Anavilhanas Natural Reserve (about 4000 Km 2 )

Size: px
Start display at page:

Download "Anavilhanas Natural Reserve (about 4000 Km 2 )"

Transcription

1 Anavilhanas Natural Reserve (about 4000 Km 2 )

2

3

4 A control room receives this alarm signal: what to do?

5 adversarial patrolling with spatially uncertain alarm signals Nicola Basilico, Giuseppe De Nittis, Nicola Gatti

6 Game theory for security of physical environments Objective: provide protection to physical environments against threats. The effort that can be spent in a time unity is limited: finite resources Our constraints: resources can provide security only locally, are finite, and not enough to protect everything at the same time.

7 Game theory for security of physical environments Assume that the threat is the output of a rational decision maker (Attacker) The resource allocation policy should consider the presence of an adversary that, for example, can observe and plan, has preferences. Security Game Defender: controls resources to protect the environment VS Attacker: tries to compromise some area without being detected The proper solution concept prescribes the policy (strategy) to be adopted Seminal works [Flood, 1972; Washburn 1995;] Recent works [Paruchuri et al. 2008; Pita et al. 2008; Kiekintveld et al. 2009; Yang et al. 2011;]

8 The Basic Model Idea: a game theoretical setting where the Defender is supported by an alarm system installed in the environment Environment: undirected graph Target t: v(t) value d(t) penetration time: time units needed to complete an attack during which capture can happen At any stage of the game: The Defender decides where to go next The Attacker decides whether to attack a target or to wait

9 The Basic Model In several applications the Attacker can obtain a correct belief about the Defender s strategy. Worst case assumption: the Defender s strategy is common knowledge of the game. Stackelberg paradigm: a Leader commits to a strategy, a follower best responds to it (In our setting the Defender will be the leader and the Attacker will be the follower.)

10 Leader-Follower (Example) F L A B C D (5,1) (1,0) (6,2) (-1,5) Let s suppose that, before the game begins, L makes the following announcement: L

11 Leader-Follower (Example) F L A B C D (5,1) (1,0) (6,2) (-1,5) Let s suppose that, before the game begins, L makes the following announcement: L F

12 Leader-Follower (Example) F L A B C D (5,1) (1,0) (6,2) (-1,5) Let s suppose that, before the game begins, L makes the following announcement: L I will play C F F

13 Leader-Follower (Example) F C D L A B (5,1) (1,0) (6,2) (-1,5) L

14 Leader-Follower (Example) F C D L A B (5,1) (1,0) (6,2) (-1,5) L Leader follower equilibrium (LFE) L

15 Leader-Follower (Example) F C D L A B (5,1) (1,0) (6,2) (-1,5) L Leader follower equilibrium (LFE) L Two important properties: 1. The follower does not randomize: it chooses the action that maximizes its expected utility. If indifferent between one or more actions, it will break ties in favor of the leader (compliant follower). 2. LFE is not worse than any NE (the leader can always announce a NE)

16 Computing a LFE (general sum) Idea: 1. For each action b of the Follower: Find the best commitment C(b) to announce, given that b will be the action played by F 2. Select the best C(b) Step 1

17 Computing a LFE (general sum) Idea: 1. For each action b of the Follower: Find the best commitment C(b) to announce, given that b will be the action played by F 2. Select the best C(b) Step 1

18 Computing a LFE (general sum) Step 2: We need to solve a LP n times, where n is the number of actions for the Follower For zero-sum games: maxmin strategy (For multiple followers and uncertain types of followers the problem becomes harder.)

19 The Alarm System Each attack at a target t probabilistically generates a signal that is sent to the Defender Example (deterministic): If an attack is present on tagets {8,4,5} generate B If an attack is present on tagets {6,7} generate A Signal A Signal B

20 The Alarm System Each attack at a target t probabilistically generates a signal that is sent to the Defender Signal C Example (non-deterministic): If 8 is attacked signal B is generated with some probability p, signal C with 1-p. Signal A Signal B

21 The Alarm System Each attack at a target t probabilistically generates a signal that is sent to the Defender Signal C Example (non-deterministic): If 8 is attacked signal B is generated with some probability p, signal C with 1-p. Signal A Signal B It is convenient to distinguish between two operation modalities in this setting: - Normal patrolling: if the Defender does not receive any signal it normally patrols the environment; - Signal response: if the Defender receives a signal it must handle it.

22 The signal response phase B Signal A The Defender patrols the environment and now is in v 1 The Attacker attacks v 4 The Alarm system generates with prob. 1 signal B Signal B

23 The signal response phase Upon receiving the signal, the Defender knows that the Attacker might be in v 8, v 4, or v 5 B In principle, it should check each target no later than d(t) 1 8 d=3 4 d=1 5 d=2 1 4 d=1 5 d=2 8 d=3 1 4 d=1 8 d=3 5 d=2 Covering routes (maximal)

24 Game Tree Let s take a look to the game tree, we have three players: - Attacker (A): it can wait or attack a single target; - Alarm system (Nature): given an attack t, generates a signal s with p(s t) - Defender (D): patrols the environment visiting vertices of the graph;

25 The Defender is in some vertex v; Let s start from the Attacker decision node. Game Tree

26 Game Tree A can decide to wait (not to attack) for the current stage;

27 Game Tree A can decide to wait (not to attack) for the current stage (action Δ); The alarm system does not generate any signal

28 Game Tree A can decide to wait (not to attack) for the current stage (action Δ); The alarm system does not generate any signal The Defender selects the next vertex to patrol (normal patrolling mode)

29 A may also decide to attack some target t I ; Game Tree

30 Game Tree A may also decide to attack some target t I ; Now N generates a signal according to some discrete probability distribution;

31 Game Tree A may also decide to attack some target t I ; Now N generates a signal according to some discrete probability distribution; The same signal can be associated to different attacks.

