Advanced Topics in AI

Size: px
Start display at page:

Download "Advanced Topics in AI"

Transcription

1 Advanced Topics in AI - Task Allocation - Alexander Felfernig and Gerald Steinbauer Institute for Software Technology Inffeldgasse 16b/2 A-8010 Graz Austria

2 Agenda Motivation Examples Formal Problem Description Taxonomy of Task Allocation Solutions Application Example -2-

3 Motivating Movie 3

4 Rescue Simulation League Agent Competition large scale disaster simulation simulators for earthquake, fire, civilians, and traffic the task is to develop software agents with different roles, that make roads passable (police) extinguish the fires (fire brigades) rescue all civilians (ambulances) difference to Soccer Simulation: a challenging Multi Agent Problem since Agents must cooperate simulator components are developed within the Infrastructure Competition the more civilians alive and fires put out, the higher the score

5 RoboCup Rescue Scenario exemplar application: earthquake in a given city Foligno dense building layout Fire Brigade Police Ambulance (Team) Unhurt Civilian Hurt Civilian Dead Civilian Road Block

6 Platoon Agents Fire Brigades put out fires have limited water tank capacity can collaborate to extinguish more quickly Ambulances dig out civilians who are buried under rubble (takes a number of cycles) carry victims to a refuge can collaborate to dig out more quickly Police Force can remove obstructions bt ti on roads cannot collaborate to remove obstructions faster

7 Centre Agents Ambulance Centre talks to ambulances and to other centres Fire Centre talks to fire brigades and other centres Police Centre talks to police force agents and other centres located in a building which may or may not collapse or get burnt usually act as a synchronisation point/computation centre 7

8 Kobe (1/4) long distances, loose building layout, sparse bits

9 Random Maps with different building/road densities

10 Exploration Attacking Fires -10-

11 Challenges heterogeneous agents a large fixed number of agents a variable ibl number of tasks dynamic environment incomplete knowledge limited communication touches a number of research areas team exploration (victim search) multi-agent path planning (removal of road blockage) scheduling (treatment of victims) -11-

12 Support System for Officer in Charge Rosenbauer International AG

13 Multi Agent System (MAS) a MAS can be defined as a loosely coupled network of problem solvers that interact to solve problems that are beyond the individual capability or knowledge of each problem solver these problem solver, often called agents, are autonomous an can be heterogeneous in nature -13-

14 -14- Multi Agent System (MAS)

15 Task Allocation a (basic) task allocation problem is given by 1. a set of tasks T, <t 1,,t n > 2. a set of robots R, <r 1,,rr m > 3. a assignment matrix A, a ij =1 if task i is assigned to robot j otherwise 0 4. a utility function U:A defining the value or reward of executing tasks by particular robots 5. maximize the reward argmax A U -15-

16 Utility Function has to reflect two criteria expected quality, e.g., map generated by a particular robot or number of victims rescued expected costs, e.g., energy used by the robot given agent r and task t a utility function that reflects these criteria is: if r is capable to execute t Qrt Crt Ut Urt and Qrt Crt 0 otherwise Q rt is are the quality achievable by executing t by r C rt are the costs to execute t by r -16-

17 Taxonomy for TA to describe the nature of a task allocation problem three axis are used [Gerky & Mataric 2004] 1. robot: single-task robots (ST) versus multi-task robots (MT) 2. task: single-robot tasks (SR) versus multi-robot tasks (MR) 3. events: instantaneous assignment (IA) versus timeextended assignment (TA) TA problems are classified by three 2-letter abbreviation, e.g., ST-MR-IA -17-

18 Taxonomy for TA -18- single-task robot: a robot is able to perform one task at the time multi-task task robot: a robot is able to perform multiple tasks at the time single-robot task: a task can be completed by a single robot multi-robot task: a group of robots is necessary to complete the task instantaneous assignment: the available information allows only an instantaneous assignments time-extended assignment: information are changing and knowledge over potential future tasks is availableailable

19 Optimal Assignment Problem ST-SR-IA is an instance of Optimal Assignment Problem (OAP) [Gale 1960] simple case studied in context of game theory, operation research, personnel scheduling assign m workers to n prioritized jobs maximize i the overall expected performance -19-

20 Optimal Assignment Problem find mxn non negative integers to maximize find mxn non-negative integers ij to maximize U U m n n j U U m i j j ij ij m i n j n i ij m i j ij j are the weights for the prioritization of tasks -20-

21 Linear Programming OAP can be formalized as linear program a linear program comprises: 1. a vector of non-negative variables x,x i 0 2. a linear objective function to be maximized c T x 3. constraints equations Axb 4. non-negative right hand side constant b i algorithms to find the optimal solution Simplex Hungarian Method O(mn 2 )

22 Auction Algorithms tasks are sold to agents by a broker during an auction for optimal auction algorithms construct a price-based task market the broker assign a value c j on each task j each robot i also assign a value h ij on task j in order to be sold by the broker there must be a price p j greater as c j a robot is elect to buy the task with the most profit t i =argmax j {h ij -pp j } a robot is not happy if the above condition is not satisfied -22-

23 Auction Algorithm the auction mechanism is conducted in rounds and works as follows: 1. start with any assignment and any prices for t i 2. if all robots are happy then terminate otherwise select an unhappy robot i and find the best task j i 3. exchange the task with the robot assigned before 4. set the price of task j i so that is indifferent to the second best task: p ji + i, i =v i -w i, v i =argmax j {h ij -p j }, w i =argmax jji {h ij -pp j } 5. repeat until all robots are happy -23-

24 Auction Algorithm problem: the algorithm may not terminate if more than one object offers maximum value to robot i, i =0 to break the cycle i have to be a positive increment a robot is almost happy with task j i if h iji -p ji max j=1,,n, {h ij -p j}- if we chose i =v i -w i + robot j is almost happy after each round this guarantees that the process terminates after a finite number of rounds (n rounds) and it reaches almost the equilibrium if all h ij are integer and <1/n a reached assignment is optimal -24-

25 Communication the approaches differs in their nature: centralized versus distributed centralized: needs n 2 messages to distribute all utilities works fine with n<200 distributed: needs fewer messages, i.e., less than n in some larger systems communication latency can not be ignored -25-

