Skuba 2007 Team Description

Size: px
Start display at page:

Download "Skuba 2007 Team Description"

Transcription

1 Skuba 2007 Team Description Jirat Srisabye 1,1, Napat Parkpien 1,1, Poom Kongniratsiakul 1,1, Phachachon Hoonsuwan 1,2, Saran Bowarnkitiwong 1,1, Marut Archawananthakul 1,1, Ratchai Dumnernkittikul 1,1, Santi Chongkaonar 1,1, Anuchit Ratanaparadorn 1,1, Chayaporn Keawpromman 1,1, Varut Limnirunkul 1,1, and Yodyium Tipsuwan 1,1 1 Department of Computer Engineering, 2 Department of Electrical Engineering, Faculty of Engineering, Kasetsart University, 50 Phaholyothin Rd, Ladyao Jatujak, Bangkok 10900, jirat_o@hotmail.com, Abstract. In this paper we describe the Skuba Small-Size League team, which are designed to meet the rules for participation in the RoboCup World Championship 2007 in Atlanta, USA. The overview describes both the robot hardware and the overall software architecture of our team. Keywords: Small-size, Robocup, Vision, Robot Control, Artificial Intelligence. 1 Introduction The Skuba team has started its work at Intelligent Mechatronic Laboratory in Kasetsart University since Our team had participated at the small size league of Robocup World Championship 2006 in Bremen, Germany. In the last participation, we gained valuable experience and could evaluate our team s strength and weakness points. RoboCup is an international joint project to promote AI, robotics and computer vision. In the Small Size League, two teams of five robots, which are 18 cm in diameter, play soccer on a 4 by 5.4 m carpeted soccer field. We have a team in the Small Size League (SSL) with four main components: the vision system, the AI system, five robots and the referee box. The vision system process two video signals from the cameras mounted on top of the field. It computes the positions and the orientations of the ball and robots on the field then transmit the information back to the AI system.

2 The AI system receives the information and makes strategic decisions. The decisions are converted to commands that are sent back to the robots via a wireless link. The robots execute these commands and set actions as ordered by the AI system. In this paper we analyze these some main topics. In the following section we give an overview of our robot base focusing on the mechanical and electrical. In the third section we describe the vision system. And in the fourth section we explain our AI architecture. 2 Robots In this section, we describe the overview of both our robots mechanical and electrical design. 2.1 Mechanical design The Skuba's robots have a mass of 2.8 kilograms (include battery). The robots which we used at RoboCup 2006 in Bremen are shown in figure 1. Currently, we have done some modifications to the mechanical structure of robots for better ball handling and stronger kicking system. Fig.1. Skuba s 2006 Robot Kicker design We combine two kicking mechanisms in a small area as seen in Figure 2. One kicking mechanism kicks the ball flat across the field. The second kicking mechanism shifts the ball over obstacles. Both two mechanisms are driven by push type solenoid. This year we have modified the surface of the kick face to increase the kicking precision and we add power of kick by increase capacitor size to 9900UF 250VDC.

3 Fig.2. Skuba s new kicker design Omnidirectional wheels Omnidirectional wheels allow robot to drive on a straight path without pre rotation. Our omnidirectional are shown in figure 3. Fig.3. our omnidirectional wheel design (left) and four wheeled robot (right). We use four omnidirectional wheels in each robot. Wheel positions are located at 33,147,225 and 315 degree of each robot, respectively. To drive a robot, we use four DC motors (Faulhaber 6V 2224SR [1]) with external gear head reduction ratio of 13.5:1 along with four quadrature encoders with 512 pulses per revolution Dribbling design The Skuba's dribbling device is a rotating silicone cylinder. A 6 Volt 2224 Faulhaber drives the shaft onto which the silicone is wrapped. A 4.3:1 internal gearbox is used between the motor and the shaft.

4 2.2 Electrical design Last year, the major problem was slipping wheels. We determined that we wanted to solve the problem of robot control by using local sensing of the robot. We use a rate gyroscope to measure rotational velocity and one dual axis accelerometer to measure two degrees of translational acceleration. Our local control loop diagram is shown in figure 4. Fig.4. Local control loop diagram Rate Gyroscope We use the rate gyro, Analog Devices [2] ADXRS300 to measure the angular velocity of the robot. We designed the Butterworth low-pass filter [3] with 3rd filter order and connect the signal to main microcontroller A/D input Accelerometer We use an Analog Devices ADXL202E accelerometer, which have two axes for x and y directions. The accelerometer output is two sets of pulse that represent acceleration in each direction. The time associated with the pulses that indicate acceleration which are read by two input capture pins on the main microcontroller Microcontroller board The microcontroller board uses five Microchip's dspic30f2010 [4] 16 bit microcontroller. We use four microcontrollers to execute the low level motor control loop and use one to executes the local sensing control loop. The dspic30f2010 MCU has several peripheral such as output comparator, 12-bit ADC, UART, SPI, and QEI (Quadrature Encoder Interface). The frequency used in our system is MHz but we multiply it by phase lock-loop parameter that set to 16 (118 MHz).

5 2.2.4 Wireless communication Wireless communication is controlled by two Radiometrix BIM and BIM [5] transceivers with radio frequency at either 914MHz or 433MHz. The transceiver module is a self-contained plug-in radio incorporating a 64kbit/s packet controller with a serial port interface. Furthermore, our main MCU board can use a TRF-2.4GHz [6], which can support up to 125 different communication channels Batteries The Skuba robots are powered by Sanyo NIMH [7] (Nickel Metal Hydride) 5000 mah 12.0V batteries. The batteries are split into 2 sets of ten cells each. The robots are currently able to last 30 minutes on one set of batteries. Fig.5. CAD model of Skuba s 2007 robot

6 2 Vision system The main problem with the Skuba s vision system 2006 was the latency that is the time it takes from when an image is first captured until object information from that image is sent to the AI computer. Testing revealed that the Skuba vision 2006 system had a latency of 3-5 frames (about 150 milliseconds). Currently, we solve the latency problem by filtering and prediction of vision data. Our vision structure diagram is shown in figure 6. Fig.6. Skuba s vision structure 2.1 Vision Client Capture Device. The Skuba vision apply the global vision and use the output signal of a top-mounted PAL camera as the input signal of a low cost capture card. We employ 3CCD camcorder which is capable of grabbing 640 x 480 images at 50 Hz (even and odd line). Preprocessing. The preprocessing is used to improve the quality of the image by image processing filter.