32 Game Tree Once observed a signal, D responds by following some covering route, the game ends

33 Game Tree This subgame encodes the signal response phase: Signal Response Game (SRG-v)

34 Game Tree This subgame encodes the normal patrolling phase: Patrolling Game Infinite horizon (the Attacker can wait forever)

35 Game Tree PG SRG-v Approach: Solve SRG-v for each v (find the optimal response strategy from each vertex v) Solve PG under the assumption that the Defender plays the optimal SRG-v strategy if a signal is received when the current vertex is v

36 The Signal Response Game We can formulate the game in normal form, for vertex 1 Attack 1 Attack n Signal A Route X Route Z 1 Signal B Route W Route Y

37 The Signal Response Game Solving the SRG, Minmax (NE): T is the set of targets, S is the set of signals, R is the set of routes, p(s t) is the probability that signal s is issued when target t is attacked Repeat this for each starting vertex v

38 Building the Game The number of covering routes is, in the worst case, prohibitive: (all the permutations for all the subsets of targets) Some routes will never be played: Dominates Dominates Even if we remove dominated covering routes, their number is still very large

39 Building the Game Idea: can we consider covering sets instead? From to Covering sets are in the worst case: (still exponential but much better than before) Problem: we still need routes operatively! Solution: we find covering sets and then we try to reconstruct routes

40 Building the Game Idea: simultaneously build covering sets and the shortest associated covering route Dynamic programming inspired algorithm: we can compute all the covering routes in Is this the best we can do? If we find a better algorithm we could build an algorithm for Hamiltionan Path which would outperform the best algorithm known in literature (for general graphs).

41 Algorithm Idea: simultaneously build covering sets and the shortest associated covering route Covering set: C Covering route: r Terminal vertex: t Covering set with k target whose shortest covering route ends in t Cost of the associated shortest covering route Shortest path between t and f

42 Algorithm Example 3 D 1 B 3 C A

43 Algorithm Example 3 D k=1 1 3 <{A}->A, 0> B C A

44 Algorithm Example 1 B 3 D 3 C k=1 <{A}->A, 0> k=2 <{A,B}->B, 1> A

45 Algorithm Example 1 B 3 D 3 C k=1 <{A}->A, 0> k=2 <{A,B}->B, 1> <{A,C}->C, 2> A

46 Algorithm Example 1 B 3 D 3 C k=1 <{A}->A, 0> dominated k=2 <{A,B}->B, 1> <{A,C}->C, 2> A

47 Algorithm Example 1 B 3 D 3 C k=1 <{A}->A, 0> dominated k=2 <{A,B}->B, 1> <{A,C}->C, 2> k=3 <{A,B,C}->C, 2> A

48 Algorithm Example 1 B 3 D 3 C k=1 <{A}->A, 0> dominated k=2 <{A,B}->B, 1> <{A,C}->C, 2> k=3 unfeasible <{A,B,C}->B, 3> <{A,B,C}->C, 2> A

49 Algorithm Example 1 B 3 D 3 C k=1 <{A}->A, 0> dominated k=2 <{A,B}->B, 1> <{A,C}->C, 2> k=3 unfeasible <{A,B,C}->B, 3> <{A,B,C}->C, 2> <{A,C,D}->D, 3> A

50 Algorithm Example 1 B 3 D 3 C k=1 <{A}->A, 0> dominated k=2 <{A,B}->B, 1> <{A,C}->C, 2> k=3 unfeasible <{A,B,C}->B, 3> <{A,B,C}->C, 2> dominated <{A,C,D}->D, 3> A

51 Algorithm Example 1 B 3 D 3 C k=1 <{A}->A, 0> dominated k=2 <{A,B}->B, 1> <{A,C}->C, 2> k=3 unfeasible <{A,B,C}->B, 3> <{A,B,C}->C, 2> dominated <{A,C,D}->D, 3> A k=4? All unfeasible

52 Building the Game (some numbers) The edge density is a critical parameter. The more dense the graph, the more difficult to build the game.

53 Building the Game (some numbers) Comparison with an heuristic sub-optimal algorithm. Good news: the heuristic method seems to perform better where the exact algorithm requires the highest computational effort

54 The Patrolling Game Solving the signal response game gives the Defender s strategy to react upon the reception of a signal Patrolling game: what to do when no signal is received? Signal B Signal A It s a Leader-Follower scenario: the Attacker can observe the position of the Defender before playing (we can solve it easily) What is the equilibrium patrolling strategy in the presence of an alarm system?

55 The Patrolling Game Intuitive result: if the alarm system covers all the targets; if no false positive are present; if the false negative rate is below a certain threshold: The equilibrium patrolling strategy is not to patrol: the Defender places at the most convenient vertex of the graph and waits for something to happen. Current work: to allow false positives and non-bounded false negatives.

56 Thank you.

A short introduction to Security Games

A short introduction to Security Games Game Theoretic Foundations of Multiagent Systems: Algorithms and Applications A case study: Playing Games for Security A short introduction to Security Games Nicola Basilico Department of Computer Science

More information

Design of intelligent surveillance systems: a game theoretic case. Nicola Basilico Department of Computer Science University of Milan

Design of intelligent surveillance systems: a game theoretic case. Nicola Basilico Department of Computer Science University of Milan Design of intelligent surveillance systems: a game theoretic case Nicola Basilico Department of Computer Science University of Milan Introduction Intelligent security for physical infrastructures Our objective:

More information

Design of intelligent surveillance systems: a game theoretic case. Nicola Basilico Department of Computer Science University of Milan

Design of intelligent surveillance systems: a game theoretic case. Nicola Basilico Department of Computer Science University of Milan Design of intelligent surveillance systems: a game theoretic case Nicola Basilico Department of Computer Science University of Milan Outline Introduction to Game Theory and solution concepts Game definition