26 Iterative Assignment -26- consider the Cooperative Multi-robot Observation of Multiple Moving Targets Problem (CMOMMT) given: S: a bounded enclosed region R: a set of robots with limited sensors O(t): a set of n targets where In(o j (t),s) is true In(o j (t),s): target o j (t) is within S at time t A(t): a ij (t)=1 if r i is observing o j and 0 otherwise goal is to maximize: O T m r t i a t 1 j 1 1 ij( ) t m

27 Iterative Assignment [Kleiner 2010] -27-

28 Broadcast Local Eligibility behavior-based algorithm [Werger & Mataric 2001] coordination without explicit discussion on tasks broadcast local l eligibilities ibiliti to inhibit other robots behavior use subsumption style controller -28-

29 Broadcast Local Eligibility it resembles a Greedy algorithm the task is not matroid BLE is 2-competitive robust against wrong or suboptimal assignments is able to react on dynamic environments -29-

30 Role Assignment another instantiation of OAP RoboCup robot soccer robots or agent are interchangeable (expect the goalie) player take a role based on the current situation player broadcast their utility usually Greedy or ad-hoc algorithms occurs on higher frequency, e.g., 10 Hz dynamic environment simply pyalgorithms are sufficent -30-

31 On-line Assignment in some domains the set of tasks is not known in advance tasks are introduced one at the time is a variant of SRST SR-ST-IA if robots can be reassigned the problem can be solved optimally otherwise use again a greedy algorithm 1. when a new task arrive assign it to the most fit robot available -31- all greedy for OA are 3-competitive models of how task arrive can help to perform better

32 Time-Extended Assignment if there are more tasks than robots, a model of how task arrive is available, or the robot s future utility can be predicted d building a time-extended schedule of tasks while minimizing the costs: R w j C i problem is NP-hard solution: treat SR-ST-TA as an instance of on-line assignment -32-

33 Time-Extended Assignment given: m robots, n tasks, n > m the following approximation algorithm can be used: 1. optimally solve the initial m n assignment problem 2. use the greedy algorithm to assign tasks in an on-line fashion, as the robots become available the performance is limited by the Greedy approach: 3- competitive -33-

34 Time-Extended Assignment if the difference between #robots and #tasks assigned initially decrease, e.g., (n-m) 0, it reaches optimality works good in practice, in particular on short time horizons another solution uses price-based market and sub-contracting -34-

35 Sub-Contracting Robot 1: costs 100, reward 120, profit 20 Robot 2: costs 150, reward 180, profit 30 Robot 2 sub-contracts task B to Robot 1 for 130 Robot 1: costs 210, reward , profit 40 Robot 2: 0, reward , profit

36 Sub-Contracting agents exchange tasks opportunistically frequently modify their schedule bidding robots negotiate until price is mutually beneficial this moves the global solution towards optimum robots can negotiate several deals at once deals can potentially be multi-party prices determined by supply and demand example: if there are a lot of haulers, they won t be able to command a high h price this helps distribute robots among occupations -36-

37 Sub-Contracting based on economical principles provides not necessarily the optimal solution cost and revenue functions are difficult to obtain for some domains robots are self-interested maximize i the individual id profit the team revenue function has to be defined according to this -37-

38 Coalition Formation some task require combined effort of robots heterogeneous skills, e.g., special sensors combine same skills, e.g., push a heavy boy instance of SR-MT-IA application domains e-commerce surveillance search and rescue -38-

39 -39- Coalition Formation

40 -40- Coalition Formation

41 Coalition Formation Set Partitioning Problem (SPP) given a set of robots E a family X is a partition of E iff elements of X are disjoint: y z the union of elements of X are E: 0 y, z X, xx E given a finite i set E and F are acceptable subsets of E a utility function u:f + find a family X of F that maximizes the utility and X is a partition of E y z -41-

42 Coalition Formation for n robots the number of possible coalitions is 2 n -1 but the number of partitions is n n/2-42-

43 Coalition Formation general problem is intractable NP-hard many heuristic algorithms are proposed Simple Heuristic 1. search the bottom two levels of the graph, the two bottom levels comprise any possible coalition 2. continue breath-first search from top as long as there is time left 3. return the partition with the highest utility so far -43-

44 Add Scheduling ST-MR-TA includes scheduling and coalition formation example: robots have to deliver packages of different size to different places sizes and destination are known in advance is NP-hard again go back to STMR ST-MR-IA and use a Greedy algorithm other solution: market-place techniques assign a leader for groups the leader may arrange local groups the leader may opportunistically bd bid for tasks -44-

45 Criteria for TA -45- Computational Requirements how much computational burden for the agents and a potential center how does the burden increase with the number of agents and tasks Communication Requirements how many massages are necessary to achieve a solution unicasts versus multicasts Solution Quality is the optimal utility achieved what minimal utility is guaranteed -competitive

46 ResQ Freiburg the RoboCup rescue agent simulation team of the University of Freiburg won the RoboCup competition in n ambulances bl have to rescue m civilians iili after an earthquake civilians are characterized by buriedness, damage and hit- points costs to recue a victim comprise the joint travel time of ambulances bl and the time to rescue the victim overall utility is the number of rescued civilians some assumptions: same travel costs, super-additive

47 ResQ Freiburg -47- the problem reduces to assign a sequence R of rescue tasks to the entire set of agents A R=<r 1,rr 2,.,rr n > where r i denotes a recue task and i the position in the sequence U(R) ) denoted the predicted utility ty (number of survivors) vo s) when execute R optimize the sequence in respect to the utility: R*=argmax R U(R) exact Solution is impossible to obtain: many sequences, limited time Greedy solution prefer victims that can be rescued fast (buriedness) Prefer urgent victims (demage)

48 ResQ Freiburg -48- non-allocated agents (e.g., police and fire brigades) continuously search unexplored location and update information o (e.g., buriedness, ess, health) about known victims the ambulance station (agent) predicts for each known victim the lifetime and costs for rescue simulates rescue sequences, genetic algorithm when a better sequence is found, the sequence in the field is altered life time prediction learning a decision tree to classify victims (die or survive) linear regression to learn life time prediction calculation of confidence values in respect of the age of data

49 Literature Michael Woolridge: An Introduction to Multi-Agent- Systems, John Wiley & Sons, 2 nd Edition, Brian Gerkey and Maja Mataric: A Formal Analysis and Taxonomy of Task Allocation in Multi-Robot Systems, International Journal of Robotics Research, 23(9), , September2004. Bernhardine Dias, Robert Zlot, Nidhi Kalra and Anthony Stentz: Market-Based Multirobot Coordination: A Survey and Analysis, Proceedings of the IEEE, 94(7), ,,July

50 -50- Thank You!