7 Transform Color Space. The image that is captured by capture device is RGB space, which is a common format for image display and manipulation, and is provided directly by most video capture hardware. It is the main problem lies in the intensity value of light and shadow being spread across all three parameters. This makes it difficult to threshold. We transform color model to the HSV space, which consists of a hue, a saturate and a value. The HSV space is more stable than RGB space in different light properties. Color Segmentation. The color segmentation assigns each image pixel into color classes. Our approach is single-pixel classification into discrete classes [8]. Object localization. After color segmentation, we receive all the color regions. The filtering process discards incorrect regions. Then, object localization computes the position and orientation of objects in the field from the final regions. Local object tracker. We acquire all vision objects from object localization. Then, all objects are tagged with coordinates and other properties to simplify process after that. Our approach is working by comparing the latest data to the current data, and uses the nearest data by Euclidean distance. Fig.7. Skuba s new vision client

8 2.2 Vision Server Matching vision data. The matching vision data use for merge and match vision data from two vision clients. Filter vision data. Vision data which is receive from vision client has a lot of noise, so we need to filter it. Our approach is working by Kalman s filter [9] to decrease noise. Global object tracker. The Global object tracker has a same function as the local object tracker, but it tracks final data from two vision clients. Predict vision data. Currently, our approach is a linear predictor [10] that is a simple method. In addition, we plan to use the neural network prediction [10] instead because our robot model is non-linear. Transmit to AI. This component consists of network link used for communication between the vision system and the AI system that process on separate PC. 2.3 Camera Calibration Camera calibration is a part in Object localization. We compute the internal and external parameters of the cameras using the Tsai [11] algorithm. These parameters are used to correct the distortion produced by the camera lenses. Fig.8. Camera calibration toolkits

9 3 AI Structure Skuba has a hierarchical model in our AI structure. The game receives vision data and referee command then selects a play which relate with referee command. Whenever a play is executed it calls role that is the action functions for all positions present. The role functions then run skills for the related robots. Fig.9. Execute hierarchy 3.1 Path planning We use a modified potential field method [18] for robot navigation. The potential field method of avoiding obstacles consists of evaluating a repulsive force for each obstacle. The attractive force, that tends to drive the robot to its target, accelerates the robot towards its target while the repulsive forces accelerate in the opposite direction of the obstacles.

10 3.2 Simulation A simulator is developed in order to develop hardware and software simultaneously. The simulator receives a sequence of packets that is identical to packets a sequence of packets that is sent to robots. The simulator then calculates some simple physics and returns the coordinate of objects in the field to the software as same as the vision system does. Fig.10. Visualization of the simulator 4 Conclusion The new hardware and software design has improved the speed, precision, and flexibility of our robots. With some filters, we could acquire precisely coordinates of all players. The simulator can be used efficiently to help developing both hardware and software. Skuba team is currently participating in Robocup Thailand Championship 2007, which is arranged in January. We hope our team would be qualified so we can play and share experience with other teams around the world.

11 References 1. Faulhaber Product Analog Devices Product Low pass Filter Design Microchip Product Radiometrix Product Electronic Source Product Sanyo s Battery Product Bruce, J., and Veloso, M.: Fast and accurate vision-based pattern detection and identification. In: Proceedings of the IEEE International Conference on Robotics and Automation, Taiwan (2003) 9. C. H. Messom, G. Sen Gupta, S. Demidenko and Lim Yuen Siong : Improving Predictive Control of a Mobile Robot: Application of Image Processing and Kalman Filtering. In: Proceedings of IMTC Instrumentation and Measurement Technology Conference Vail, CO, USA, May Sven Behnke, Anna Egorova, Alexander Gloye, Raúl Rojas, and Mark Simon.: Predicting away robot control latency. In: Proceedings of 7th RoboCup International Symposium, Padua, Italy, Tsai, R.Y.: A versatile camera calibration technique for high accuracy 3D machine vision using off-the-shell TV cameras and lenses. IEEE Journal of robotics and Automation, Simon, M., Behnke, S., and Rojas, R.:"Robust Real Time Color Tracking", P. Stone, T. Balch, G. Kraetzschmar (Eds.): RoboCup 2000: Robot Soccer. World Cup IV Spinger Verlag 2001, pp Zickler, S., Licitra, M.: RoboCup SSL 2005 Team Description: Wingers (University at Buffalo) Bruce, J., Zickler, S., Licitra, M. and Veloso M.: CMRoboDragons 2006 Team Description RoboCup 2006 symposium CDROM, team descriptions, (2006.6) 15. Bruce, J., Balch, T. and M. Veloso: Fast color image segmentation for interactive robots. In: Proceedings of the IEEE Conference on Intelligent Robots and Systems (IROS), Japan (2000) 16. Johannson, S.J., Saffiotti, A.: Using the Electric Field Approach in the RoboCup Domain. In Birk, A., Coradeschi, S., Tadokoro, S., eds.: RoboCup 2001: Robot Soccer World Cup V. Volume 2377 of Lecture Notes in Artificial Intelligence., Springer (2002) 17. Khatib, O.: Real-time Obstacle Avoidance for Manipulators and Mobile Robots. The International Journal of Robotics Research 5 (1986) 90 98) 18. Y. Koren and J. Borenstein: Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation. Proceedings of the IEEE Conference on Robotics and Automation, Sacramento, California, April 7-12, 1991, pp Tucker Balch and Ronald Arkin: Avoiding the Past: A Simple but Effective Strategy for Reactive Navigation. International Conference on Robotics and Automation, Tsai, R.Y., A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE Journal of Robotics and Automation, : p Bruce, J.: CMVision realtime color vision system. (The CORAL Group s Color Machine Vision Project) jbruce/cmvision/.

12 22. Y.P. Leow, K.H. Low and W.K. Loh Kinematic Modeling and Analysis of Mobile Robot with Omni Directional Wheels Proceedings of the Seventh International Conference On Automation, Robotics, Control And Vision, Singapore (2002) 23. Termtanasombat, N., Wongsaisuwan1, M., Chongstitvatana, P., Wannasuphoprasit, W.: Plazma-Z 2006 Team Description RoboCup 2006 symposium CDROM, team descriptions, (2006.6) 24. Velázquez1, Monserrat Muñoz and Alfredo Weitzenfeld.: EagleKnights 2006 Team Description RoboCup 2006 symposium CDROM, team descriptions, (2006.6) 25. E. Brookner, Tracking and Kalman Filtering Made Easy. A Wiley-Interscience Publication, Kalm`ar-Nagy, T., Ganguly, P., D Andrea, R.: Near-Optimal Dynamic Trajectory Generation and Control of an Omnidirectional Vehicle, submitted to International Journal of Robotics Research 27. D Andrea, R., Kalm`ar-Nagy, T., Ganguly, P., Babish, M.: The Cornell RoboCup Team, Stone P., Balch T., Kraetzschmar (Eds), Robocup 2000: Robot SoccerWorld Cup IV, Springer Verlag, Berlin, Muioz, V., Ollero, A., Prado, M., Simon, A.,Mobile robot trajectory planning with dynamics and kinematics constraints, in Proceedings of the IEEE lntemational Conference on Robotics and Automation, pp , 1994.