More information

Modeling Security Decisions as Games

Modeling Security Decisions as Games Modeling Security Decisions as Games Chris Kiekintveld University of Texas at El Paso.. and MANY Collaborators Decision Making and Games Research agenda: improve and justify decisions Automated intelligent

More information

final examination on May 31 Topics from the latter part of the course (covered in homework assignments 4-7) include:

final examination on May 31 Topics from the latter part of the course (covered in homework assignments 4-7) include: The final examination on May 31 may test topics from any part of the course, but the emphasis will be on topic after the first three homework assignments, which were covered in the midterm. Topics from

More information

CS510 \ Lecture Ariel Stolerman

CS510 \ Lecture Ariel Stolerman CS510 \ Lecture04 2012-10-15 1 Ariel Stolerman Administration Assignment 2: just a programming assignment. Midterm: posted by next week (5), will cover: o Lectures o Readings A midterm review sheet will

More information

Surveillance strategies for autonomous mobile robots. Nicola Basilico Department of Computer Science University of Milan

Surveillance strategies for autonomous mobile robots. Nicola Basilico Department of Computer Science University of Milan Surveillance strategies for autonomous mobile robots Nicola Basilico Department of Computer Science University of Milan Intelligence, surveillance, and reconnaissance (ISR) with autonomous UAVs ISR defines

More information

Control of the Contract of a Public Transport Service

Control of the Contract of a Public Transport Service Control of the Contract of a Public Transport Service Andrea Lodi, Enrico Malaguti, Nicolás E. Stier-Moses Tommaso Bonino DEIS, University of Bologna Graduate School of Business, Columbia University SRM

More information

Introduction to Industrial Organization Professor: Caixia Shen Fall 2014 Lecture Note 6 Games and Strategy (ch.4)-continue

Introduction to Industrial Organization Professor: Caixia Shen Fall 2014 Lecture Note 6 Games and Strategy (ch.4)-continue Introduction to Industrial Organization Professor: Caixia Shen Fall 014 Lecture Note 6 Games and Strategy (ch.4)-continue Outline: Modeling by means of games Normal form games Dominant strategies; dominated

More information

CS188 Spring 2014 Section 3: Games

CS188 Spring 2014 Section 3: Games CS188 Spring 2014 Section 3: Games 1 Nearly Zero Sum Games The standard Minimax algorithm calculates worst-case values in a zero-sum two player game, i.e. a game in which for all terminal states s, the

More information

Game Theory and Randomized Algorithms

Game Theory and Randomized Algorithms Game Theory and Randomized Algorithms Guy Aridor Game theory is a set of tools that allow us to understand how decisionmakers interact with each other. It has practical applications in economics, international

More information

Module 3. Problem Solving using Search- (Two agent) Version 2 CSE IIT, Kharagpur

Module 3. Problem Solving using Search- (Two agent) Version 2 CSE IIT, Kharagpur Module 3 Problem Solving using Search- (Two agent) 3.1 Instructional Objective The students should understand the formulation of multi-agent search and in detail two-agent search. Students should b familiar

More information

Chapter 2 Basics of Game Theory

Chapter 2 Basics of Game Theory Chapter 2 Basics of Game Theory Abstract This chapter provides a brief overview of basic concepts in game theory. These include game formulations and classifications, games in extensive vs. in normal form,

More information

Game Theory and Economics of Contracts Lecture 4 Basics in Game Theory (2)

Game Theory and Economics of Contracts Lecture 4 Basics in Game Theory (2) Game Theory and Economics of Contracts Lecture 4 Basics in Game Theory (2) Yu (Larry) Chen School of Economics, Nanjing University Fall 2015 Extensive Form Game I It uses game tree to represent the games.

More information

Pengju

Pengju Introduction to AI Chapter05 Adversarial Search: Game Playing Pengju Ren@IAIR Outline Types of Games Formulation of games Perfect-Information Games Minimax and Negamax search α-β Pruning Pruning more Imperfect

More information

LECTURE 26: GAME THEORY 1

LECTURE 26: GAME THEORY 1 15-382 COLLECTIVE INTELLIGENCE S18 LECTURE 26: GAME THEORY 1 INSTRUCTOR: GIANNI A. DI CARO ICE-CREAM WARS http://youtu.be/jilgxenbk_8 2 GAME THEORY Game theory is the formal study of conflict and cooperation

More information

Game Theory Refresher. Muriel Niederle. February 3, A set of players (here for simplicity only 2 players, all generalized to N players).

Game Theory Refresher. Muriel Niederle. February 3, A set of players (here for simplicity only 2 players, all generalized to N players). Game Theory Refresher Muriel Niederle February 3, 2009 1. Definition of a Game We start by rst de ning what a game is. A game consists of: A set of players (here for simplicity only 2 players, all generalized

More information

Summary Overview of Topics in Econ 30200b: Decision theory: strong and weak domination by randomized strategies, domination theorem, expected utility

Summary Overview of Topics in Econ 30200b: Decision theory: strong and weak domination by randomized strategies, domination theorem, expected utility Summary Overview of Topics in Econ 30200b: Decision theory: strong and weak domination by randomized strategies, domination theorem, expected utility theorem (consistent decisions under uncertainty should

More information

Diffusion of Networking Technologies

Diffusion of Networking Technologies Diffusion of Networking Technologies ISP Bellairs Workshop on Algorithmic Game Theory Barbados April 2012 Sharon Goldberg Boston University Princeton University Zhenming Liu Harvard University Diffusion

More information

Game Theory two-person, zero-sum games

Game Theory two-person, zero-sum games GAME THEORY Game Theory Mathematical theory that deals with the general features of competitive situations. Examples: parlor games, military battles, political campaigns, advertising and marketing campaigns,

More information

Lightweight Decentralized Algorithm for Localizing Reactive Jammers in Wireless Sensor Network