Task Allocation: Motivation-Based. Dr. Daisy Tang

Task Allocation: Motivation-Based. Dr. Daisy Tang Task Allocation: Motivation-Based Dr. Daisy Tang Outline Motivation-based task allocation (modeling) Formal analysis of task allocation Motivations vs. Negotiation in MRTA Motivations(ALLIANCE): Pro: Enables

More information

CSCI 445 Laurent Itti. Group Robotics. Introduction to Robotics L. Itti & M. J. Mataric 1

CSCI 445 Laurent Itti. Group Robotics. Introduction to Robotics L. Itti & M. J. Mataric 1 Introduction to Robotics CSCI 445 Laurent Itti Group Robotics Introduction to Robotics L. Itti & M. J. Mataric 1 Today s Lecture Outline Defining group behavior Why group behavior is useful Why group behavior

More information

Cooperative Tracking using Mobile Robots and Environment-Embedded, Networked Sensors

Cooperative Tracking using Mobile Robots and Environment-Embedded, Networked Sensors In the 2001 International Symposium on Computational Intelligence in Robotics and Automation pp. 206-211, Banff, Alberta, Canada, July 29 - August 1, 2001. Cooperative Tracking using Mobile Robots and

More information

Robot Exploration with Combinatorial Auctions

Robot Exploration with Combinatorial Auctions Robot Exploration with Combinatorial Auctions M. Berhault (1) H. Huang (2) P. Keskinocak (2) S. Koenig (1) W. Elmaghraby (2) P. Griffin (2) A. Kleywegt (2) (1) College of Computing {marc.berhault,skoenig}@cc.gatech.edu

More information

RoboCupRescue Rescue Simulation League Team Description Ri-one (Japan)

RoboCupRescue Rescue Simulation League Team Description Ri-one (Japan) RoboCupRescue 2014 - Rescue Simulation League Team Description Ri-one (Japan) Ko Miyake, Shinya Oguri, Masahiro Takashita Takashi Fukui, Takuma Mori Yosuke Takeuchi, Naoyuki Sugi Ritsumeikan University,

More information

Cooperative Tracking with Mobile Robots and Networked Embedded Sensors

Cooperative Tracking with Mobile Robots and Networked Embedded Sensors Institutue for Robotics and Intelligent Systems (IRIS) Technical Report IRIS-01-404 University of Southern California, 2001 Cooperative Tracking with Mobile Robots and Networked Embedded Sensors Boyoon

More information

Distributed Multi-Robot Coalitions through ASyMTRe-D

Distributed Multi-Robot Coalitions through ASyMTRe-D Proc. of IEEE International Conference on Intelligent Robots and Systems, Edmonton, Canada, 2005. Distributed Multi-Robot Coalitions through ASyMTRe-D Fang Tang and Lynne E. Parker Distributed Intelligence

More information

Structure and Synthesis of Robot Motion

Structure and Synthesis of Robot Motion Structure and Synthesis of Robot Motion Multi-robot Coordination and Task Allocation Subramanian Ramamoorthy School of Informatics 12 March, 2012 Motion Problems with Many Agents What kind of knowledge

More information

Introduction to Multi-Agent Programming

Introduction to Multi-Agent Programming Introduction to Multi-Agent Programming 1. Introduction Organizational, MAS and Applications, RoboCup Alexander Kleiner, Bernhard Nebel Lecture Material Artificial Intelligence A Modern Approach, 2 nd

More information

Dealing with Perception Errors in Multi-Robot System Coordination

Dealing with Perception Errors in Multi-Robot System Coordination Dealing with Perception Errors in Multi-Robot System Coordination Alessandro Farinelli and Daniele Nardi Paul Scerri Dip. di Informatica e Sistemistica, Robotics Institute, University of Rome, La Sapienza,

More information

Design of intelligent surveillance systems: a game theoretic case. Nicola Basilico Department of Computer Science University of Milan

Design of intelligent surveillance systems: a game theoretic case. Nicola Basilico Department of Computer Science University of Milan Design of intelligent surveillance systems: a game theoretic case Nicola Basilico Department of Computer Science University of Milan Outline Introduction to Game Theory and solution concepts Game definition

More information

AN INTEGRATED APPROACH TO SOLVING THE REAL-WORLD MULTIPLE TRAVELING ROBOT PROBLEM

AN INTEGRATED APPROACH TO SOLVING THE REAL-WORLD MULTIPLE TRAVELING ROBOT PROBLEM AN INTEGRATED APPROACH TO SOLVING THE REAL-WORLD MULTIPLE TRAVELING ROBOT PROBLEM Sanem Sariel * Nadia Erdogan * Tucker Balch + e-mail: sariel@itu.edu.tr e-mail: nerdogan@itu.edu.tr e-mail: tucker.balch@gatech.edu

More information

The Power of Sequential Single-Item Auctions for Agent Coordination

The Power of Sequential Single-Item Auctions for Agent Coordination The Power of Sequential Single-Item Auctions for Agent Coordination S. Koenig 1 C. Tovey 4 M. Lagoudakis 2 V. Markakis 3 D. Kempe 1 P. Keskinocak 4 A. Kleywegt 4 A. Meyerson 5 S. Jain 6 1 University of

More information

CS510 \ Lecture Ariel Stolerman

CS510 \ Lecture Ariel Stolerman CS510 \ Lecture04 2012-10-15 1 Ariel Stolerman Administration Assignment 2: just a programming assignment. Midterm: posted by next week (5), will cover: o Lectures o Readings A midterm review sheet will

