A 2.4 GHz High Speed Communications System for Cubesat Applications

Size: px
Start display at page:

Download "A 2.4 GHz High Speed Communications System for Cubesat Applications"

Transcription

1 A 2.4 GHz High Speed Communications System for Cubesat Applications Daniel G. Kuester, Pradeep Narayan P Radhakrishna Colorado Space Grant Consortium University of Colorado at Boulder Abstract This paper proposes a deployable solution and addresses design challenges for an S-band Microwave Cubesat communication system using consumer off-theshelf (COTS) components. Compared to typical existing amateur radio UHF systems on cubesats, this solution offers data throughput improvements, reduced mass, and reduced system-level and antenna deployment complexity by taking advantage of broader available bandwidth and shorter wavelengths at 2.4GHz. It also addresses challenges inherent to this band, such as antenna radiation irregularities, licensing, and pervasive ground interference. Successful tests of improved communications systems like this may help in obsolescing current UHF systems on future satellites, making a broader assortment of data-intensive missions possible. The new system will be demonstrated on the Hermes cubesat, which is expected to launch in Overview 1.1 Cal Poly s Cubesat The cubesat is an overarching satellite structure and deployment specification for a small 1 kg, 10cm x 10cm x 10cm picosatellite that was conceived by California Polytechnic State University (CalPoly). Cal Poly [1] provides specifications for standardized structural and design guidelines, a flight deployment system, and various forms of logistical support. Over sixty separate schools and several companies have made the cubesat a popular size, thanks in part to its cost-effective size and mass. This small, light form factor introduces key design challenges for most cubesats. The small surface area limits solar cell size and therefore total system power availability. The small size and mass also limits the number of devices which can fit into the satellite, and the size of deployable instruments and antennas. 1.2 Hermes Hermes [2] (or Cubesat I) is the first in a series of cubesats expected to be constructed and flown by the Colorado Space Grant Consortium (CoSGC). Its primary mission is as a prototype system bus by implementing first incarnations of typical core systems: power distribution fed by solar panels, command and data handling through a microcontroller, a passive attitude control system, and a 1200 baud UHF communication system. In addition, it has a secondary mission as the vehicle for our experimental S-band communication system. 1.3 S-band System Goal Amateur cubesats typically use cost-effective consumer off-the-shelf radios that, while proven reliable, rarely exceed data throughput greater than 1200 baud. This bottleneck makes missions involving generation of significant digital data such as photographs - unfeasible. As part of our attempt to alleviate this problem, Hermes will provide a bus for an experimental new communications system.

2 The communications system provides a 2.4GHz (12.5cm) link between the satellite in Low-Earth Orbit (LEO) and a suitably equipped ground station. Its primary goal is to demonstrate the technical feasibility of a high frequency communications link in orbit for future small satellite communications systems, and to upgrade the current ground station facility to support this kind of communications in future missions. A successful test will demonstrate data throughput greater than 9600 baud between the satellite and our ground station. 2.1 Modem 2. System Design The design (summarized in fig. 1) is split into two physically separate stations: the flight subsystem, which is built into the satellite, and the ground station, which will be constructed at a fixed site near CoSGC in Boulder, Colorado. These communicate via a linearly polarized (LP) link operating in the GHz (S-band) portion of the amateur radio service, between a 1.5m dish on the ground and a small ¼ wave (3.1cm) monopole in flight. MicroHard MHX2400 modems at both ends of the link transmit and receive digital data to and from processing hardware. Figure 1: System overview Figure 2: MHX 2400 Modem The Microhard MHX2400 [3] OEM modem module (figure 2) can operate between 2400 and 115k baud by modulating signals with Gaussian Frequency Shift Keying (GFSK). It is designed to connect to external logic circuitry through unshifted (0-5V TTL) RS-232, and to an antenna through a 50-ohm MCX connector. The board can transmit up to 1 Watt (30 dbm, or 0 db) of RF power, and has a receive sensitivity of -108 dbm (-138 db) with a bit error rate (BER) of 1 in This modem will be placed on both sides of the antenna link. On the ground, it will be connected to the ground antenna through its MCX RF connector, and an inexpensive consumer PC through the serial connection for data processing. On the flight side, the C&DH system controls the system through the serial link. The MCX connector makes the modem too long to fit properly in the structure, so it will be removed and replaced with an SMA connector, where the flight monopole will be attached.