Lightweight Decentralized Algorithm for Localizing Reactive Jammers in Wireless Sensor Network International Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue. 3 Lightweight Decentralized Algorithm for Localizing Reactive Jammers in Wireless Sensor Network 1, Vinothkumar.G,

More information

Appendix A A Primer in Game Theory

Appendix A A Primer in Game Theory Appendix A A Primer in Game Theory This presentation of the main ideas and concepts of game theory required to understand the discussion in this book is intended for readers without previous exposure to

More information

16.410/413 Principles of Autonomy and Decision Making

16.410/413 Principles of Autonomy and Decision Making 16.10/13 Principles of Autonomy and Decision Making Lecture 2: Sequential Games Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology December 6, 2010 E. Frazzoli (MIT) L2:

More information

EasyChair Preprint. A User-Centric Cluster Resource Allocation Scheme for Ultra-Dense Network

EasyChair Preprint. A User-Centric Cluster Resource Allocation Scheme for Ultra-Dense Network EasyChair Preprint 78 A User-Centric Cluster Resource Allocation Scheme for Ultra-Dense Network Yuzhou Liu and Wuwen Lai EasyChair preprints are intended for rapid dissemination of research results and

More information

Decoding Turbo Codes and LDPC Codes via Linear Programming

Decoding Turbo Codes and LDPC Codes via Linear Programming Decoding Turbo Codes and LDPC Codes via Linear Programming Jon Feldman David Karger jonfeld@theorylcsmitedu karger@theorylcsmitedu MIT LCS Martin Wainwright martinw@eecsberkeleyedu UC Berkeley MIT LCS

More information

ECON 282 Final Practice Problems

ECON 282 Final Practice Problems ECON 282 Final Practice Problems S. Lu Multiple Choice Questions Note: The presence of these practice questions does not imply that there will be any multiple choice questions on the final exam. 1. How

More information

Research Statement Arunesh Sinha aruneshs/

Research Statement Arunesh Sinha  aruneshs/ Research Statement Arunesh Sinha aruneshs@usc.edu http://www-bcf.usc.edu/ aruneshs/ Research Theme My research lies at the intersection of Artificial Intelligence and Security 1 and Privacy. Security and

More information

Microeconomics II Lecture 2: Backward induction and subgame perfection Karl Wärneryd Stockholm School of Economics November 2016

Microeconomics II Lecture 2: Backward induction and subgame perfection Karl Wärneryd Stockholm School of Economics November 2016 Microeconomics II Lecture 2: Backward induction and subgame perfection Karl Wärneryd Stockholm School of Economics November 2016 1 Games in extensive form So far, we have only considered games where players

More information

Computing Nash Equilibrium; Maxmin

Computing Nash Equilibrium; Maxmin Computing Nash Equilibrium; Maxmin Lecture 5 Computing Nash Equilibrium; Maxmin Lecture 5, Slide 1 Lecture Overview 1 Recap 2 Computing Mixed Nash Equilibria 3 Fun Game 4 Maxmin and Minmax Computing Nash

More information

Announcements. Homework 1. Project 1. Due tonight at 11:59pm. Due Friday 2/8 at 4:00pm. Electronic HW1 Written HW1

Announcements. Homework 1. Project 1. Due tonight at 11:59pm. Due Friday 2/8 at 4:00pm. Electronic HW1 Written HW1 Announcements Homework 1 Due tonight at 11:59pm Project 1 Electronic HW1 Written HW1 Due Friday 2/8 at 4:00pm CS 188: Artificial Intelligence Adversarial Search and Game Trees Instructors: Sergey Levine

More information

The extensive form representation of a game

The extensive form representation of a game The extensive form representation of a game Nodes, information sets Perfect and imperfect information Addition of random moves of nature (to model uncertainty not related with decisions of other players).

More information

Simple Decision Heuristics in Perfec Games. The original publication is availabl. Press

Simple Decision Heuristics in Perfec Games. The original publication is availabl. Press JAIST Reposi https://dspace.j Title Simple Decision Heuristics in Perfec Games Author(s)Konno, Naoki; Kijima, Kyoichi Citation Issue Date 2005-11 Type Conference Paper Text version publisher URL Rights

More information

ECO 199 B GAMES OF STRATEGY Spring Term 2004 B February 24 SEQUENTIAL AND SIMULTANEOUS GAMES. Representation Tree Matrix Equilibrium concept

ECO 199 B GAMES OF STRATEGY Spring Term 2004 B February 24 SEQUENTIAL AND SIMULTANEOUS GAMES. Representation Tree Matrix Equilibrium concept CLASSIFICATION ECO 199 B GAMES OF STRATEGY Spring Term 2004 B February 24 SEQUENTIAL AND SIMULTANEOUS GAMES Sequential Games Simultaneous Representation Tree Matrix Equilibrium concept Rollback (subgame

More information

Topic 1: defining games and strategies. SF2972: Game theory. Not allowed: Extensive form game: formal definition

Topic 1: defining games and strategies. SF2972: Game theory. Not allowed: Extensive form game: formal definition SF2972: Game theory Mark Voorneveld, mark.voorneveld@hhs.se Topic 1: defining games and strategies Drawing a game tree is usually the most informative way to represent an extensive form game. Here is one

More information

Search then involves moving from state-to-state in the problem space to find a goal (or to terminate without finding a goal).

Search then involves moving from state-to-state in the problem space to find a goal (or to terminate without finding a goal). Search Can often solve a problem using search. Two requirements to use search: Goal Formulation. Need goals to limit search and allow termination. Problem formulation. Compact representation of problem

More information

Student Name. Student ID

Student Name. Student ID Final Exam CMPT 882: Computational Game Theory Simon Fraser University Spring 2010 Instructor: Oliver Schulte Student Name Student ID Instructions. This exam is worth 30% of your final mark in this course.