More information

AN INTEGRATED APPROACH TO SOLVING THE REAL-WORLD MULTIPLE TRAVELING ROBOT PROBLEM

AN INTEGRATED APPROACH TO SOLVING THE REAL-WORLD MULTIPLE TRAVELING ROBOT PROBLEM AN INTEGRATED APPROACH TO SOLVING THE REAL-WORLD MULTIPLE TRAVELING ROBOT PROBLEM Sanem Sariel * Nadia Erdogan * Tucker Balch + e-mail: sariel@itu.edu.tr e-mail: nerdogan@itu.edu.tr e-mail: tucker.balch@gatech.edu

More information

Dynamic Task Allocation for Mobile Robots

Dynamic Task Allocation for Mobile Robots Dynamic Task Allocation for Mobile Robots P.V.Aswin 1, D.Prasanna Vadana 2 PG Student [Embedded Systems], Dept. of EEE, Amrita School of Engineering, Coimbatore,Tamilnadu, India 1 Assistant Professor,

More information

Mutual State-Based Capabilities for Role Assignment in Heterogeneous Teams

Mutual State-Based Capabilities for Role Assignment in Heterogeneous Teams Mutual State-Based Capabilities for Role Assignment in Heterogeneous Teams Somchaya Liemhetcharat The Robotics Institute Carnegie Mellon University 5000 Forbes Avenue Pittsburgh, PA 15213, USA som@ri.cmu.edu

More information

Surveillance strategies for autonomous mobile robots. Nicola Basilico Department of Computer Science University of Milan

Surveillance strategies for autonomous mobile robots. Nicola Basilico Department of Computer Science University of Milan Surveillance strategies for autonomous mobile robots Nicola Basilico Department of Computer Science University of Milan Intelligence, surveillance, and reconnaissance (ISR) with autonomous UAVs ISR defines

More information

Emergent Task Allocation for Mobile Robots

Emergent Task Allocation for Mobile Robots Robotics: Science and Systems 00 Atlanta, GA, USA, June -0, 00 Emergent Task Allocation for Mobile Robots Nuzhet Atay Department of Computer Science and Engineering Washington University in St. Louis Email:

More information

Multi-Platform Soccer Robot Development System

Multi-Platform Soccer Robot Development System Multi-Platform Soccer Robot Development System Hui Wang, Han Wang, Chunmiao Wang, William Y. C. Soh Division of Control & Instrumentation, School of EEE Nanyang Technological University Nanyang Avenue,

More information

Energy-Efficient MANET Routing: Ideal vs. Realistic Performance

Energy-Efficient MANET Routing: Ideal vs. Realistic Performance Energy-Efficient MANET Routing: Ideal vs. Realistic Performance Paper by: Thomas Knuz IEEE IWCMC Conference Aug. 2008 Presented by: Farzana Yasmeen For : CSE 6590 2013.11.12 Contents Introduction Review:

More information

Distributed, Play-Based Coordination for Robot Teams in Dynamic Environments

Distributed, Play-Based Coordination for Robot Teams in Dynamic Environments Distributed, Play-Based Coordination for Robot Teams in Dynamic Environments Colin McMillen and Manuela Veloso School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, U.S.A. fmcmillen,velosog@cs.cmu.edu

More information

Resource Management in QoS-Aware Wireless Cellular Networks

Resource Management in QoS-Aware Wireless Cellular Networks Resource Management in QoS-Aware Wireless Cellular Networks Zhi Zhang Dept. of Electrical and Computer Engineering Colorado State University April 24, 2009 Zhi Zhang (ECE CSU) Resource Management in Wireless

More information

Hierarchical Controller for Robotic Soccer

Hierarchical Controller for Robotic Soccer Hierarchical Controller for Robotic Soccer Byron Knoll Cognitive Systems 402 April 13, 2008 ABSTRACT RoboCup is an initiative aimed at advancing Artificial Intelligence (AI) and robotics research. This

More information

Learning, prediction and selection algorithms for opportunistic spectrum access

Learning, prediction and selection algorithms for opportunistic spectrum access Learning, prediction and selection algorithms for opportunistic spectrum access TRINITY COLLEGE DUBLIN Hamed Ahmadi Research Fellow, CTVR, Trinity College Dublin Future Cellular, Wireless, Next Generation

More information

A Hybrid Planning Approach for Robots in Search and Rescue

A Hybrid Planning Approach for Robots in Search and Rescue A Hybrid Planning Approach for Robots in Search and Rescue Sanem Sariel Istanbul Technical University, Computer Engineering Department Maslak TR-34469 Istanbul, Turkey. sariel@cs.itu.edu.tr ABSTRACT In

More information

The robotics rescue challenge for a team of robots

The robotics rescue challenge for a team of robots The robotics rescue challenge for a team of robots Arnoud Visser Trends and issues in multi-robot exploration and robot networks workshop, Eu-Robotics Forum, Lyon, March 20, 2013 Universiteit van Amsterdam

More information

Gateways Placement in Backbone Wireless Mesh Networks

Gateways Placement in Backbone Wireless Mesh Networks I. J. Communications, Network and System Sciences, 2009, 1, 1-89 Published Online February 2009 in SciRes (http://www.scirp.org/journal/ijcns/). Gateways Placement in Backbone Wireless Mesh Networks Abstract

More information

CS 1571 Introduction to AI Lecture 12. Adversarial search. CS 1571 Intro to AI. Announcements

CS 1571 Introduction to AI Lecture 12. Adversarial search. CS 1571 Intro to AI. Announcements CS 171 Introduction to AI Lecture 1 Adversarial search Milos Hauskrecht milos@cs.pitt.edu 39 Sennott Square Announcements Homework assignment is out Programming and experiments Simulated annealing + Genetic

More information

CORC 3303 Exploring Robotics. Why Teams?