3 Of the increasing array of available modems, the MHX2400 is ideal for our project because it provides well-documented (and data-transparent) configuration, a straightforward TTL control interface, improved data throughput, and efficient RF power conversion. Other modems use too much DC power, cost too much, or transmit too little RF power. In addition, we can use this modem on our ground station without any separate radio or transceiver equipment, because the modem transparently supports Doppler shift correction up to ±30 KHz, automatic channel selection, and frequency detection. 2.2 Flight Antenna The flight antenna presents a slew of difficulties. One unique to the S-band (compared with UHF systems) is that a 10cm satellite structure is electrically significant relative to the 12.5cm RF wavelength, and will distort radiation patterns. The cubesat itself imposes other; to accommodate attitude control limitations, the beam pattern must be as broad as possible to maximize ground communication duration for as many satellite orientations as possible. Further, a structural requirement forbidding protrusions from the cube surface implies that our antenna must be deployed after launch. (3.1cm) monopole. It will be mounted at the center of a face sharing the satellite s rotational axis, shown mounted on the satellite in figure 3. To verify that the antenna s interaction with the cubesat structure will not excessively deform the radiation pattern, we performed simulations, shown in figures 4 and 5. This simulation suggests that despite those interactions communication with the ground should be possible in the red and orange areas of the plot. Our structures team is currently working to design a deployment system to fulfill the remaining requirement for deployability. This is one circumstance which exposes a benefit of the smaller S-band wavelength: at 3.1cm long, the antenna is less than half the length of a cube face, and can easily be folded directly down onto the face of the cube before deployment. It will be lashed there to the structure using nylon wire before launch, and will released (using a magnetically-latched pin) by a signal from command logic 15 minutes after the satellite is ejected from the launch vehicle. Figure 3: Flight antenna, after deployment) Figure 4: 3-D monopole radiation pattern (strongest in red) To make the radiation pattern as broad as possible, the flight antenna will be a single quarter-wave

4 The mesh minimizes problems with wind loading on the mounting hardware caused by periodic local windstorms. To direct the antenna, we have selected a Yaesu G5500 azimuth-elevation (az-el) rotator. This will be controlled through a serial computer interface to steer the antenna beam toward the satellite, based on TLE data received by mission operators. 3. Operational Considerations 3.1 Link Power Calculations and Constraints Figure 5: Orthogonal radiation pattern (Nadir is up) 2.3 Ground station The 2.4 GHz extension to the ground station will consist of a new ground antenna, an antenna mounting and steering apparatus, the modem, and a low-noise amplifier (LNA) to correct for line losses. The various losses like atmospheric, free space, Ionospheric and rain losses are accounted for although rain and ionospheric losses are insignificant at 2.4 GHz. Atmospheric and free space losses vary in accordance with the distance between the satellite and the ground antenna which changes based on elevation angle. Pointing and polarization losses are taken into account using precise formulae. The LNA at the ground station is being chosen such that the transmission line loss is zero. The link margin varies between 10 db for the satellite vertically above (Elevation angle of 90 degrees) and 6 db for an elevation angle of 40 degrees with a baud rate of 57.6 kbps. Our simulations using Satellite Tool Kit (STK) has shown us that we should be able to achieve a data transfer of approximately 200 k Bytes per pass at an orbital height of 700 km. 3.2 FCC Licensing & Regulations Figure 6: Ground antenna radiation pattern The ground antenna is a highly directional HyperLink [4] 1.5m (30 dbi) linearly polarized (LP) parabolic mesh dish fed with a dipole at the focus. The MHX2400 was it is primarily designed to be able to operate in the ISM (FCC section 15) service between GHz, which limits it to 1W (30dBm) output power. Combined with our high gain ground antenna, we achieve an EIRP of approximately 30 dbm + 30 dbi = 60 dbm significantly higher than the (approximately) 36 dbm limit for ISM operation so we will instead