CMDragons 2009 Team Description

CMDragons 2009 Team Description CMDragons 2009 Team Description Stefan Zickler, Michael Licitra, Joydeep Biswas, and Manuela Veloso Carnegie Mellon University {szickler,mmv}@cs.cmu.edu {mlicitra,joydeep}@andrew.cmu.edu Abstract. In this

More information

Multi Robot Systems: The EagleKnights/RoboBulls Small- Size League RoboCup Architecture

Multi Robot Systems: The EagleKnights/RoboBulls Small- Size League RoboCup Architecture Multi Robot Systems: The EagleKnights/RoboBulls Small- Size League RoboCup Architecture Alfredo Weitzenfeld University of South Florida Computer Science and Engineering Department Tampa, FL 33620-5399

More information

Field Rangers Team Description Paper

Field Rangers Team Description Paper Field Rangers Team Description Paper Yusuf Pranggonoh, Buck Sin Ng, Tianwu Yang, Ai Ling Kwong, Pik Kong Yue, Changjiu Zhou Advanced Robotics and Intelligent Control Centre (ARICC), Singapore Polytechnic,

More information

CMDragons 2008 Team Description

CMDragons 2008 Team Description CMDragons 2008 Team Description Stefan Zickler, Douglas Vail, Gabriel Levi, Philip Wasserman, James Bruce, Michael Licitra, and Manuela Veloso Carnegie Mellon University {szickler,dvail2,jbruce,mlicitra,mmv}@cs.cmu.edu

More information

CMDragons 2006 Team Description

CMDragons 2006 Team Description CMDragons 2006 Team Description James Bruce, Stefan Zickler, Mike Licitra, and Manuela Veloso Carnegie Mellon University Pittsburgh, Pennsylvania, USA {jbruce,szickler,mlicitra,mmv}@cs.cmu.edu Abstract.

More information

NUST FALCONS. Team Description for RoboCup Small Size League, 2011

NUST FALCONS. Team Description for RoboCup Small Size League, 2011 1. Introduction: NUST FALCONS Team Description for RoboCup Small Size League, 2011 Arsalan Akhter, Muhammad Jibran Mehfooz Awan, Ali Imran, Salman Shafqat, M. Aneeq-uz-Zaman, Imtiaz Noor, Kanwar Faraz,

More information

Hanuman KMUTT: Team Description Paper

Hanuman KMUTT: Team Description Paper Hanuman KMUTT: Team Description Paper Wisanu Jutharee, Sathit Wanitchaikit, Boonlert Maneechai, Natthapong Kaewlek, Thanniti Khunnithiwarawat, Pongsakorn Polchankajorn, Nakarin Suppakun, Narongsak Tirasuntarakul,

More information

FU-Fighters. The Soccer Robots of Freie Universität Berlin. Why RoboCup? What is RoboCup?

FU-Fighters. The Soccer Robots of Freie Universität Berlin. Why RoboCup? What is RoboCup? The Soccer Robots of Freie Universität Berlin We have been building autonomous mobile robots since 1998. Our team, composed of students and researchers from the Mathematics and Computer Science Department,

More information

KIKS 2013 Team Description Paper

KIKS 2013 Team Description Paper KIKS 2013 Team Description Paper Takaya Asakura, Ryu Goto, Naomichi Fujii, Hiroshi Nagata, Kosuke Matsuoka, Tetsuya Sano, Masato Watanabe and Toko Sugiura Toyota National College of Technology, Department

More information

Baset Adult-Size 2016 Team Description Paper

Baset Adult-Size 2016 Team Description Paper Baset Adult-Size 2016 Team Description Paper Mojtaba Hosseini, Vahid Mohammadi, Farhad Jafari 2, Dr. Esfandiar Bamdad 1 1 Humanoid Robotic Laboratory, Robotic Center, Baset Pazhuh Tehran company. No383,

More information

Robocup Electrical Team 2006 Description Paper

Robocup Electrical Team 2006 Description Paper Robocup Electrical Team 2006 Description Paper Name: Strive2006 (Shanghai University, P.R.China) Address: Box.3#,No.149,Yanchang load,shanghai, 200072 Email: wanmic@163.com Homepage: robot.ccshu.org Abstract:

More information

MCT Susanoo Logics 2014 Team Description

MCT Susanoo Logics 2014 Team Description MCT Susanoo Logics 2014 Team Description Satoshi Takata, Yuji Horie, Shota Aoki, Kazuhiro Fujiwara, Taihei Degawa Matsue College of Technology 14-4, Nishiikumacho, Matsue-shi, Shimane, 690-8518, Japan

More information

Multi-Platform Soccer Robot Development System

Multi-Platform Soccer Robot Development System Multi-Platform Soccer Robot Development System Hui Wang, Han Wang, Chunmiao Wang, William Y. C. Soh Division of Control & Instrumentation, School of EEE Nanyang Technological University Nanyang Avenue,

More information

Predicting away robot control latency

Predicting away robot control latency Predicting away robot control latency Alexander Gloye, 1 Mark Simon, 1 Anna Egorova, 1 Fabian Wiesel, 1 Oliver Tenchio, 1 Michael Schreiber, 1 Sven Behnke, 2 and Raúl Rojas 1 Technical Report B-08-03 1

More information

RoboTurk 2014 Team Description

RoboTurk 2014 Team Description RoboTurk 2014 Team Description Semih İşeri 1, Meriç Sarıışık 1, Kadir Çetinkaya 2, Rüştü Irklı 1, JeanPierre Demir 1, Cem Recai Çırak 1 1 Department of Electrical and Electronics Engineering 2 Department

More information

2014 KIKS Extended Team Description

2014 KIKS Extended Team Description 2014 KIKS Extended Team Description Soya Okuda, Kosuke Matsuoka, Tetsuya Sano, Hiroaki Okubo, Yu Yamauchi, Hayato Yokota, Masato Watanabe and Toko Sugiura Toyota National College of Technology, Department

More information

How Students Teach Robots to Think The Example of the Vienna Cubes a Robot Soccer Team

How Students Teach Robots to Think The Example of the Vienna Cubes a Robot Soccer Team How Students Teach Robots to Think The Example of the Vienna Cubes a Robot Soccer Team Robert Pucher Paul Kleinrath Alexander Hofmann Fritz Schmöllebeck Department of Electronic Abstract: Autonomous Robot