More information

Minmax and Dominance

Minmax and Dominance Minmax and Dominance CPSC 532A Lecture 6 September 28, 2006 Minmax and Dominance CPSC 532A Lecture 6, Slide 1 Lecture Overview Recap Maxmin and Minmax Linear Programming Computing Fun Game Domination Minmax

More information

Lecture #3: Networks. Kyumars Sheykh Esmaili

Lecture #3: Networks. Kyumars Sheykh Esmaili Lecture #3: Game Theory and Social Networks Kyumars Sheykh Esmaili Outline Games Modeling Network Traffic Using Game Theory Games Exam or Presentation Game You need to choose between exam or presentation:

More information

Game Theory for Safety and Security. Arunesh Sinha

Game Theory for Safety and Security. Arunesh Sinha Game Theory for Safety and Security Arunesh Sinha Motivation: Real World Security Issues 2 Central Problem Allocating limited security resources against an adaptive, intelligent adversary 3 Prior Work

More information

INSTRUCTIONS: all the calculations on the separate piece of paper which you do not hand in. GOOD LUCK!

INSTRUCTIONS: all the calculations on the separate piece of paper which you do not hand in. GOOD LUCK! INSTRUCTIONS: 1) You should hand in ONLY THE ANSWERS ASKED FOR written clearly on this EXAM PAPER. You should do all the calculations on the separate piece of paper which you do not hand in. 2) Problems

More information

Adversarial Search Lecture 7

Adversarial Search Lecture 7 Lecture 7 How can we use search to plan ahead when other agents are planning against us? 1 Agenda Games: context, history Searching via Minimax Scaling α β pruning Depth-limiting Evaluation functions Handling

More information

CSCI 699: Topics in Learning and Game Theory Fall 2017 Lecture 3: Intro to Game Theory. Instructor: Shaddin Dughmi

CSCI 699: Topics in Learning and Game Theory Fall 2017 Lecture 3: Intro to Game Theory. Instructor: Shaddin Dughmi CSCI 699: Topics in Learning and Game Theory Fall 217 Lecture 3: Intro to Game Theory Instructor: Shaddin Dughmi Outline 1 Introduction 2 Games of Complete Information 3 Games of Incomplete Information

More information

Repeated Games. Economics Microeconomic Theory II: Strategic Behavior. Shih En Lu. Simon Fraser University (with thanks to Anke Kessler)

Repeated Games. Economics Microeconomic Theory II: Strategic Behavior. Shih En Lu. Simon Fraser University (with thanks to Anke Kessler) Repeated Games Economics 302 - Microeconomic Theory II: Strategic Behavior Shih En Lu Simon Fraser University (with thanks to Anke Kessler) ECON 302 (SFU) Repeated Games 1 / 25 Topics 1 Information Sets

More information

CS 188 Introduction to Fall 2014 Artificial Intelligence Midterm

CS 188 Introduction to Fall 2014 Artificial Intelligence Midterm CS 88 Introduction to Fall Artificial Intelligence Midterm INSTRUCTIONS You have 8 minutes. The exam is closed book, closed notes except a one-page crib sheet. Please use non-programmable calculators only.

More information

Game Theory. Vincent Kubala

Game Theory. Vincent Kubala Game Theory Vincent Kubala Goals Define game Link games to AI Introduce basic terminology of game theory Overall: give you a new way to think about some problems What Is Game Theory? Field of work involving

More information

3-2 Lecture 3: January Repeated Games A repeated game is a standard game which isplayed repeatedly. The utility of each player is the sum of

3-2 Lecture 3: January Repeated Games A repeated game is a standard game which isplayed repeatedly. The utility of each player is the sum of S294-1 Algorithmic Aspects of Game Theory Spring 2001 Lecturer: hristos Papadimitriou Lecture 3: January 30 Scribes: Kris Hildrum, ror Weitz 3.1 Overview This lecture expands the concept of a game by introducing

More information

1. Introduction to Game Theory

1. Introduction to Game Theory 1. Introduction to Game Theory What is game theory? Important branch of applied mathematics / economics Eight game theorists have won the Nobel prize, most notably John Nash (subject of Beautiful mind

More information

3 Game Theory II: Sequential-Move and Repeated Games

3 Game Theory II: Sequential-Move and Repeated Games 3 Game Theory II: Sequential-Move and Repeated Games Recognizing that the contributions you make to a shared computer cluster today will be known to other participants tomorrow, you wonder how that affects

More information

Exercises for Introduction to Game Theory SOLUTIONS

Exercises for Introduction to Game Theory SOLUTIONS Exercises for Introduction to Game Theory SOLUTIONS Heinrich H. Nax & Bary S. R. Pradelski March 19, 2018 Due: March 26, 2018 1 Cooperative game theory Exercise 1.1 Marginal contributions 1. If the value

More information

Adversarial Search and Game- Playing C H A P T E R 6 C M P T : S P R I N G H A S S A N K H O S R A V I

Adversarial Search and Game- Playing C H A P T E R 6 C M P T : S P R I N G H A S S A N K H O S R A V I Adversarial Search and Game- Playing C H A P T E R 6 C M P T 3 1 0 : S P R I N G 2 0 1 1 H A S S A N K H O S R A V I Adversarial Search Examine the problems that arise when we try to plan ahead in a world

More information

Adversary Search. Ref: Chapter 5

Adversary Search. Ref: Chapter 5 Adversary Search Ref: Chapter 5 1 Games & A.I. Easy to measure success Easy to represent states Small number of operators Comparison against humans is possible. Many games can be modeled very easily, although

More information

Set 4: Game-Playing. ICS 271 Fall 2017 Kalev Kask

Set 4: Game-Playing. ICS 271 Fall 2017 Kalev Kask Set 4: Game-Playing ICS 271 Fall 2017 Kalev Kask Overview Computer programs that play 2-player games game-playing as search with the complication of an opponent General principles of game-playing and search

More information

Games. Episode 6 Part III: Dynamics. Baochun Li Professor Department of Electrical and Computer Engineering University of Toronto

Games. Episode 6 Part III: Dynamics. Baochun Li Professor Department of Electrical and Computer Engineering University of Toronto Games Episode 6 Part III: Dynamics Baochun Li Professor Department of Electrical and Computer Engineering University of Toronto Dynamics Motivation for a new chapter 2 Dynamics Motivation for a new chapter

More information

Game Theory. Vincent Kubala

Game Theory. Vincent Kubala Game Theory Vincent Kubala vkubala@cs.brown.edu Goals efine game Link games to AI Introduce basic terminology of game theory Overall: give you a new way to think about some problems What Is Game Theory?