5 operate our system under the less restrictive amateur radio service (FCC section 97 [5]), which allows transmission of up to 1500W. The terms of this service stipulate that all parties using this system will need to be licensed amateur radio (HAM) operators, which will be an important concern for HAM operators. 3.4 Ground Interference Interference is a significant problem, as the amateur radio service shares the GHz band with the relatively unregulated ISM band. Broad deployment of devices which take advantage of the ISM service has resulted in widespread proliferation of internet and telephone noise through populated areas. Though our ground antenna has a very tight 5.8º main beam width, it will still receive these stray signals through its side and back lobes with isotropic gains of up to 5 db. Signals received in those lobes will be more powerful than the heavily attenuated signals from the satellite 700km away, and therefore be sufficient to interfere with effective modem operation. Tests with the modem shall determine its noise rejection efficiency. 3.4 Elevation Masking Boulder s location at the foot of the Rocky Mountains in Colorado presents a significant obstacle to the west. West-facing elevations from the CoSGC s home in the Discovery Learning Center (DLC) on the CU-Boulder campus in Boulder are blocked below approximately 15º by foothills rising 900m above the Boulder valley. 4. Future Work 4.1 Polarization Analysis In its current design incarnation, the ground antenna s linear polarization avoids the 3dB link loss incurred by communicating between circularly polarized (CP) and LP antennas. Unfortunately, the possibility for cross-polarization between transmit and receive antennas presents further complications. First, in an ideal case where the two antennas polarizations are perfectly aligned (co-polarized), then there will be no polarization loss between them. As the angle between the two antennas increases to 60 degrees, the loss increases to 3dB, the same loss as between CP and LP antennas. As the angle approaches cross-polarization at 90 degrees, polarization loss can exceed 20dB, which would prevent a successful communication link. Another problem which can arise from this LP LP configuration is that of Faraday rotation as the signal passes through the atmosphere. At UHF bands, Faraday rotation alone renders an LP LP system impractical; the signal can be unpredictably rotated up to and past cross-polarization. Near 2.4GHz, however, we expect typical polarization rotation of approximately 20 degrees, which is an angle well within the 60 degree tolerance. Once attitude control simulations have been completed, we will be able to determine whether the anticipated polarization losses will allow our LP LP configuration to function. The satellite will operate in a polar sun-synchronous orbit, resulting in approximately north-to-south passes over Boulder; we believe that this, added to the 20 degree Faraday rotation, will still be within a reasonable threshold below the critical 60 degree mark. If not, then we will modify the ground station antenna to be CP by adding extra elements as necessary. 4.2 Ground Station Site Selection Interference and elevation masking will be the primary criteria in choosing a final ground station site. Logistically, the ideal choice is near the current UHF station on the roof of CoSGC s home on the roof of the Discovery Learning Center on the CU- Boulder campus. If tests determine that local noise interferes with nominal operation of the MHX2400, however, a radio quiet site (such as one currently under consideration north of Boulder) will need to

6 be found. Further, potential sites west (and therefore nearer the mountains) will have higher elevation masks. Sites with masking above the 40º operating elevation will shorten communication pass durations. 4.3 After Hermes: Null Steering To circumvent interference concerns at the main CoSGC site, a next step could be the design of a null steering antenna. Null steering (or pseudo inverse beam forming) uses an antenna array to steer the main beam towards the desired user and nulls (zero amplitude lobes) towards any interference, increasing the effective signal to interference ratio (SIR). However, this requires direction of arrival estimation and beam forming. For beam forming, either the weighted sum or Dolph Chebyshev [7] algorithms could be used. To build this, additional antennas as well as variable phase shifters are needed. Thus, by adjusting the phase of individual antenna elements, the desired radiation pattern can be achieved. 5. Conclusions This system provides benefits which open up exciting new possibilities for future cubesat missions that take advantage of improved system and communications features: Greatly improved data throughput Transparent Doppler shift correction Built-in TNC, reducing complexity of in-house flight logic Only 2 flight components, reducing systems integration complexity Simplified antenna deployment Reduced antenna mass Efficient DC power consumption Hermes is currently expected to launch in Acknowledgements We would like to thank the following people for helping to make the project happen: Chris Koehler, for giving us all opportunities by keeping CoSGC running for so long; Brian Sanders, for encouragement and logistical support through the project s entire life cycle; James Gorman, for applying his simulation expertise to help our flight antenna Lisa Hewitt, Jim Love, and the entire Hermes Cubesat team, for all their hard work in making Hermes happen Dr. Al Gasiewski, for design advice The ground station team, for working with us to realize the ground station infrastructure updates 7. References [1] Cubesat Design Specification (CDS), Revision 9, Armen Toorian, Amy Hutputtanasin, media/documents/developers/cds%20r9.pdf. [2] Hermes Cubesat Mission Homepage, [3] MHX GHz Spread Spectrum OEM Transceiver, Operating Manual, Revision 1.56, April 7, 2006, Microhard Systems Inc. [4] 2.4 GHz 30 dbi High Performance Reflector Grid Wireless LAN Antenna - HG2430G, HyperLink Technologies, Inc. [5] FCC PART 97 Rules and Regulations Amateur Radio Service, [6] Adaptive Antennas for Wireless communication, Undergraduate Project ( ) by Pradeep Narayan P R, Prasad PBN, Prakash Natarajan. [7] Matrix Formulation for Dolph-Chebyshev Beam forming, A. Zielinski, Dec 1986, Vol 74, Issue 12.