More information

ER-Force Team Description Paper for RoboCup 2010

ER-Force Team Description Paper for RoboCup 2010 ER-Force Team Description Paper for RoboCup 2010 Peter Blank, Michael Bleier, Jan Kallwies, Patrick Kugler, Dominik Lahmann, Philipp Nordhus, Christian Riess Robotic Activities Erlangen e.v. Pattern Recognition

More information

Keywords: Multi-robot adversarial environments, real-time autonomous robots

Keywords: Multi-robot adversarial environments, real-time autonomous robots ROBOT SOCCER: A MULTI-ROBOT CHALLENGE EXTENDED ABSTRACT Manuela M. Veloso School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213, USA veloso@cs.cmu.edu Abstract Robot soccer opened

More information

STOx s 2014 Extended Team Description Paper

STOx s 2014 Extended Team Description Paper STOx s 2014 Extended Team Description Paper Saith Rodríguez, Eyberth Rojas, Katherín Pérez, Jorge López, Carlos Quintero, and Juan Manuel Calderón Faculty of Electronics Engineering Universidad Santo Tomás

More information

Team KMUTT: Team Description Paper

Team KMUTT: Team Description Paper Team KMUTT: Team Description Paper Thavida Maneewarn, Xye, Pasan Kulvanit, Sathit Wanitchaikit, Panuvat Sinsaranon, Kawroong Saktaweekulkit, Nattapong Kaewlek Djitt Laowattana King Mongkut s University

More information

KMUTT Kickers: Team Description Paper

KMUTT Kickers: Team Description Paper KMUTT Kickers: Team Description Paper Thavida Maneewarn, Xye, Korawit Kawinkhrue, Amnart Butsongka, Nattapong Kaewlek King Mongkut s University of Technology Thonburi, Institute of Field Robotics (FIBO)

More information

Bremen Small Multi Agent Robot Team (B-Smart) Team Description for RoboCup 2005

Bremen Small Multi Agent Robot Team (B-Smart) Team Description for RoboCup 2005 Bremen Small Multi Agent Robot Team (B-Smart) Team Description for RoboCup 2005 Jörg Kurlbaum, Tim Laue, Florian Penquitt, Marian Weirich Center for Computing Technology (TZI), FB 3 Mathematics and Informatics,

More information

Team Description Paper: HuroEvolution Humanoid Robot for Robocup 2010 Humanoid League

Team Description Paper: HuroEvolution Humanoid Robot for Robocup 2010 Humanoid League Team Description Paper: HuroEvolution Humanoid Robot for Robocup 2010 Humanoid League Chung-Hsien Kuo 1, Hung-Chyun Chou 1, Jui-Chou Chung 1, Po-Chung Chia 2, Shou-Wei Chi 1, Yu-De Lien 1 1 Department

More information

Parsian. Team Description for Robocup 2013

Parsian. Team Description for Robocup 2013 Parsian (Amirkabir Univ. Of Technology Robocup Small Size Team) Team Description for Robocup 2013 Seyed Mehdi Mohaimanian Pour, Vahid Mehrabi, Erfan Sheikhi, Masoud Kazemi, Alireza Saeidi, and Ali Pahlavani

More information

CS295-1 Final Project : AIBO

CS295-1 Final Project : AIBO CS295-1 Final Project : AIBO Mert Akdere, Ethan F. Leland December 20, 2005 Abstract This document is the final report for our CS295-1 Sensor Data Management Course Final Project: Project AIBO. The main

More information

BehRobot Humanoid Adult Size Team

BehRobot Humanoid Adult Size Team BehRobot Humanoid Adult Size Team Team Description Paper 2014 Mohammadreza Mohades Kasaei, Mohsen Taheri, Mohammad Rahimi, Ali Ahmadi, Ehsan Shahri, Saman Saraf, Yousof Geramiannejad, Majid Delshad, Farsad

More information

S.P.Q.R. Legged Team Report from RoboCup 2003

S.P.Q.R. Legged Team Report from RoboCup 2003 S.P.Q.R. Legged Team Report from RoboCup 2003 L. Iocchi and D. Nardi Dipartimento di Informatica e Sistemistica Universitá di Roma La Sapienza Via Salaria 113-00198 Roma, Italy {iocchi,nardi}@dis.uniroma1.it,

More information

KIKS 2010 Extended Team Description

KIKS 2010 Extended Team Description KIKS 2010 Extended Team Description Takato Horii 1, Ryuhei Sato 1, Hisayoshi Hattori 1, Yasuyuki Iwauchi 1, Shoma Mizutani 1, Shota Zenji 1, Kosei Baba 1, Kenji Inukai 1, Keitaro Inagaki 1, Hiroka Kanei

More information

Design and Implementation a Fully Autonomous Soccer Player Robot

Design and Implementation a Fully Autonomous Soccer Player Robot Design and Implementation a Fully Autonomous Soccer Player Robot S. H. Mohades Kasaei, S. M. Mohades Kasaei, S. A. Mohades Kasaei, M. Taheri, M. Rahimi, H. Vahiddastgerdi, and M. Saeidinezhad International

More information

Fernando Ribeiro, Gil Lopes, Davide Oliveira, Fátima Gonçalves, Júlio

Fernando Ribeiro, Gil Lopes, Davide Oliveira, Fátima Gonçalves, Júlio MINHO@home Rodrigues Fernando Ribeiro, Gil Lopes, Davide Oliveira, Fátima Gonçalves, Júlio Grupo de Automação e Robótica, Departamento de Electrónica Industrial, Universidade do Minho, Campus de Azurém,

More information

Minho MSL - A New Generation of soccer robots

Minho MSL - A New Generation of soccer robots Minho MSL - A New Generation of soccer robots Fernando Ribeiro, Gil Lopes, João Costa, João Pedro Rodrigues, Bruno Pereira, João Silva, Sérgio Silva, Paulo Ribeiro, Paulo Trigueiros Grupo de Automação

More information

RoboDragons 2017 Extended Team Description

RoboDragons 2017 Extended Team Description RoboDragons 2017 Extended Team Description Yusuke Adachi, Hiroyuki Kusakabe, Reona Suzuki, Jiale Du, Masahide Ito, and Tadashi Naruse Aichi Prefectural University, Nagakute, Aichi 480-1198, JAPAN Email:

More information

A Lego-Based Soccer-Playing Robot Competition For Teaching Design

A Lego-Based Soccer-Playing Robot Competition For Teaching Design Session 2620 A Lego-Based Soccer-Playing Robot Competition For Teaching Design Ronald A. Lessard Norwich University Abstract Course Objectives in the ME382 Instrumentation Laboratory at Norwich University