More information

The Mother & Child Game

The Mother & Child Game BUS 4800/4810 Game Theory Lecture Sequential Games and Credible Threats Winter 2008 The Mother & Child Game Child is being BD Moms responds This is a Sequential Game 1 Game Tree: This is the EXTENDED form

More information

Mixed Strategies; Maxmin

Mixed Strategies; Maxmin Mixed Strategies; Maxmin CPSC 532A Lecture 4 January 28, 2008 Mixed Strategies; Maxmin CPSC 532A Lecture 4, Slide 1 Lecture Overview 1 Recap 2 Mixed Strategies 3 Fun Game 4 Maxmin and Minmax Mixed Strategies;

More information

Adversarial Search 1

Adversarial Search 1 Adversarial Search 1 Adversarial Search The ghosts trying to make pacman loose Can not come up with a giant program that plans to the end, because of the ghosts and their actions Goal: Eat lots of dots

More information

Asynchronous Best-Reply Dynamics

Asynchronous Best-Reply Dynamics Asynchronous Best-Reply Dynamics Noam Nisan 1, Michael Schapira 2, and Aviv Zohar 2 1 Google Tel-Aviv and The School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel. 2 The

More information

Monte Carlo Tree Search and AlphaGo. Suraj Nair, Peter Kundzicz, Kevin An, Vansh Kumar

Monte Carlo Tree Search and AlphaGo. Suraj Nair, Peter Kundzicz, Kevin An, Vansh Kumar Monte Carlo Tree Search and AlphaGo Suraj Nair, Peter Kundzicz, Kevin An, Vansh Kumar Zero-Sum Games and AI A player s utility gain or loss is exactly balanced by the combined gain or loss of opponents:

More information

Game theory attempts to mathematically. capture behavior in strategic situations, or. games, in which an individual s success in

Game theory attempts to mathematically. capture behavior in strategic situations, or. games, in which an individual s success in Game Theory Game theory attempts to mathematically capture behavior in strategic situations, or games, in which an individual s success in making choices depends on the choices of others. A game Γ consists

More information

Games in Extensive Form, Backward Induction, and Subgame Perfection:

Games in Extensive Form, Backward Induction, and Subgame Perfection: Econ 460 Game Theory Assignment 4 Games in Extensive Form, Backward Induction, Subgame Perfection (Ch. 14,15), Bargaining (Ch. 19), Finitely Repeated Games (Ch. 22) Games in Extensive Form, Backward Induction,

More information

Adversarial Search and Game Theory. CS 510 Lecture 5 October 26, 2017

Adversarial Search and Game Theory. CS 510 Lecture 5 October 26, 2017 Adversarial Search and Game Theory CS 510 Lecture 5 October 26, 2017 Reminders Proposals due today Midterm next week past midterms online Midterm online BBLearn Available Thurs-Sun, ~2 hours Overview Game

More information

ECON 301: Game Theory 1. Intermediate Microeconomics II, ECON 301. Game Theory: An Introduction & Some Applications

ECON 301: Game Theory 1. Intermediate Microeconomics II, ECON 301. Game Theory: An Introduction & Some Applications ECON 301: Game Theory 1 Intermediate Microeconomics II, ECON 301 Game Theory: An Introduction & Some Applications You have been introduced briefly regarding how firms within an Oligopoly interacts strategically

More information

Randomizing Regression Tests Using Game Theory

Randomizing Regression Tests Using Game Theory Randomizing Regression Tests Using Game Theory Nupul Kukreja, William G.J. Halfond, Milind Tambe University of Southern California Los Angeles, California, USA Email: {nkukreja, halfond, tambe}@usc.edu

More information

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Algorithms and Game Theory Date: 12/4/14

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Algorithms and Game Theory Date: 12/4/14 600.363 Introduction to Algorithms / 600.463 Algorithms I Lecturer: Michael Dinitz Topic: Algorithms and Game Theory Date: 12/4/14 25.1 Introduction Today we re going to spend some time discussing game

More information

CSE 573 Problem Set 1. Answers on 10/17/08

CSE 573 Problem Set 1. Answers on 10/17/08 CSE 573 Problem Set. Answers on 0/7/08 Please work on this problem set individually. (Subsequent problem sets may allow group discussion. If any problem doesn t contain enough information for you to answer

More information

CMU-Q Lecture 20:

CMU-Q Lecture 20: CMU-Q 15-381 Lecture 20: Game Theory I Teacher: Gianni A. Di Caro ICE-CREAM WARS http://youtu.be/jilgxenbk_8 2 GAME THEORY Game theory is the formal study of conflict and cooperation in (rational) multi-agent

More information

Solving Coup as an MDP/POMDP

Solving Coup as an MDP/POMDP Solving Coup as an MDP/POMDP Semir Shafi Dept. of Computer Science Stanford University Stanford, USA semir@stanford.edu Adrien Truong Dept. of Computer Science Stanford University Stanford, USA aqtruong@stanford.edu

More information

Chapter 2 Distributed Consensus Estimation of Wireless Sensor Networks

Chapter 2 Distributed Consensus Estimation of Wireless Sensor Networks Chapter 2 Distributed Consensus Estimation of Wireless Sensor Networks Recently, consensus based distributed estimation has attracted considerable attention from various fields to estimate deterministic

More information

Econ 302: Microeconomics II - Strategic Behavior. Problem Set #5 June13, 2016

Econ 302: Microeconomics II - Strategic Behavior. Problem Set #5 June13, 2016 Econ 302: Microeconomics II - Strategic Behavior Problem Set #5 June13, 2016 1. T/F/U? Explain and give an example of a game to illustrate your answer. A Nash equilibrium requires that all players are

More information

Leandro Chaves Rêgo. Unawareness in Extensive Form Games. Joint work with: Joseph Halpern (Cornell) Statistics Department, UFPE, Brazil.