Hermes CubeSat: Testing the Viability of High Speed Communications on a Picosatellite

Hermes CubeSat: Testing the Viability of High Speed Communications on a Picosatellite Hermes CubeSat: Testing the Viability of High Speed Communications on a Picosatellite Dustin Martin, Riley Pack, Greg Stahl, Jared Russell Colorado Space Grant Consortium dustin.martin@colorado.edu March

More information

CUBESAT-TO-GROUND COMMUNICATION AND MOBILE MODULAR GROUND- STATION DEVELOPMENT

CUBESAT-TO-GROUND COMMUNICATION AND MOBILE MODULAR GROUND- STATION DEVELOPMENT CUBESAT-TO-GROUND COMMUNICATION AND MOBILE MODULAR GROUND- STATION DEVELOPMENT Dylan Ichikawa Department of Electrical Engineering University of Hawaii at Manoa Honolulu, HI 96822 ABSTRACT A mobile modular

More information

A CubeSat Radio Beacon Experiment

A CubeSat Radio Beacon Experiment A CubeSat Radio Beacon Experiment CUBEACON A Beacon Test of Designs for the Future Antenna? Michael Cousins SRI International Multifrequency? Size, Weight and Power? CubeSat Developers Workshop, April

More information

Exploiting Link Dynamics in LEO-to-Ground Communications

Exploiting Link Dynamics in LEO-to-Ground Communications SSC09-V-1 Exploiting Link Dynamics in LEO-to-Ground Communications Joseph Palmer Los Alamos National Laboratory MS D440 P.O. Box 1663, Los Alamos, NM 87544; (505) 665-8657 jmp@lanl.gov Michael Caffrey

More information

CubeSat Communications Review and Concepts. Workshop, July 2, 2009

CubeSat Communications Review and Concepts. Workshop, July 2, 2009 CubeSat Communications Review and Concepts CEDAR CubeSats Constellations and Communications Workshop, July 2, 29 Charles Swenson Presentation Outline Introduction slides for reference Link Budgets Data

More information

MISSION OPERATION FOR THE KUMU A`O CUBESAT. Zachary K. Lee-Ho Department of Mechanical Engineering University of Hawai i at Mānoa Honolulu, HI 96822

MISSION OPERATION FOR THE KUMU A`O CUBESAT. Zachary K. Lee-Ho Department of Mechanical Engineering University of Hawai i at Mānoa Honolulu, HI 96822 MISSION OPERATION FOR THE KUMU A`O CUBESAT Zachary K. Lee-Ho Department of Mechanical Engineering University of Hawai i at Mānoa Honolulu, HI 96822 ABSTRACT UH is currently developing its 5 th generation

More information

6 Radio and RF. 6.1 Introduction. Wavelength (m) Frequency (Hz) Unit 6: RF and Antennas 1. Radio waves. X-rays. Microwaves. Light

6 Radio and RF. 6.1 Introduction. Wavelength (m) Frequency (Hz) Unit 6: RF and Antennas 1. Radio waves. X-rays. Microwaves. Light 6 Radio and RF Ref: http://www.asecuritysite.com/wireless/wireless06 6.1 Introduction The electromagnetic (EM) spectrum contains a wide range of electromagnetic waves, from radio waves up to X-rays (as

More information

RAX: The Radio Aurora explorer

RAX: The Radio Aurora explorer RAX: Matt Bennett University of Michigan CubeSat Workshop Cal Poly, San Luis Obispo April 22 nd, 2009 Background Sponsored by National Science Foundation University of Michigan and SRI International Collaboration

More information

Technician Licensing Class T9

Technician Licensing Class T9 Technician Licensing Class T9 Amateur Radio Course Monroe EMS Building Monroe, Utah January 11/18, 2014 January 22, 2014 Testing Session Valid dates: July 1, 2010 June 30, 2014 Amateur Radio Technician

More information

Satellite Engineering BEST Course. CubeSats at ULg

Satellite Engineering BEST Course. CubeSats at ULg Satellite Engineering BEST Course CubeSats at ULg Nanosatellite Projects at ULg Primary goal Hands-on satellite experience for students 2 Nanosatellite Projects at ULg Primary goal Hands-on satellite experience

More information

CubeSat Design Specification

CubeSat Design Specification Document Classification X Public Domain ITAR Controlled Internal Only CubeSat Design Specification (CDS) Revision Date Author Change Log 8 N/A Simon Lee N/A 8.1 5/26/05 Amy Hutputanasin Formatting updated.