More information

Design a Modular Architecture for Autonomous Soccer Robot Based on Omnidirectional Mobility with Distributed Behavior Control

Design a Modular Architecture for Autonomous Soccer Robot Based on Omnidirectional Mobility with Distributed Behavior Control Design a Modular Architecture for Autonomous Soccer Robot Based on Omnidirectional Mobility with Distributed Behavior Control S.Hamidreza Kasaei, S.Mohammadreza Kasaei and S.Alireza Kasaei Abstract The

More information

NCCT IEEE PROJECTS ADVANCED ROBOTICS SOLUTIONS. Latest Projects, in various Domains. Promise for the Best Projects

NCCT IEEE PROJECTS ADVANCED ROBOTICS SOLUTIONS. Latest Projects, in various Domains. Promise for the Best Projects NCCT Promise for the Best Projects IEEE PROJECTS in various Domains Latest Projects, 2009-2010 ADVANCED ROBOTICS SOLUTIONS EMBEDDED SYSTEM PROJECTS Microcontrollers VLSI DSP Matlab Robotics ADVANCED ROBOTICS

More information

RoboDragons 2010 Team Description

RoboDragons 2010 Team Description RoboDragons 2010 Team Description Akeru Ishikawa, Takashi Sakai, Jousuke Nagai, Toro Inagaki, Hajime Sawaguchi, Yuji Nunome, Kazuhito Murakami and Tadashi Naruse Aichi Prefectural University, Nagakute-cho,

More information

Hierarchical Controller for Robotic Soccer

Hierarchical Controller for Robotic Soccer Hierarchical Controller for Robotic Soccer Byron Knoll Cognitive Systems 402 April 13, 2008 ABSTRACT RoboCup is an initiative aimed at advancing Artificial Intelligence (AI) and robotics research. This

More information

Team Description Paper: HuroEvolution Humanoid Robot for Robocup 2014 Humanoid League

Team Description Paper: HuroEvolution Humanoid Robot for Robocup 2014 Humanoid League Team Description Paper: HuroEvolution Humanoid Robot for Robocup 2014 Humanoid League Chung-Hsien Kuo, Yu-Cheng Kuo, Yu-Ping Shen, Chen-Yun Kuo, Yi-Tseng Lin 1 Department of Electrical Egineering, National

More information

RoboCup. Presented by Shane Murphy April 24, 2003

RoboCup. Presented by Shane Murphy April 24, 2003 RoboCup Presented by Shane Murphy April 24, 2003 RoboCup: : Today and Tomorrow What we have learned Authors Minoru Asada (Osaka University, Japan), Hiroaki Kitano (Sony CS Labs, Japan), Itsuki Noda (Electrotechnical(

More information

Fuzzy Logic for Behaviour Co-ordination and Multi-Agent Formation in RoboCup

Fuzzy Logic for Behaviour Co-ordination and Multi-Agent Formation in RoboCup Fuzzy Logic for Behaviour Co-ordination and Multi-Agent Formation in RoboCup Hakan Duman and Huosheng Hu Department of Computer Science University of Essex Wivenhoe Park, Colchester CO4 3SQ United Kingdom

More information

MRL Extended Team Description 2018

MRL Extended Team Description 2018 MRL Extended Team Description 2018 Amin Ganjali Poudeh, Vahid Khorasani Nejad, Arghavan Dalvand, Ali Rabbani Doost, Moein Amirian Keivanani, Hamed Shirazi, Saeid Esmaeelpourfard, Meisam Kassaeian Naeini,

More information

Robo-Erectus Jr-2013 KidSize Team Description Paper.

Robo-Erectus Jr-2013 KidSize Team Description Paper. Robo-Erectus Jr-2013 KidSize Team Description Paper. Buck Sin Ng, Carlos A. Acosta Calderon and Changjiu Zhou. Advanced Robotics and Intelligent Control Centre, Singapore Polytechnic, 500 Dover Road, 139651,

More information

The description of team KIKS

The description of team KIKS The description of team KIKS Keitaro YAMAUCHI 1, Takamichi YOSHIMOTO 2, Takashi HORII 3, Takeshi CHIKU 4, Masato WATANABE 5,Kazuaki ITOH 6 and Toko SUGIURA 7 Toyota National College of Technology Department

More information

* Intelli Robotic Wheel Chair for Specialty Operations & Physically Challenged

* Intelli Robotic Wheel Chair for Specialty Operations & Physically Challenged ADVANCED ROBOTICS SOLUTIONS * Intelli Mobile Robot for Multi Specialty Operations * Advanced Robotic Pick and Place Arm and Hand System * Automatic Color Sensing Robot using PC * AI Based Image Capturing

More information

BRocks 2014 Team Description

BRocks 2014 Team Description BRocks 2014 Team Description A. Haseltalab, Ramin F. Fouladi, A. Nekouyan, Ö. F. Varol, M. Akar Boğaziçi University, Bebek, İstanbul, 34342, Turkey Abstract. This paper aims to summarize robot s systems

More information

Multi-robot Formation Control Based on Leader-follower Method

Multi-robot Formation Control Based on Leader-follower Method Journal of Computers Vol. 29 No. 2, 2018, pp. 233-240 doi:10.3966/199115992018042902022 Multi-robot Formation Control Based on Leader-follower Method Xibao Wu 1*, Wenbai Chen 1, Fangfang Ji 1, Jixing Ye

More information

BRocks 2010 Team Description

BRocks 2010 Team Description BRocks 2010 Team Description M. Akar, Ö. F. Varol, F. İleri, H. Esen, R. S. Kuzu and A. Yurdakurban Boğaziçi University, Bebek, İstanbul, 34342, Turkey Abstract. This paper gives an overview about the

More information

MRL Small Size 2008 Team Description

MRL Small Size 2008 Team Description MRL Small Size 2008 Team Description Omid Bakhshandeh 1, Ali Azidehak 1, Meysam Gorji 1, Maziar Ahmad Sharbafi 1,2, 1 Islamic Azad Universit of Qazvin, Electrical Engineering and Computer Science Department,

More information

2 Our Hardware Architecture

2 Our Hardware Architecture RoboCup-99 Team Descriptions Middle Robots League, Team NAIST, pages 170 174 http: /www.ep.liu.se/ea/cis/1999/006/27/ 170 Team Description of the RoboCup-NAIST NAIST Takayuki Nakamura, Kazunori Terada,