Leandro Chaves Rêgo. Unawareness in Extensive Form Games. Joint work with: Joseph Halpern (Cornell) Statistics Department, UFPE, Brazil. Unawareness in Extensive Form Games Leandro Chaves Rêgo Statistics Department, UFPE, Brazil Joint work with: Joseph Halpern (Cornell) January 2014 Motivation Problem: Most work on game theory assumes that:

More information

Adversarial Search. CS 486/686: Introduction to Artificial Intelligence

Adversarial Search. CS 486/686: Introduction to Artificial Intelligence Adversarial Search CS 486/686: Introduction to Artificial Intelligence 1 Introduction So far we have only been concerned with a single agent Today, we introduce an adversary! 2 Outline Games Minimax search

More information

Sequential Multi-Channel Access Game in Distributed Cognitive Radio Networks

Sequential Multi-Channel Access Game in Distributed Cognitive Radio Networks Sequential Multi-Channel Access Game in Distributed Cognitive Radio Networks Chunxiao Jiang, Yan Chen, and K. J. Ray Liu Department of Electrical and Computer Engineering, University of Maryland, College

More information

Multiplayer Pushdown Games. Anil Seth IIT Kanpur

Multiplayer Pushdown Games. Anil Seth IIT Kanpur Multiplayer Pushdown Games Anil Seth IIT Kanpur Multiplayer Games we Consider These games are played on graphs (finite or infinite) Generalize two player infinite games. Any number of players are allowed.

More information

Sequential games. Moty Katzman. November 14, 2017

Sequential games. Moty Katzman. November 14, 2017 Sequential games Moty Katzman November 14, 2017 An example Alice and Bob play the following game: Alice goes first and chooses A, B or C. If she chose A, the game ends and both get 0. If she chose B, Bob

More information

Backward Induction. ISCI 330 Lecture 14. March 1, Backward Induction ISCI 330 Lecture 14, Slide 1

Backward Induction. ISCI 330 Lecture 14. March 1, Backward Induction ISCI 330 Lecture 14, Slide 1 ISCI 330 Lecture 4 March, 007 ISCI 330 Lecture 4, Slide Lecture Overview Recap ISCI 330 Lecture 4, Slide Subgame Perfection Notice that the definition contains a subtlety. n agent s strategy requires a

More information

Instability of Scoring Heuristic In games with value exchange, the heuristics are very bumpy Make smoothing assumptions search for "quiesence"

Instability of Scoring Heuristic In games with value exchange, the heuristics are very bumpy Make smoothing assumptions search for quiesence More on games Gaming Complications Instability of Scoring Heuristic In games with value exchange, the heuristics are very bumpy Make smoothing assumptions search for "quiesence" The Horizon Effect No matter

More information

4. Games and search. Lecture Artificial Intelligence (4ov / 8op)

4. Games and search. Lecture Artificial Intelligence (4ov / 8op) 4. Games and search 4.1 Search problems State space search find a (shortest) path from the initial state to the goal state. Constraint satisfaction find a value assignment to a set of variables so that

More information

Throttling numbers for cop vs gambler

Throttling numbers for cop vs gambler Throttling numbers for cop vs gambler James Lin Carl Joshua Quines Espen Slettnes Mentor: Dr. Jesse Geneson May 19 20, 2018 MIT PRIMES Conference J. Lin, C. J. Quines, E. Slettnes Throttling numbers for

More information

Chapter 12. Cross-Layer Optimization for Multi- Hop Cognitive Radio Networks

Chapter 12. Cross-Layer Optimization for Multi- Hop Cognitive Radio Networks Chapter 12 Cross-Layer Optimization for Multi- Hop Cognitive Radio Networks 1 Outline CR network (CRN) properties Mathematical models at multiple layers Case study 2 Traditional Radio vs CR Traditional

More information

Game Theory for Strategic Advantage Alessandro Bonatti MIT Sloan

Game Theory for Strategic Advantage Alessandro Bonatti MIT Sloan Game Theory for Strategic Advantage 15.025 Alessandro Bonatti MIT Sloan Look Forward, Think Back 1. Introduce sequential games (trees) 2. Applications of Backward Induction: Creating Credible Threats Eliminating

More information

Domination Rationalizability Correlated Equilibrium Computing CE Computational problems in domination. Game Theory Week 3. Kevin Leyton-Brown

Domination Rationalizability Correlated Equilibrium Computing CE Computational problems in domination. Game Theory Week 3. Kevin Leyton-Brown Game Theory Week 3 Kevin Leyton-Brown Game Theory Week 3 Kevin Leyton-Brown, Slide 1 Lecture Overview 1 Domination 2 Rationalizability 3 Correlated Equilibrium 4 Computing CE 5 Computational problems in

More information

Math 152: Applicable Mathematics and Computing

Math 152: Applicable Mathematics and Computing Math 152: Applicable Mathematics and Computing May 8, 2017 May 8, 2017 1 / 15 Extensive Form: Overview We have been studying the strategic form of a game: we considered only a player s overall strategy,