More information

Sharing Considerations Between Small Cells and Geostationary Satellite Networks in the Fixed-Satellite Service in the GHz Frequency Band

Sharing Considerations Between Small Cells and Geostationary Satellite Networks in the Fixed-Satellite Service in the GHz Frequency Band Sharing Considerations Between Small Cells and Geostationary Satellite Networks in the Fixed-Satellite Service in the 3.4-4.2 GHz Frequency Band Executive Summary The Satellite Industry Association ( SIA

More information

4/25/2012. Supplement T9. 2 Exam Questions, 2 Groups. Amateur Radio Technician Class T9A: T9A: T9A: T9A:

4/25/2012. Supplement T9. 2 Exam Questions, 2 Groups. Amateur Radio Technician Class T9A: T9A: T9A: T9A: Amateur Radio Technician Class Element 2 Course Presentation ti ELEMENT 2 SUB-ELEMENTS Technician Licensing Class Supplement T9 Antennas, Feedlines 2 Exam Questions, 2 Groups T1 - FCC Rules, descriptions

More information

The Overview Report of S-band Ground Station Verification and Operation for Lean Satellite, HORYU-IV

The Overview Report of S-band Ground Station Verification and Operation for Lean Satellite, HORYU-IV The Overview Report of S-band Ground Station Verification and Operation for Lean Satellite, HORYU-IV BONSU Benjamin, TATSUO Shimizu, HORYU-IV Project Members, CHO Mengu Kyushu Institute of Technology Laboratory

More information

Space Frequency Coordination Group

Space Frequency Coordination Group Space Frequency Coordination Group Report SFCG 38-1 POTENTIAL RFI TO EESS (ACTIVE) CLOUD PROFILE RADARS IN 94.0-94.1 GHZ FREQUENCY BAND FROM OTHER SERVICES Abstract This new SFCG report analyzes potential

More information

REFERENCE GUIDE External Antennas Guide 1

REFERENCE GUIDE External Antennas Guide 1 REFERENCE GUIDE External s Guide 1 Xirrus External s Guide Overview To optimize the overall performance of a Xirrus WLAN in an outdoor deployment it is important to understand how to maximize coverage

More information

Antennas and Propagation Chapters T4, G7, G8 Antenna Fundamentals, More Antenna Types, Feed lines and Measurements, Propagation

Antennas and Propagation Chapters T4, G7, G8 Antenna Fundamentals, More Antenna Types, Feed lines and Measurements, Propagation Antennas and Propagation Chapters T4, G7, G8 Antenna Fundamentals, More Antenna Types, Feed lines and Measurements, Propagation =============================================================== Antenna Fundamentals

More information

A High-Speed Data Downlink for Wide-Bandwidth CubeSat Payloads

A High-Speed Data Downlink for Wide-Bandwidth CubeSat Payloads A High-Speed Data Downlink for Wide-Bandwidth CubeSat Payloads John Buonocore 12 th Annual Developer s Workshop 22 April 2015 Cal Poly San Luis Obispo High Speed Data Downlink The need for wider bandwidth

More information

UCISAT-1. Current Completed Model. Former Manufactured Prototype

UCISAT-1. Current Completed Model. Former Manufactured Prototype UCISAT-1 2 Current Completed Model Former Manufactured Prototype Main Mission Objectives 3 Primary Mission Objective Capture an image of Earth from LEO and transmit it to the K6UCI Ground Station on the

More information

X band downlink for CubeSat

X band downlink for CubeSat Eric PERAGIN CNES August 14th, 2012 Existing telemetry systems Downlink systems in UHF or S band derived from HAM protocol and equipments Allow to download few hundred of Mb to 1. Gb per pass Limitation

More information

The Physics of Radio By John White

The Physics of Radio By John White The Physics of Radio By John White Radio Bands and Channels The use of wireless devices is heavily regulated throughout the world. Each country has a government department responsible for deciding where

More information

The CubeSTAR Project. Design of a Prototype Communication System for the CubeSTAR Nano-satellite. Master presentation by Johan Tresvig 24th Aug.

The CubeSTAR Project. Design of a Prototype Communication System for the CubeSTAR Nano-satellite. Master presentation by Johan Tresvig 24th Aug. Design of a Prototype Communication System for the CubeSTAR Nano-satellite Master presentation by Johan Tresvig 24th Aug. 2010 The CubeSTAR Project Student satellite project at the University of Oslo Scientific

More information

RECOMMENDATION ITU-R SA.1628

RECOMMENDATION ITU-R SA.1628 Rec. ITU-R SA.628 RECOMMENDATION ITU-R SA.628 Feasibility of sharing in the band 35.5-36 GHZ between the Earth exploration-satellite service (active) and space research service (active), and other services

More information

CoEP Satellite Initiative: Ground Station

CoEP Satellite Initiative: Ground Station CoEP Satellite Initiative: Ground Station Ground Station Shreevallabh Gharote Amit Phadke Aniket Sirsath Suraj Chafle College of Engineering Pune Shivajinagar, Pune 411005 2 CoEP Satellite Initiative:

More information

4/29/2012. General Class Element 3 Course Presentation. Radio Wave Propagation. Radio Wave Propagation. Radio Wave Propagation.