More information

NimbRo 2005 Team Description

NimbRo 2005 Team Description In: RoboCup 2005 Humanoid League Team Descriptions, Osaka, July 2005. NimbRo 2005 Team Description Sven Behnke, Maren Bennewitz, Jürgen Müller, and Michael Schreiber Albert-Ludwigs-University of Freiburg,

More information

LEVELS OF MULTI-ROBOT COORDINATION FOR DYNAMIC ENVIRONMENTS

LEVELS OF MULTI-ROBOT COORDINATION FOR DYNAMIC ENVIRONMENTS LEVELS OF MULTI-ROBOT COORDINATION FOR DYNAMIC ENVIRONMENTS Colin P. McMillen, Paul E. Rybski, Manuela M. Veloso School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213, U.S.A. mcmillen@cs.cmu.edu,

More information

RoboBulls 2015: RoboCup Small Size League

RoboBulls 2015: RoboCup Small Size League RoboBulls 2015: RoboCup Small Size League Muhaimen Shamsi, James Waugh, Fallon Williams, Anthony Ross, Martin Llofriu and Alfredo Weitzenfeld Bio-Robotics Lab, College of Engineering, University of South

More information

SELF-BALANCING MOBILE ROBOT TILTER

SELF-BALANCING MOBILE ROBOT TILTER Tomislav Tomašić Andrea Demetlika Prof. dr. sc. Mladen Crneković ISSN xxx-xxxx SELF-BALANCING MOBILE ROBOT TILTER Summary UDC 007.52, 62-523.8 In this project a remote controlled self-balancing mobile

More information

ECE 477 Digital Systems Senior Design Project Rev 8/09. Homework 5: Theory of Operation and Hardware Design Narrative

ECE 477 Digital Systems Senior Design Project Rev 8/09. Homework 5: Theory of Operation and Hardware Design Narrative ECE 477 Digital Systems Senior Design Project Rev 8/09 Homework 5: Theory of Operation and Hardware Design Narrative Team Code Name: _ATV Group No. 3 Team Member Completing This Homework: Sebastian Hening

More information

Multi-Agent Control Structure for a Vision Based Robot Soccer System

Multi-Agent Control Structure for a Vision Based Robot Soccer System Multi- Control Structure for a Vision Based Robot Soccer System Yangmin Li, Wai Ip Lei, and Xiaoshan Li Department of Electromechanical Engineering Faculty of Science and Technology University of Macau

More information

The Attempto Tübingen Robot Soccer Team 2006

The Attempto Tübingen Robot Soccer Team 2006 The Attempto Tübingen Robot Soccer Team 2006 Patrick Heinemann, Hannes Becker, Jürgen Haase, and Andreas Zell Wilhelm-Schickard-Institute, Department of Computer Architecture, University of Tübingen, Sand

More information

Master Op-Doc/Test Plan

Master Op-Doc/Test Plan Power Supply Master Op-Doc/Test Plan Define Engineering Specs Establish battery life Establish battery technology Establish battery size Establish number of batteries Establish weight of batteries Establish

More information

RoboBulls 2016: RoboCup Small Size League

RoboBulls 2016: RoboCup Small Size League RoboBulls 2016: RoboCup Small Size League Muhaimen Shamsi, James Waugh, Fallon Williams, Anthony Ross, Martin Llofriu, Nikki Hudson, Carlton Drew, Alex Fyffe, Rachel Porter, and Alfredo Weitzenfeld {muhaimen,

More information

ZJUDancer Team Description Paper Humanoid Kid-Size League of Robocup 2015

ZJUDancer Team Description Paper Humanoid Kid-Size League of Robocup 2015 ZJUDancer Team Description Paper Humanoid Kid-Size League of Robocup 2015 Yu DongDong, Liu Yun, Zhou Chunlin, and Xiong Rong State Key Lab. of Industrial Control Technology, Zhejiang University, Hangzhou,

More information

NuBot Team Description Paper 2008

NuBot Team Description Paper 2008 NuBot Team Description Paper 2008 1 Hui Zhang, 1 Huimin Lu, 3 Xiangke Wang, 3 Fangyi Sun, 2 Xiucai Ji, 1 Dan Hai, 1 Fei Liu, 3 Lianhu Cui, 1 Zhiqiang Zheng College of Mechatronics and Automation National

More information

Learning and Using Models of Kicking Motions for Legged Robots

Learning and Using Models of Kicking Motions for Legged Robots Learning and Using Models of Kicking Motions for Legged Robots Sonia Chernova and Manuela Veloso Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213 {soniac, mmv}@cs.cmu.edu Abstract

More information

TechUnited Team Description

TechUnited Team Description TechUnited Team Description J. G. Goorden 1, P.P. Jonker 2 (eds.) 1 Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven 2 Delft University of Technology, PO Box 5, 2600 AA Delft The Netherlands

More information

MULTI-LAYERED HYBRID ARCHITECTURE TO SOLVE COMPLEX TASKS OF AN AUTONOMOUS MOBILE ROBOT

MULTI-LAYERED HYBRID ARCHITECTURE TO SOLVE COMPLEX TASKS OF AN AUTONOMOUS MOBILE ROBOT MULTI-LAYERED HYBRID ARCHITECTURE TO SOLVE COMPLEX TASKS OF AN AUTONOMOUS MOBILE ROBOT F. TIECHE, C. FACCHINETTI and H. HUGLI Institute of Microtechnology, University of Neuchâtel, Rue de Tivoli 28, CH-2003

More information

Functional Specification Document. Robot Soccer ECEn Senior Project

Functional Specification Document. Robot Soccer ECEn Senior Project Functional Specification Document Robot Soccer ECEn 490 - Senior Project Critical Path Team Alex Wilson Benjamin Lewis Joshua Mangleson Leeland Woodard Matthew Bohman Steven McKnight 1 Table of Contents

More information

Tigers Mannheim. Team Description for RoboCup 2011

Tigers Mannheim. Team Description for RoboCup 2011 Tigers Mannheim (Team Interacting and Game Evolving Robots) Team Description for RoboCup 2011 Bernhard Perun 1, Andre Ryll 1, Gero Leinemann 1, Peter Birkenkampf 1, Christian König 1, Gunther Berthold

More information

IMU Platform for Workshops

IMU Platform for Workshops IMU Platform for Workshops Lukáš Palkovič *, Jozef Rodina *, Peter Hubinský *3 * Institute of Control and Industrial Informatics Faculty of Electrical Engineering, Slovak University of Technology Ilkovičova

More information

Rapid Control Prototyping for Robot Soccer

Rapid Control Prototyping for Robot Soccer Proceedings of the 17th World Congress The International Federation of Automatic Control Rapid Control Prototyping for Robot Soccer Junwon Jang Soohee Han Hanjun Kim Choon Ki Ahn School of Electrical Engr.