CORC 3303 Exploring Robotics. Why Teams? Exploring Robotics Lecture F Robot Teams Topics: 1) Teamwork and Its Challenges 2) Coordination, Communication and Control 3) RoboCup Why Teams? It takes two (or more) Such as cooperative transportation:

More information

New task allocation methods for robotic swarms

New task allocation methods for robotic swarms New task allocation methods for robotic swarms F. Ducatelle, A. Förster, G.A. Di Caro and L.M. Gambardella Abstract We study a situation where a swarm of robots is deployed to solve multiple concurrent

More information

Improving Sequential Single-Item Auctions

Improving Sequential Single-Item Auctions Improving Sequential Single-Item Auctions Xiaoming Zheng Computer Science Department University of Southern California Los Angeles, California 90089-0781 xiaominz@usc.edu Sven Koenig Computer Science Department

More information

Task Allocation: Role Assignment. Dr. Daisy Tang

Task Allocation: Role Assignment. Dr. Daisy Tang Task Allocation: Role Assignment Dr. Daisy Tang Outline Multi-robot dynamic role assignment Task Allocation Based On Roles Usually, a task is decomposed into roleseither by a general autonomous planner,

More information

A GRASP heuristic for the Cooperative Communication Problem in Ad Hoc Networks

A GRASP heuristic for the Cooperative Communication Problem in Ad Hoc Networks MIC2005: The Sixth Metaheuristics International Conference??-1 A GRASP heuristic for the Cooperative Communication Problem in Ad Hoc Networks Clayton Commander Carlos A.S. Oliveira Panos M. Pardalos Mauricio

More information

Robotic Systems ECE 401RB Fall 2007

Robotic Systems ECE 401RB Fall 2007 The following notes are from: Robotic Systems ECE 401RB Fall 2007 Lecture 14: Cooperation among Multiple Robots Part 2 Chapter 12, George A. Bekey, Autonomous Robots: From Biological Inspiration to Implementation

More information

Design of intelligent surveillance systems: a game theoretic case. Nicola Basilico Department of Computer Science University of Milan

Design of intelligent surveillance systems: a game theoretic case. Nicola Basilico Department of Computer Science University of Milan Design of intelligent surveillance systems: a game theoretic case Nicola Basilico Department of Computer Science University of Milan Introduction Intelligent security for physical infrastructures Our objective:

More information

Multi-Robot Task-Allocation through Vacancy Chains

Multi-Robot Task-Allocation through Vacancy Chains In Proceedings of the 03 IEEE International Conference on Robotics and Automation (ICRA 03) pp2293-2298, Taipei, Taiwan, September 14-19, 03 Multi-Robot Task-Allocation through Vacancy Chains Torbjørn

More information

Rearrangement task realization by multiple mobile robots with efficient calculation of task constraints

Rearrangement task realization by multiple mobile robots with efficient calculation of task constraints 2007 IEEE International Conference on Robotics and Automation Roma, Italy, 10-14 April 2007 WeA1.2 Rearrangement task realization by multiple mobile robots with efficient calculation of task constraints

More information

Traffic Control for a Swarm of Robots: Avoiding Group Conflicts

Traffic Control for a Swarm of Robots: Avoiding Group Conflicts Traffic Control for a Swarm of Robots: Avoiding Group Conflicts Leandro Soriano Marcolino and Luiz Chaimowicz Abstract A very common problem in the navigation of robotic swarms is when groups of robots

More information

Mobile Robot Task Allocation in Hybrid Wireless Sensor Networks

Mobile Robot Task Allocation in Hybrid Wireless Sensor Networks Mobile Robot Task Allocation in Hybrid Wireless Sensor Networks Brian Coltin and Manuela Veloso Abstract Hybrid sensor networks consisting of both inexpensive static wireless sensors and highly capable

More information

M U LT I C A S T C O M M U N I C AT I O N S. Tarik Cicic

M U LT I C A S T C O M M U N I C AT I O N S. Tarik Cicic M U LT I C A S T C O M M U N I C AT I O N S Tarik Cicic 9..08 O V E R V I E W One-to-many communication, why and how Algorithmic approach: Steiner trees Practical algorithms Multicast tree types Basic

More information

Anavilhanas Natural Reserve (about 4000 Km 2 )

Anavilhanas Natural Reserve (about 4000 Km 2 ) Anavilhanas Natural Reserve (about 4000 Km 2 ) A control room receives this alarm signal: what to do? adversarial patrolling with spatially uncertain alarm signals Nicola Basilico, Giuseppe De Nittis,

More information

Set 4: Game-Playing. ICS 271 Fall 2017 Kalev Kask

Set 4: Game-Playing. ICS 271 Fall 2017 Kalev Kask Set 4: Game-Playing ICS 271 Fall 2017 Kalev Kask Overview Computer programs that play 2-player games game-playing as search with the complication of an opponent General principles of game-playing and search

More information

Efficient Multihop Broadcast for Wideband Systems

Efficient Multihop Broadcast for Wideband Systems Efficient Multihop Broadcast for Wideband Systems Ivana Maric WINLAB, Rutgers University ivanam@winlab.rutgers.edu Roy Yates WINLAB, Rutgers University ryates@winlab.rutgers.edu Abstract In this paper

More information

Convergence in competitive games

Convergence in competitive games Convergence in competitive games Vahab S. Mirrokni Computer Science and AI Lab. (CSAIL) and Math. Dept., MIT. This talk is based on joint works with A. Vetta and with A. Sidiropoulos, A. Vetta DIMACS Bounded

More information

IQ-ASyMTRe: Synthesizing Coalition Formation and Execution for Tightly-Coupled Multirobot Tasks

IQ-ASyMTRe: Synthesizing Coalition Formation and Execution for Tightly-Coupled Multirobot Tasks Proc. of IEEE International Conference on Intelligent Robots and Systems, Taipai, Taiwan, 2010. IQ-ASyMTRe: Synthesizing Coalition Formation and Execution for Tightly-Coupled Multirobot Tasks Yu Zhang

More information

2048: An Autonomous Solver

2048: An Autonomous Solver 2048: An Autonomous Solver Final Project in Introduction to Artificial Intelligence ABSTRACT. Our goal in this project was to create an automatic solver for the wellknown game 2048 and to analyze how different

More information

A GRASP HEURISTIC FOR THE COOPERATIVE COMMUNICATION PROBLEM IN AD HOC NETWORKS

A GRASP HEURISTIC FOR THE COOPERATIVE COMMUNICATION PROBLEM IN AD HOC NETWORKS A GRASP HEURISTIC FOR THE COOPERATIVE COMMUNICATION PROBLEM IN AD HOC NETWORKS C. COMMANDER, C.A.S. OLIVEIRA, P.M. PARDALOS, AND M.G.C. RESENDE ABSTRACT. Ad hoc networks are composed of a set of wireless

More information

Learning via Delayed Knowledge A Case of Jamming. SaiDhiraj Amuru and R. Michael Buehrer