4/29/2012. General Class Element 3 Course Presentation. Radio Wave Propagation. Radio Wave Propagation. Radio Wave Propagation. General Class Element 3 Course Presentation ti ELEMENT 3 SUB ELEMENTS General Licensing Class Subelement G3 3 Exam Questions, 3 Groups G1 Commission s Rules G2 Operating Procedures G3 G4 Amateur Radio

More information

Deep Space Communication

Deep Space Communication Deep Space Communication Space Physics C 5p Umeå University 2005-10-24 Daniel Vågberg rabbadash@home.se The theory and challenges of deep-space communications Distance is the main problem in space communications,

More information

The Basics of Patch Antennas, Updated

The Basics of Patch Antennas, Updated The Basics of Patch Antennas, Updated By D. Orban and G.J.K. Moernaut, Orban Microwave Products www.orbanmicrowave.com Introduction This article introduces the basic concepts of patch antennas. We use

More information

2009 CubeSat Developer s Workshop San Luis Obispo, CA

2009 CubeSat Developer s Workshop San Luis Obispo, CA Exploiting Link Dynamics in LEO-to-Ground Communications 2009 CubeSat Developer s Workshop San Luis Obispo, CA Michael Caffrey mpc@lanl.gov Joseph Palmer jmp@lanl.gov Los Alamos National Laboratory Paper

More information

Technician Licensing Class

Technician Licensing Class Technician Licensing Class Talk to Outer Presented Space by Amateur Radio Technician Class Element 2 Course Presentation ELEMENT 2 SUB-ELEMENTS (Groupings) About Ham Radio Call Signs Control Mind the Rules

More information

Technician Licensing Class. Antennas

Technician Licensing Class. Antennas Technician Licensing Class Antennas Antennas A simple dipole mounted so the conductor is parallel to the Earth's surface is a horizontally polarized antenna. T9A3 Polarization is referenced to the Earth

More information

Deployment scenarios and interference analysis using V-band beam-steering antennas

Deployment scenarios and interference analysis using V-band beam-steering antennas Deployment scenarios and interference analysis using V-band beam-steering antennas 07/2017 Siklu 2017 Table of Contents 1. V-band P2P/P2MP beam-steering motivation and use-case... 2 2. Beam-steering antenna

More information

AMSAT Fox Satellite Program

AMSAT Fox Satellite Program AMSAT Space Symposium 2012 AMSAT Fox Satellite Program Tony Monteiro, AA2TX Topics Background Fox Launch Strategy Overview of Fox-1 Satellite 2 Background AO-51 was the most popular ham satellite Could

More information

Relative Navigation, Timing & Data. Communications for CubeSat Clusters. Nestor Voronka, Tyrel Newton

Relative Navigation, Timing & Data. Communications for CubeSat Clusters. Nestor Voronka, Tyrel Newton Relative Navigation, Timing & Data Communications for CubeSat Clusters Nestor Voronka, Tyrel Newton Tethers Unlimited, Inc. 11711 N. Creek Pkwy S., Suite D113 Bothell, WA 98011 425-486-0100x678 voronka@tethers.com

More information

Annex B: HEO Satellite Mission

Annex B: HEO Satellite Mission Annex B: HEO Satellite Mission Table of Content TABLE OF CONTENT...I 1. INTRODUCTION...1 1.1. General... 1 1.2. Response Guidelines... 1 2. BRAODBAND CAPACITY...2 2.1. Mission Overview... 2 2.1.1. HEO

More information

Technical characteristics and protection criteria for aeronautical mobile service systems in the frequency range GHz

Technical characteristics and protection criteria for aeronautical mobile service systems in the frequency range GHz ITU-R M.2089-0 (10/2015) Technical characteristics and protection criteria for aeronautical mobile service systems in the frequency range 14.5-15.35 GHz M Series Mobile, radiodetermination, amateur and

More information

I SARA 08/10/13. Pre-Decisional Information -- For Planning and Discussion Purposes Only

I SARA 08/10/13. Pre-Decisional Information -- For Planning and Discussion Purposes Only 1 Overview ISARA Mission Summary Payload Description Experimental Design ISARA Mission Objectives: Demonstrate a practical, low cost Ka-band High Gain Antenna (HGA) on a 3U CubeSat Increase downlink data

More information

LE/ESSE Payload Design

LE/ESSE Payload Design LE/ESSE4360 - Payload Design 4.3 Communications Satellite Payload - Hardware Elements Earth, Moon, Mars, and Beyond Dr. Jinjun Shan, Professor of Space Engineering Department of Earth and Space Science