More information

Motion Control of a Three Active Wheeled Mobile Robot and Collision-Free Human Following Navigation in Outdoor Environment

Motion Control of a Three Active Wheeled Mobile Robot and Collision-Free Human Following Navigation in Outdoor Environment Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,, March 16-18, 2016, Hong Kong Motion Control of a Three Active Wheeled Mobile Robot and Collision-Free

More information

Parsian. Team Description for Robocup 2011

Parsian. Team Description for Robocup 2011 Parsian (Amirkabir Univ. Of Technology Robocup Small Size Team) Team Description for Robocup 2011 Seyed Saeed Poorjandaghi, Valiallah Monajjemi, Vahid Mehrabi, Mohammad Mehdi Nabi, Ali Koochakzadeh, Seyed

More information

ER-Force Team Description Paper for RoboCup 2009

ER-Force Team Description Paper for RoboCup 2009 ER-Force Team Description Paper for RoboCup 2009 Peter Blank, Michael Bleier, Sebastian Drexler, Jan Kallwies, Patrick Kugler, Dominik Lahmann, Philipp Nordhus, Christian Riess, Thaddäus Swadzba, Jan Tully

More information

Multi-Robot Team Response to a Multi-Robot Opponent Team

Multi-Robot Team Response to a Multi-Robot Opponent Team Multi-Robot Team Response to a Multi-Robot Opponent Team James Bruce, Michael Bowling, Brett Browning, and Manuela Veloso {jbruce,mhb,brettb,mmv}@cs.cmu.edu Carnegie Mellon University 5000 Forbes Avenue

More information

ZJUDancer Team Description Paper Humanoid Kid-Size League of Robocup 2014

ZJUDancer Team Description Paper Humanoid Kid-Size League of Robocup 2014 ZJUDancer Team Description Paper Humanoid Kid-Size League of Robocup 2014 Yu DongDong, Xiang Chuan, Zhou Chunlin, and Xiong Rong State Key Lab. of Industrial Control Technology, Zhejiang University, Hangzhou,

More information

MCT Susano Logics 2017 Team Description

MCT Susano Logics 2017 Team Description MCT Susano Logics 2017 Team Description Kazuhiro Fujihara, Hiroki Kadobayashi, Mitsuhiro Omura, Toru Komatsu, Koki Inoue, Masashi Abe, Toshiyuki Beppu National Institute of Technology, Matsue College,

More information

Mechatronics Laboratory Assignment 3 Introduction to I/O with the F28335 Motor Control Processor

Mechatronics Laboratory Assignment 3 Introduction to I/O with the F28335 Motor Control Processor Mechatronics Laboratory Assignment 3 Introduction to I/O with the F28335 Motor Control Processor Recommended Due Date: By your lab time the week of February 12 th Possible Points: If checked off before

More information

RoboTeam Twente 2018 Team Description Paper

RoboTeam Twente 2018 Team Description Paper RoboTeam Twente 2018 Team Description Paper Cas Doornkamp, Zahra van Egdom, Gaël Humblot-Renaux, Leon Klute, Anouk Leunissen, Nahuel Manterola, Sebastian Schipper, Luka Sculac, Emiel Steerneman, Stefan

More information

EE 314 Spring 2003 Microprocessor Systems

EE 314 Spring 2003 Microprocessor Systems EE 314 Spring 2003 Microprocessor Systems Laboratory Project #9 Closed Loop Control Overview and Introduction This project will bring together several pieces of software and draw on knowledge gained in

More information

EROS TEAM. Team Description for Humanoid Kidsize League of Robocup2013

EROS TEAM. Team Description for Humanoid Kidsize League of Robocup2013 EROS TEAM Team Description for Humanoid Kidsize League of Robocup2013 Azhar Aulia S., Ardiansyah Al-Faruq, Amirul Huda A., Edwin Aditya H., Dimas Pristofani, Hans Bastian, A. Subhan Khalilullah, Dadet

More information

Robo-Erectus Tr-2010 TeenSize Team Description Paper.

Robo-Erectus Tr-2010 TeenSize Team Description Paper. Robo-Erectus Tr-2010 TeenSize Team Description Paper. Buck Sin Ng, Carlos A. Acosta Calderon, Nguyen The Loan, Guohua Yu, Chin Hock Tey, Pik Kong Yue and Changjiu Zhou. Advanced Robotics and Intelligent

More information

Design of Joint Controller Circuit for PA10 Robot Arm

Design of Joint Controller Circuit for PA10 Robot Arm Design of Joint Controller Circuit for PA10 Robot Arm Sereiratha Phal and Manop Wongsaisuwan Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.

More information

Robofoot ÉPM Team Description RoboCup2006 MiddleSize League

Robofoot ÉPM Team Description RoboCup2006 MiddleSize League Robofoot ÉPM Team Description RoboCup2006 MiddleSize League Julien Beaudry, Julian Choquette, Pierre-Marc Fournier, Louis-Alain Larouche, François Savard Mechatronics Laboratory, École Polytechnique de

More information

Cooperative Distributed Vision for Mobile Robots Emanuele Menegatti, Enrico Pagello y Intelligent Autonomous Systems Laboratory Department of Informat

Cooperative Distributed Vision for Mobile Robots Emanuele Menegatti, Enrico Pagello y Intelligent Autonomous Systems Laboratory Department of Informat Cooperative Distributed Vision for Mobile Robots Emanuele Menegatti, Enrico Pagello y Intelligent Autonomous Systems Laboratory Department of Informatics and Electronics University ofpadua, Italy y also

More information

PWM MOTOR DRIVE CIRCUIT WITH WIRELESS COMMUNICATION TO A MICROCOMPUTER FOR SMALL PLAYING SOCCER ROBOTS

PWM MOTOR DRIVE CIRCUIT WITH WIRELESS COMMUNICATION TO A MICROCOMPUTER FOR SMALL PLAYING SOCCER ROBOTS PWM MOTOR DRIVE CIRCUIT WITH WIRELESS COMMUNICATION TO A MICROCOMPUTER FOR SMALL PLAYING SOCCER ROBOTS EWALDO L. M. MEHL, ANDERSON C. ZANI, JACKSON KÜNTZE, VILSON R. MOGNON Departamento de Engenharia Elétrica,

More information

Design Concept of State-Chart Method Application through Robot Motion Equipped With Webcam Features as E-Learning Media for Children

Design Concept of State-Chart Method Application through Robot Motion Equipped With Webcam Features as E-Learning Media for Children Design Concept of State-Chart Method Application through Robot Motion Equipped With Webcam Features as E-Learning Media for Children Rossi Passarella, Astri Agustina, Sutarno, Kemahyanto Exaudi, and Junkani