Learning via Delayed Knowledge A Case of Jamming. SaiDhiraj Amuru and R. Michael Buehrer Learning via Delayed Knowledge A Case of Jamming SaiDhiraj Amuru and R. Michael Buehrer 1 Why do we need an Intelligent Jammer? Dynamic environment conditions in electronic warfare scenarios failure of

More information

CSCI 699: Topics in Learning and Game Theory Fall 2017 Lecture 3: Intro to Game Theory. Instructor: Shaddin Dughmi

CSCI 699: Topics in Learning and Game Theory Fall 2017 Lecture 3: Intro to Game Theory. Instructor: Shaddin Dughmi CSCI 699: Topics in Learning and Game Theory Fall 217 Lecture 3: Intro to Game Theory Instructor: Shaddin Dughmi Outline 1 Introduction 2 Games of Complete Information 3 Games of Incomplete Information

More information

Alexandre Fréchette, Neil Newman, Kevin Leyton-Brown

Alexandre Fréchette, Neil Newman, Kevin Leyton-Brown Solving the Station Repacking Problem Alexandre Fréchette, Neil Newman, Kevin Leyton-Brown Agenda Background Problem Novel Approach Experimental Results Background A Brief History Spectrum rights have

More information

Game Theory and Randomized Algorithms

Game Theory and Randomized Algorithms Game Theory and Randomized Algorithms Guy Aridor Game theory is a set of tools that allow us to understand how decisionmakers interact with each other. It has practical applications in economics, international

More information

CS594, Section 30682:

CS594, Section 30682: CS594, Section 30682: Distributed Intelligence in Autonomous Robotics Spring 2003 Tuesday/Thursday 11:10 12:25 http://www.cs.utk.edu/~parker/courses/cs594-spring03 Instructor: Dr. Lynne E. Parker ½ TA:

More information

A short introduction to Security Games

A short introduction to Security Games Game Theoretic Foundations of Multiagent Systems: Algorithms and Applications A case study: Playing Games for Security A short introduction to Security Games Nicola Basilico Department of Computer Science

More information

Supervisory Control for Cost-Effective Redistribution of Robotic Swarms

Supervisory Control for Cost-Effective Redistribution of Robotic Swarms Supervisory Control for Cost-Effective Redistribution of Robotic Swarms Ruikun Luo Department of Mechaincal Engineering College of Engineering Carnegie Mellon University Pittsburgh, Pennsylvania 11 Email:

More information

MRN -4 Frequency Reuse

MRN -4 Frequency Reuse Politecnico di Milano Facoltà di Ingegneria dell Informazione MRN -4 Frequency Reuse Mobile Radio Networks Prof. Antonio Capone Assignment of channels to cells o The multiple access technique in cellular

More information

Reinforcement Learning Agent for Scrolling Shooter Game

Reinforcement Learning Agent for Scrolling Shooter Game Reinforcement Learning Agent for Scrolling Shooter Game Peng Yuan (pengy@stanford.edu) Yangxin Zhong (yangxin@stanford.edu) Zibo Gong (zibo@stanford.edu) 1 Introduction and Task Definition 1.1 Game Agent

More information

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Algorithms and Game Theory Date: 12/4/14

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Algorithms and Game Theory Date: 12/4/14 600.363 Introduction to Algorithms / 600.463 Algorithms I Lecturer: Michael Dinitz Topic: Algorithms and Game Theory Date: 12/4/14 25.1 Introduction Today we re going to spend some time discussing game

More information

Optimal Multicast Routing in Ad Hoc Networks

Optimal Multicast Routing in Ad Hoc Networks Mat-2.108 Independent esearch Projects in Applied Mathematics Optimal Multicast outing in Ad Hoc Networks Juha Leino 47032J Juha.Leino@hut.fi 1st December 2002 Contents 1 Introduction 2 2 Optimal Multicasting

More information

Summary Overview of Topics in Econ 30200b: Decision theory: strong and weak domination by randomized strategies, domination theorem, expected utility

Summary Overview of Topics in Econ 30200b: Decision theory: strong and weak domination by randomized strategies, domination theorem, expected utility Summary Overview of Topics in Econ 30200b: Decision theory: strong and weak domination by randomized strategies, domination theorem, expected utility theorem (consistent decisions under uncertainty should

More information

Modeling the Dynamics of Coalition Formation Games for Cooperative Spectrum Sharing in an Interference Channel

Modeling the Dynamics of Coalition Formation Games for Cooperative Spectrum Sharing in an Interference Channel Modeling the Dynamics of Coalition Formation Games for Cooperative Spectrum Sharing in an Interference Channel Zaheer Khan, Savo Glisic, Senior Member, IEEE, Luiz A. DaSilva, Senior Member, IEEE, and Janne

More information

Robust Multirobot Coordination in Dynamic Environments

Robust Multirobot Coordination in Dynamic Environments Robust Multirobot Coordination in Dynamic Environments M. Bernardine Dias, Marc Zinck, Robert Zlot, and Anthony (Tony) Stentz The Robotics Institute Carnegie Mellon University Pittsburgh, USA {mbdias,

More information

The Best Laid Plans of Robots and Men

The Best Laid Plans of Robots and Men The Best Laid Plans of Robots and Men Mary Koes, Katia Sycara, and Illah Nourbakhsh {mberna, katia, illah}@cs.cmu.edu Robotics Institute Carnegie Mellon University Abstract The best laid plans of robots

More information

Multi-Robot Coordination. Chapter 11

Multi-Robot Coordination. Chapter 11 Multi-Robot Coordination Chapter 11 Objectives To understand some of the problems being studied with multiple robots To understand the challenges involved with coordinating robots To investigate a simple

More information

Learning a Value Analysis Tool For Agent Evaluation

Learning a Value Analysis Tool For Agent Evaluation Learning a Value Analysis Tool For Agent Evaluation Martha White Michael Bowling Department of Computer Science University of Alberta International Joint Conference on Artificial Intelligence, 2009 Motivation:

More information

An Agent-Based Intentional Multi-Robot Task Allocation Framework

An Agent-Based Intentional Multi-Robot Task Allocation Framework An Agent-Based Intentional Multi-Robot Task Allocation Framework Savas Ozturk 1, Ahmet Emin Kuzucuoglu 2 1 TUBITAK BILGEM, Gebze, Kocaeli, Turkey 2 Department of Computer and Control Education, Marmara