More information

A Flight-Proven 2.4GHz ISM Band COTS Communications System for Small Satellites

A Flight-Proven 2.4GHz ISM Band COTS Communications System for Small Satellites SSC07-XI-11 A Flight-Proven 2.4GHz ISM Band COTS Communications System for Small Satellites Ignacio A. Mas Robotics Systems Laboratory, Santa Clara University 500 El Camino Real, Santa Clara, CA 95053;

More information

KickSat: Bringing Space to the Masses

KickSat: Bringing Space to the Masses KickSat: Bringing Space to the Masses Zac Manchester, KD2BHC Who hasn t dreamed of launching their own satellite? The opportunities afforded to scientists, hobbyists, and students by cheap and regular

More information

Self-Steering Antennas for CubeSat Networks

Self-Steering Antennas for CubeSat Networks Self-Steering Antennas for CubeSat Networks Blaine Murakami and Wayne Shiroma University of Hawaii CubeSat Developers Workshop CalPoly - San Luis Obispo March 9, 2004 Outline Overview of the UH Small-Satellite

More information

ICO S-BAND ANTENNAS TEST PROGRAM

ICO S-BAND ANTENNAS TEST PROGRAM ICO S-BAND ANTENNAS TEST PROGRAM Peter A. Ilott, Ph.D.; Robert Hladek; Charles Liu, Ph.D.; Bradford Arnold Hughes Space & Communications, El Segundo, CA Abstract The four antenna subsystems on each of

More information

REPORT ITU-R BO Multiple-feed BSS receiving antennas

REPORT ITU-R BO Multiple-feed BSS receiving antennas Rep. ITU-R BO.2102 1 REPORT ITU-R BO.2102 Multiple-feed BSS receiving antennas (2007) 1 Introduction This Report addresses technical and performance issues associated with the design of multiple-feed BSS

More information

2013 RockSat-C Preliminary Design Review

2013 RockSat-C Preliminary Design Review 2013 RockSat-C Preliminary Design Review TEC (The Electronics Club) Eastern Shore Community College Melfa, VA Larry Brantley, Andrew Carlton, Chase Riley, Nygel Meece, Robert Williams Date 10/26/2012 Mission

More information

CAHIER DES CLAUSES TECHNIQUES PARTICULIÈRES PUMA N Objet du marché : SUPPLY OF CUBESAT COMPONENTS FOURNITURE DE COMPOSANTS CUBESAT

CAHIER DES CLAUSES TECHNIQUES PARTICULIÈRES PUMA N Objet du marché : SUPPLY OF CUBESAT COMPONENTS FOURNITURE DE COMPOSANTS CUBESAT CAHIER DES CLAUSES TECHNIQUES PARTICULIÈRES PUMA N 48073 Objet du marché : SUPPLY OF CUBESAT COMPONENTS FOURNITURE DE COMPOSANTS CUBESAT Renseignements techniques : Sylvestre Lacour, Responsable scientifique

More information

Power modeling and budgeting design and validation with in-orbit data of two commercial LEO satellites

Power modeling and budgeting design and validation with in-orbit data of two commercial LEO satellites SSC17-X-08 Power modeling and budgeting design and validation with in-orbit data of two commercial LEO satellites Alan Kharsansky Satellogic Av. Raul Scalabrini Ortiz 3333 piso 2, Argentina; +5401152190100

More information

High Speed Data Downlink for NSF Space Weather CubeSats

High Speed Data Downlink for NSF Space Weather CubeSats High Speed Data Downlink for NSF Space Weather CubeSats National Science Foundation Meeting Monday August 31, 2009 Charles Swenson Satellite Data Flow Onboard Instruments R collected Spacecraft Memory

More information

SRSP-101 Issue 1 May Spectrum Management. Standard Radio System Plan

SRSP-101 Issue 1 May Spectrum Management. Standard Radio System Plan Issue 1 May 2014 Spectrum Management Standard Radio System Plan Technical Requirements for Fixed Earth Stations Operating Above 1 GHz in Space Radiocommunication Services and Earth Stations On Board Vessels

More information

EISCAT Scientific Association Technical Specification and Requirements for Antenna Unit V 2.0

EISCAT Scientific Association Technical Specification and Requirements for Antenna Unit V 2.0 EISCAT Scientific Association Technical Specification and s for Antenna Unit V 2.0 1. Technical Specification for Antenna Unit The EISCAT Scientific Association, also called "EISCAT" throughout this document,

