag Turtlebot Laser Tag was a collaborative project between Team 1 and Team 7 to create an interactive and autonomous game of laser tag. Turtlebots communicated through a central ROS server

More information

ZJUDancer Team Description Paper Humanoid Kid-Size League of Robocup 2015

ZJUDancer Team Description Paper Humanoid Kid-Size League of Robocup 2015 ZJUDancer Team Description Paper Humanoid Kid-Size League of Robocup 2015 Yu DongDong, Liu Yun, Zhou Chunlin, and Xiong Rong State Key Lab. of Industrial Control Technology, Zhejiang University, Hangzhou,

More information

Nao Devils Dortmund. Team Description for RoboCup Matthias Hofmann, Ingmar Schwarz, and Oliver Urbann

Nao Devils Dortmund. Team Description for RoboCup Matthias Hofmann, Ingmar Schwarz, and Oliver Urbann Nao Devils Dortmund Team Description for RoboCup 2014 Matthias Hofmann, Ingmar Schwarz, and Oliver Urbann Robotics Research Institute Section Information Technology TU Dortmund University 44221 Dortmund,

More information

CSE-571 AI-based Mobile Robotics

CSE-571 AI-based Mobile Robotics CSE-571 AI-based Mobile Robotics Approximation of POMDPs: Active Localization Localization so far: passive integration of sensor information Active Sensing and Reinforcement Learning 19 m 26.5 m Active

More information

EROS TEAM. Team Description for Humanoid Kidsize League of Robocup2013

EROS TEAM. Team Description for Humanoid Kidsize League of Robocup2013 EROS TEAM Team Description for Humanoid Kidsize League of Robocup2013 Azhar Aulia S., Ardiansyah Al-Faruq, Amirul Huda A., Edwin Aditya H., Dimas Pristofani, Hans Bastian, A. Subhan Khalilullah, Dadet

More information

Advanced Techniques for Mobile Robotics Location-Based Activity Recognition

Advanced Techniques for Mobile Robotics Location-Based Activity Recognition Advanced Techniques for Mobile Robotics Location-Based Activity Recognition Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz Activity Recognition Based on L. Liao, D. J. Patterson, D. Fox,

More information

The Intel Science and Technology Center for Pervasive Computing

The Intel Science and Technology Center for Pervasive Computing The Intel Science and Technology Center for Pervasive Computing Investing in New Levels of Academic Collaboration Rajiv Mathur, Program Director ISTC-PC Anthony LaMarca, Intel Principal Investigator Professor

More information

ER-Force Team Description Paper for RoboCup 2010

ER-Force Team Description Paper for RoboCup 2010 ER-Force Team Description Paper for RoboCup 2010 Peter Blank, Michael Bleier, Jan Kallwies, Patrick Kugler, Dominik Lahmann, Philipp Nordhus, Christian Riess Robotic Activities Erlangen e.v. Pattern Recognition

More information

NimbRo 2005 Team Description

NimbRo 2005 Team Description In: RoboCup 2005 Humanoid League Team Descriptions, Osaka, July 2005. NimbRo 2005 Team Description Sven Behnke, Maren Bennewitz, Jürgen Müller, and Michael Schreiber Albert-Ludwigs-University of Freiburg,

More information