More information

Cooperative Broadcast for Maximum Network Lifetime. Ivana Maric and Roy Yates

Cooperative Broadcast for Maximum Network Lifetime. Ivana Maric and Roy Yates Cooperative Broadcast for Maximum Network Lifetime Ivana Maric and Roy Yates Wireless Multihop Network Broadcast N nodes Source transmits at rate R Messages are to be delivered to all the nodes Nodes can

More information

RMT 2015 Power Round Solutions February 14, 2015

RMT 2015 Power Round Solutions February 14, 2015 Introduction Fair division is the process of dividing a set of goods among several people in a way that is fair. However, as alluded to in the comic above, what exactly we mean by fairness is deceptively

More information

Multiple Agents. Why can t we all just get along? (Rodney King)

Multiple Agents. Why can t we all just get along? (Rodney King) Multiple Agents Why can t we all just get along? (Rodney King) Nash Equilibriums........................................ 25 Multiple Nash Equilibriums................................. 26 Prisoners Dilemma.......................................

More information

Mehrdad Amirghasemi a* Reza Zamani a

Mehrdad Amirghasemi a* Reza Zamani a The roles of evolutionary computation, fitness landscape, constructive methods and local searches in the development of adaptive systems for infrastructure planning Mehrdad Amirghasemi a* Reza Zamani a

More information

Multi-robot task allocation problem: current trends and new ideas

Multi-robot task allocation problem: current trends and new ideas Multi-robot task allocation problem: current trends and new ideas Mattia D Emidio 1, Imran Khan 1 Gran Sasso Science Institute (GSSI) Via F. Crispi, 7, I 67100, L Aquila (Italy) {mattia.demidio,imran.khan}@gssi.it

More information

Energy-Efficient Mobile Robot Exploration

Energy-Efficient Mobile Robot Exploration Energy-Efficient Mobile Robot Exploration Abstract Mobile robots can be used in many applications, including exploration in an unknown area. Robots usually carry limited energy so energy conservation is

More information

Structure and Synthesis of Robot Motion

Structure and Synthesis of Robot Motion Structure and Synthesis of Robot Motion Motion Synthesis in Groups and Formations I Subramanian Ramamoorthy School of Informatics 5 March 2012 Consider Motion Problems with Many Agents How should we model

More information

Reading Robert Gibbons, A Primer in Game Theory, Harvester Wheatsheaf 1992.

Reading Robert Gibbons, A Primer in Game Theory, Harvester Wheatsheaf 1992. Reading Robert Gibbons, A Primer in Game Theory, Harvester Wheatsheaf 1992. Additional readings could be assigned from time to time. They are an integral part of the class and you are expected to read

More information

CMU Lecture 22: Game Theory I. Teachers: Gianni A. Di Caro

CMU Lecture 22: Game Theory I. Teachers: Gianni A. Di Caro CMU 15-781 Lecture 22: Game Theory I Teachers: Gianni A. Di Caro GAME THEORY Game theory is the formal study of conflict and cooperation in (rational) multi-agent systems Decision-making where several

More information

SPQR RoboCup 2016 Standard Platform League Qualification Report

SPQR RoboCup 2016 Standard Platform League Qualification Report SPQR RoboCup 2016 Standard Platform League Qualification Report V. Suriani, F. Riccio, L. Iocchi, D. Nardi Dipartimento di Ingegneria Informatica, Automatica e Gestionale Antonio Ruberti Sapienza Università

More information

Node Deployment Strategies and Coverage Prediction in 3D Wireless Sensor Network with Scheduling

Node Deployment Strategies and Coverage Prediction in 3D Wireless Sensor Network with Scheduling Advances in Computational Sciences and Technology ISSN 0973-6107 Volume 10, Number 8 (2017) pp. 2243-2255 Research India Publications http://www.ripublication.com Node Deployment Strategies and Coverage

More information

CHAPTER LEARNING OUTCOMES. By the end of this section, students will be able to:

CHAPTER LEARNING OUTCOMES. By the end of this section, students will be able to: CHAPTER 4 4.1 LEARNING OUTCOMES By the end of this section, students will be able to: Understand what is meant by a Bayesian Nash Equilibrium (BNE) Calculate the BNE in a Cournot game with incomplete information

More information

Modeling Security Decisions as Games

Modeling Security Decisions as Games Modeling Security Decisions as Games Chris Kiekintveld University of Texas at El Paso.. and MANY Collaborators Decision Making and Games Research agenda: improve and justify decisions Automated intelligent

More information

Repeated auctions for robust task execution by a robot team

Repeated auctions for robust task execution by a robot team Repeated auctions for robust task execution by a robot team Maitreyi Nanjanath and Maria Gini Department of Computer Science and Engineering and Digital Techonology Center University of Minnesota nanjan@cs.umn.edu,

More information

TU Graz Robotics Challenge 2017

TU Graz Robotics Challenge 2017 1 TU Graz Robotics Challenge W I S S E N T E C H N I K L E I D E N S C H A F T TU Graz Robotics Challenge 2017 www.robotics-challenge.ist.tugraz.at Kick-Off 14.03.2017 u www.tugraz.at 2 Overview Introduction

More information

Chapter 3 Learning in Two-Player Matrix Games

Chapter 3 Learning in Two-Player Matrix Games Chapter 3 Learning in Two-Player Matrix Games 3.1 Matrix Games In this chapter, we will examine the two-player stage game or the matrix game problem. Now, we have two players each learning how to play

More information

ACRUCIAL issue in the design of wireless sensor networks

ACRUCIAL issue in the design of wireless sensor networks 4322 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 8, AUGUST 2010 Coalition Formation for Bearings-Only Localization in Sensor Networks A Cooperative Game Approach Omid Namvar Gharehshiran, Student

More information

A Column Generation Method for Spatial TDMA Scheduling in Ad Hoc Networks

A Column Generation Method for Spatial TDMA Scheduling in Ad Hoc Networks A Column Generation Method for Spatial TDMA Scheduling in Ad Hoc Networks Patrik Björklund, Peter Värbrand, Di Yuan Department of Science and Technology, Linköping Institute of Technology, SE-601 74, Norrköping,