More information

Some introductory notes on game theory

Some introductory notes on game theory APPENDX Some introductory notes on game theory The mathematical analysis in the preceding chapters, for the most part, involves nothing more than algebra. The analysis does, however, appeal to a game-theoretic

More information

Advanced Microeconomics: Game Theory

Advanced Microeconomics: Game Theory Advanced Microeconomics: Game Theory P. v. Mouche Wageningen University 2018 Outline 1 Motivation 2 Games in strategic form 3 Games in extensive form What is game theory? Traditional game theory deals

More information

Extensive-Form Games with Perfect Information

Extensive-Form Games with Perfect Information Extensive-Form Games with Perfect Information Yiling Chen September 22, 2008 CS286r Fall 08 Extensive-Form Games with Perfect Information 1 Logistics In this unit, we cover 5.1 of the SLB book. Problem

More information

Opportunistic Communications under Energy & Delay Constraints

Opportunistic Communications under Energy & Delay Constraints Opportunistic Communications under Energy & Delay Constraints Narayan Mandayam (joint work with Henry Wang) Opportunistic Communications Wireless Data on the Move Intermittent Connectivity Opportunities

More information

Strategic Bargaining. This is page 1 Printer: Opaq

Strategic Bargaining. This is page 1 Printer: Opaq 16 This is page 1 Printer: Opaq Strategic Bargaining The strength of the framework we have developed so far, be it normal form or extensive form games, is that almost any well structured game can be presented

More information

Convergence in competitive games

Convergence in competitive games Convergence in competitive games Vahab S. Mirrokni Computer Science and AI Lab. (CSAIL) and Math. Dept., MIT. This talk is based on joint works with A. Vetta and with A. Sidiropoulos, A. Vetta DIMACS Bounded

More information

Practice Session 2. HW 1 Review

Practice Session 2. HW 1 Review Practice Session 2 HW 1 Review Chapter 1 1.4 Suppose we extend Evans s Analogy program so that it can score 200 on a standard IQ test. Would we then have a program more intelligent than a human? Explain.

More information

Strategic Surveillance Against Primary User Emulation Attacks in Cognitive Radio Networks

Strategic Surveillance Against Primary User Emulation Attacks in Cognitive Radio Networks Strategic Surveillance Against Primary User Emulation Attacks in Cognitive Radio Networks Duc-Tuyen Ta, Nhan Nguyen-Thanh, Patrick Maillé, Van-Tam Nguyen To cite this version: Duc-Tuyen Ta, Nhan Nguyen-Thanh,

More information

Lecture 6: Basics of Game Theory

Lecture 6: Basics of Game Theory 0368.4170: Cryptography and Game Theory Ran Canetti and Alon Rosen Lecture 6: Basics of Game Theory 25 November 2009 Fall 2009 Scribes: D. Teshler Lecture Overview 1. What is a Game? 2. Solution Concepts:

More information

Exploring Information Asymmetry in Two-Stage Security Games

Exploring Information Asymmetry in Two-Stage Security Games Exploring Information Asymmetry in Two-Stage Security Games Haifeng Xu 1, Zinovi Rabinovich 2, Shaddin Dughmi 1, Milind Tambe 1 1 University of Southern California 2 Independent Researcher Security Games

More information

Lecture Notes on Game Theory (QTM)

Lecture Notes on Game Theory (QTM) Theory of games: Introduction and basic terminology, pure strategy games (including identification of saddle point and value of the game), Principle of dominance, mixed strategy games (only arithmetic

More information

Adverserial Search Chapter 5 minmax algorithm alpha-beta pruning TDDC17. Problems. Why Board Games?

Adverserial Search Chapter 5 minmax algorithm alpha-beta pruning TDDC17. Problems. Why Board Games? TDDC17 Seminar 4 Adversarial Search Constraint Satisfaction Problems Adverserial Search Chapter 5 minmax algorithm alpha-beta pruning 1 Why Board Games? 2 Problems Board games are one of the oldest branches

More information

COMP Online Algorithms. Paging and k-server Problem. Shahin Kamali. Lecture 11 - Oct. 11, 2018 University of Manitoba

COMP Online Algorithms. Paging and k-server Problem. Shahin Kamali. Lecture 11 - Oct. 11, 2018 University of Manitoba COMP 7720 - Online Algorithms Paging and k-server Problem Shahin Kamali Lecture 11 - Oct. 11, 2018 University of Manitoba COMP 7720 - Online Algorithms Paging and k-server Problem 1 / 19 Review & Plan

More information

Routing in Max-Min Fair Networks: A Game Theoretic Approach

Routing in Max-Min Fair Networks: A Game Theoretic Approach Routing in Max-Min Fair Networks: A Game Theoretic Approach Dejun Yang, Guoliang Xue, Xi Fang, Satyajayant Misra and Jin Zhang Arizona State University New Mexico State University Outline/Progress of the

More information

Games and Adversarial Search II

Games and Adversarial Search II Games and Adversarial Search II Alpha-Beta Pruning (AIMA 5.3) Some slides adapted from Richard Lathrop, USC/ISI, CS 271 Review: The Minimax Rule Idea: Make the best move for MAX assuming that MIN always

More information

Game-Playing & Adversarial Search

Game-Playing & Adversarial Search Game-Playing & Adversarial Search This lecture topic: Game-Playing & Adversarial Search (two lectures) Chapter 5.1-5.5 Next lecture topic: Constraint Satisfaction Problems (two lectures) Chapter 6.1-6.4,

More information

Adversarial Search: Game Playing. Reading: Chapter

Adversarial Search: Game Playing. Reading: Chapter Adversarial Search: Game Playing Reading: Chapter 6.5-6.8 1 Games and AI Easy to represent, abstract, precise rules One of the first tasks undertaken by AI (since 1950) Better than humans in Othello and

More information