More information

MOBILE ROBOT LOCALIZATION with POSITION CONTROL

MOBILE ROBOT LOCALIZATION with POSITION CONTROL T.C. DOKUZ EYLÜL UNIVERSITY ENGINEERING FACULTY ELECTRICAL & ELECTRONICS ENGINEERING DEPARTMENT MOBILE ROBOT LOCALIZATION with POSITION CONTROL Project Report by Ayhan ŞAVKLIYILDIZ - 2011502093 Burcu YELİS

More information

Towards Integrated Soccer Robots

Towards Integrated Soccer Robots Towards Integrated Soccer Robots Wei-Min Shen, Jafar Adibi, Rogelio Adobbati, Bonghan Cho, Ali Erdem, Hadi Moradi, Behnam Salemi, Sheila Tejada Information Sciences Institute and Computer Science Department

More information

Learning and Using Models of Kicking Motions for Legged Robots

Learning and Using Models of Kicking Motions for Legged Robots Learning and Using Models of Kicking Motions for Legged Robots Sonia Chernova and Manuela Veloso Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213 {soniac, mmv}@cs.cmu.edu Abstract

More information

ViperRoos: Developing a Low Cost Local Vision Team for the Small Size League

ViperRoos: Developing a Low Cost Local Vision Team for the Small Size League ViperRoos: Developing a Low Cost Local Vision Team for the Small Size League Mark Chang 1, Brett Browning 2, and Gordon Wyeth 1 1 Department of Computer Science and Electrical Engineering, University of

More information

CMDragons: Dynamic Passing and Strategy on a Champion Robot Soccer Team

CMDragons: Dynamic Passing and Strategy on a Champion Robot Soccer Team CMDragons: Dynamic Passing and Strategy on a Champion Robot Soccer Team James Bruce, Stefan Zickler, Mike Licitra, and Manuela Veloso Abstract After several years of developing multiple RoboCup small-size

More information

Team Description 2006 for Team RO-PE A

Team Description 2006 for Team RO-PE A Team Description 2006 for Team RO-PE A Chew Chee-Meng, Samuel Mui, Lim Tongli, Ma Chongyou, and Estella Ngan National University of Singapore, 119260 Singapore {mpeccm, g0500307, u0204894, u0406389, u0406316}@nus.edu.sg

More information

RoboDragons 2013 Team Description

RoboDragons 2013 Team Description RoboDragons 2013 Team Description Kotaro Yasui, Yuji Nunome, Shinya Matsuoka, Yusuke Adachi, Kengo Atomi, Masahide Ito, Kunikazu Kobayashi, Kazuhito Murakami and Tadashi Naruse Aichi Prefectural University,

More information

Robótica 2005 Actas do Encontro Científico Coimbra, 29 de Abril de 2005

Robótica 2005 Actas do Encontro Científico Coimbra, 29 de Abril de 2005 Robótica 2005 Actas do Encontro Científico Coimbra, 29 de Abril de 2005 RAC ROBOTIC SOCCER SMALL-SIZE TEAM: CONTROL ARCHITECTURE AND GLOBAL VISION José Rui Simões Rui Rocha Jorge Lobo Jorge Dias Dep. of

More information

Content. 3 Preface 4 Who We Are 6 The RoboCup Initiative 7 Our Robots 8 Hardware 10 Software 12 Public Appearances 14 Achievements 15 Interested?

Content. 3 Preface 4 Who We Are 6 The RoboCup Initiative 7 Our Robots 8 Hardware 10 Software 12 Public Appearances 14 Achievements 15 Interested? Content 3 Preface 4 Who We Are 6 The RoboCup Initiative 7 Our Robots 8 Hardware 10 Software 12 Public Appearances 14 Achievements 15 Interested? 2 Preface Dear reader, Robots are in everyone's minds nowadays.

More information

Autonomous Robot Soccer Teams

Autonomous Robot Soccer Teams Soccer-playing robots could lead to completely autonomous intelligent machines. Autonomous Robot Soccer Teams Manuela Veloso Manuela Veloso is professor of computer science at Carnegie Mellon University.

More information

RoboBulls 2016: RoboCup Small Size League

RoboBulls 2016: RoboCup Small Size League RoboBulls 2016: RoboCup Small Size League M. Shamsi 1, J. Waugh 1, F. Williams 2, A. Ross 2, and M. Llofriu 1,3 A. Weitzenfeld 1 1 Dept. of Computer Science and Engineering 2 Dept. of Electrical Engineering,

More information

Development of Local Vision-based Behaviors for a Robotic Soccer Player Antonio Salim, Olac Fuentes, Angélica Muñoz

Development of Local Vision-based Behaviors for a Robotic Soccer Player Antonio Salim, Olac Fuentes, Angélica Muñoz Development of Local Vision-based Behaviors for a Robotic Soccer Player Antonio Salim, Olac Fuentes, Angélica Muñoz Reporte Técnico No. CCC-04-005 22 de Junio de 2004 Coordinación de Ciencias Computacionales

More information

Parsian. Team Description for Robocup 2010

Parsian. Team Description for Robocup 2010 Parsian (Amirkabir Univ. Of Technology Robocup Small Size Team) Team Description for Robocup 2010 Valiallah Monajjemi, Seyed Farokh Atashzar, Vahid Mehrabi, Mohammad Mehdi Nabi, Ehsan Omidi, Ali Pahlavani,

More information

RoboFEI 2010 Team Description Paper

RoboFEI 2010 Team Description Paper RoboFEI 2010 Team Description Paper José Angelo Gurzoni Jr. 2, Eduardo Nascimento 2, Daniel Malheiro 1, Felipe Zanatto 1, Gabriel Francischini 1, Luiz Roberto A. Pereira 2, Milton Cortez 3, Bruno Tebet

More information

Eagle Knights 2009: Standard Platform League

Eagle Knights 2009: Standard Platform League Eagle Knights 2009: Standard Platform League Robotics Laboratory Computer Engineering Department Instituto Tecnologico Autonomo de Mexico - ITAM Rio Hondo 1, CP 01000 Mexico City, DF, Mexico 1 Team The

More information

Development and Evaluation of a Centaur Robot

Development and Evaluation of a Centaur Robot Development and Evaluation of a Centaur Robot 1 Satoshi Tsuda, 1 Kuniya Shinozaki, and 2 Ryohei Nakatsu 1 Kwansei Gakuin University, School of Science and Technology 2-1 Gakuen, Sanda, 669-1337 Japan {amy65823,

More information