More information

Distributed Collaborative Path Planning in Sensor Networks with Multiple Mobile Sensor Nodes

Distributed Collaborative Path Planning in Sensor Networks with Multiple Mobile Sensor Nodes 7th Mediterranean Conference on Control & Automation Makedonia Palace, Thessaloniki, Greece June 4-6, 009 Distributed Collaborative Path Planning in Sensor Networks with Multiple Mobile Sensor Nodes Theofanis

More information

Monte Carlo Tree Search and AlphaGo. Suraj Nair, Peter Kundzicz, Kevin An, Vansh Kumar

Monte Carlo Tree Search and AlphaGo. Suraj Nair, Peter Kundzicz, Kevin An, Vansh Kumar Monte Carlo Tree Search and AlphaGo Suraj Nair, Peter Kundzicz, Kevin An, Vansh Kumar Zero-Sum Games and AI A player s utility gain or loss is exactly balanced by the combined gain or loss of opponents:

More information

Intelligent Agents. Introduction to Planning. Ute Schmid. Cognitive Systems, Applied Computer Science, Bamberg University. last change: 23.

Intelligent Agents. Introduction to Planning. Ute Schmid. Cognitive Systems, Applied Computer Science, Bamberg University. last change: 23. Intelligent Agents Introduction to Planning Ute Schmid Cognitive Systems, Applied Computer Science, Bamberg University last change: 23. April 2012 U. Schmid (CogSys) Intelligent Agents last change: 23.

More information

A Comparative Study between Centralized, Market-Based, and Behavioral Multirobot Coordination Approaches

A Comparative Study between Centralized, Market-Based, and Behavioral Multirobot Coordination Approaches Proceedings of the 2003 EEElRSJ ntl. Conference on ntelligent Robots and Systems Las Vegas. Nevada. October 2003 A Comparative Study between Centralized, Market-Based, and Behavioral Multirobot Coordination

More information

Learning and Using Models of Kicking Motions for Legged Robots

Learning and Using Models of Kicking Motions for Legged Robots Learning and Using Models of Kicking Motions for Legged Robots Sonia Chernova and Manuela Veloso Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213 {soniac, mmv}@cs.cmu.edu Abstract

More information

Microeconomics of Banking: Lecture 4

Microeconomics of Banking: Lecture 4 Microeconomics of Banking: Lecture 4 Prof. Ronaldo CARPIO Oct. 16, 2015 Administrative Stuff Homework 1 is due today at the end of class. I will upload the solutions and Homework 2 (due in two weeks) later

More information

Reactive Planning for Micromanagement in RTS Games

Reactive Planning for Micromanagement in RTS Games Reactive Planning for Micromanagement in RTS Games Ben Weber University of California, Santa Cruz Department of Computer Science Santa Cruz, CA 95064 bweber@soe.ucsc.edu Abstract This paper presents an

More information

Flocking-Based Multi-Robot Exploration

Flocking-Based Multi-Robot Exploration Flocking-Based Multi-Robot Exploration Noury Bouraqadi and Arnaud Doniec Abstract Dépt. Informatique & Automatique Ecole des Mines de Douai France {bouraqadi,doniec}@ensm-douai.fr Exploration of an unknown

More information

A Taxonomy of Multirobot Systems

A Taxonomy of Multirobot Systems A Taxonomy of Multirobot Systems ---- Gregory Dudek, Michael Jenkin, and Evangelos Milios in Robot Teams: From Diversity to Polymorphism edited by Tucher Balch and Lynne E. Parker published by A K Peters,

More information

RoboCup. Presented by Shane Murphy April 24, 2003

RoboCup. Presented by Shane Murphy April 24, 2003 RoboCup Presented by Shane Murphy April 24, 2003 RoboCup: : Today and Tomorrow What we have learned Authors Minoru Asada (Osaka University, Japan), Hiroaki Kitano (Sony CS Labs, Japan), Itsuki Noda (Electrotechnical(

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction 1.1Motivation The past five decades have seen surprising progress in computing and communication technologies that were stimulated by the presence of cheaper, faster, more reliable

More information

S.P.Q.R. Legged Team Report from RoboCup 2003

S.P.Q.R. Legged Team Report from RoboCup 2003 S.P.Q.R. Legged Team Report from RoboCup 2003 L. Iocchi and D. Nardi Dipartimento di Informatica e Sistemistica Universitá di Roma La Sapienza Via Salaria 113-00198 Roma, Italy {iocchi,nardi}@dis.uniroma1.it,

More information

A Reinforcement Learning Scheme for Adaptive Link Allocation in ATM Networks

A Reinforcement Learning Scheme for Adaptive Link Allocation in ATM Networks A Reinforcement Learning Scheme for Adaptive Link Allocation in ATM Networks Ernst Nordström, Jakob Carlström Department of Computer Systems, Uppsala University, Box 325, S 751 05 Uppsala, Sweden Fax:

More information

ENERGY-EFFICIENT ALGORITHMS FOR SENSOR NETWORKS

ENERGY-EFFICIENT ALGORITHMS FOR SENSOR NETWORKS ENERGY-EFFICIENT ALGORITHMS FOR SENSOR NETWORKS Prepared for: DARPA Prepared by: Krishnan Eswaran, Engineer Cornell University May 12, 2003 ENGRC 350 RESEARCH GROUP 2003 Krishnan Eswaran Energy-Efficient

More information

Using Dynamic Capability Evaluation to Organize a Team of Cooperative, Autonomous Robots

Using Dynamic Capability Evaluation to Organize a Team of Cooperative, Autonomous Robots Using Dynamic Capability Evaluation to Organize a Team of Cooperative, Autonomous Robots Eric Matson Scott DeLoach Multi-agent and Cooperative Robotics Laboratory Department of Computing and Information

More information

Sequential Multi-Channel Access Game in Distributed Cognitive Radio Networks

Sequential Multi-Channel Access Game in Distributed Cognitive Radio Networks Sequential Multi-Channel Access Game in Distributed Cognitive Radio Networks Chunxiao Jiang, Yan Chen, and K. J. Ray Liu Department of Electrical and Computer Engineering, University of Maryland, College

More information