More information

Telemetry and Command Link for University Mars Rover Vehicle

Telemetry and Command Link for University Mars Rover Vehicle Telemetry and Command Link for University Mars Rover Vehicle Item Type text; Proceedings Authors Hobbs, Jed; Meye, Mellissa; Trapp, Brad; Ronimous, Stefan; Ayerra, Irati Publisher International Foundation

More information

Antennas and Propagation

Antennas and Propagation Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

Miniature Deployable High Gain Antenna for CubeSats

Miniature Deployable High Gain Antenna for CubeSats Phantom Works Miniature Deployable High Gain Antenna for CubeSats Charles S. Scott MacGillivray Office: (714) 372-1617 e-mail: charles.s.macgillivray@boeing.com Mobile: (714) 392-9095 e-mail: zserfv23@gmail.com

More information

RECOMMENDATION ITU-R S.1594 *

RECOMMENDATION ITU-R S.1594 * Rec. ITU-R S.1594 1 RECOMMENDATION ITU-R S.1594 * Maximum emission levels and associated requirements of high density fixed-satellite service earth stations transmitting towards geostationary fixed-satellite

More information

FCC Technician License Course

FCC Technician License Course FCC Technician License Course 2014-2018 FCC Element 2 Technician Class Question Pool Presented by: Tamiami Amateur Radio Club (TARC) WELCOME To the third of 4, 3-hour classes presented by TARC to prepare

More information

Hawk Institute for Space Sciences. Firefly Comms Plan. November 30, 2009

Hawk Institute for Space Sciences. Firefly Comms Plan. November 30, 2009 Hawk Institute for Space Sciences Firefly Comms Plan November 30, 2009 Firefly Operational View UMES POCC Pocomoke City Science Team Ground Station e.g. WFF Internet 2 Comms Plan Overview MicroHard MHX-425

More information

GEM Student Tutorial: Cubesats. Alex Crew

GEM Student Tutorial: Cubesats. Alex Crew GEM Student Tutorial: Cubesats Alex Crew Outline What is a Cubesat? Advantages and disadvantages Examples of Cubesat missions What is a cubesat? Originally developed by California Polytechnic State University

More information

Amateur Radio and the CubeSat Community

Amateur Radio and the CubeSat Community Amateur Radio and the CubeSat Community Bryan Klofas KF6ZEO bklofas@calpoly.edu Electrical Engineering Department California Polytechnic State University, San Luis Obispo, CA Abstract This paper will explore

More information

Antennas and Propagation. Chapter 5

Antennas and Propagation. Chapter 5 Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

Beams and Directional Antennas

Beams and Directional Antennas Beams and Directional Antennas The Horizontal Dipole Our discussion in this chapter is about the more conventional horizontal dipole and the simplified theory behind dipole based designs. For clarity,

More information

Dr. John S. Seybold. November 9, IEEE Melbourne COM/SP AP/MTT Chapters

Dr. John S. Seybold. November 9, IEEE Melbourne COM/SP AP/MTT Chapters Antennas Dr. John S. Seybold November 9, 004 IEEE Melbourne COM/SP AP/MTT Chapters Introduction The antenna is the air interface of a communication system An antenna is an electrical conductor or system

More information

REFERENCE GUIDE External Antennas Guide 1

REFERENCE GUIDE External Antennas Guide 1 REFERENCE GUIDE External s Guide 1 Xirrus External s Guide Overview To optimize the overall performance of a Xirrus WLAN in an outdoor deployment it is important to understand how to maximize coverage

More information

Amateur Radio License. Propagation and Antennas

Amateur Radio License. Propagation and Antennas Amateur Radio License Propagation and Antennas Todays Topics Propagation Antennas Propagation Modes Ground wave Low HF and below, ground acts as waveguide Line-of-Sight (LOS) VHF and above, radio waves

More information

SATELLITE SUBSYSTEMS. Networks and Communication Department. Dr. Marwah Ahmed

SATELLITE SUBSYSTEMS. Networks and Communication Department. Dr. Marwah Ahmed 1 SATELLITE SUBSYSTEMS Networks and Communication Department Dr. Marwah Ahmed Outlines Attitude and Orbit Control System (AOCS) Telemetry, Tracking, Command and Monitoring (TTC & M) Power System Communication

More information

RECOMMENDATION ITU-R BS.80-3 * Transmitting antennas in HF broadcasting

RECOMMENDATION ITU-R BS.80-3 * Transmitting antennas in HF broadcasting Rec. ITU-R BS.80-3 1 RECOMMENDATION ITU-R BS.80-3 * Transmitting antennas in HF broadcasting (1951-1978-1986-1990) The ITU Radiocommunication Assembly, considering a) that a directional transmitting antenna

More information

NASA s ELaNa Program and it s First CubeSat Mission

NASA s ELaNa Program and it s First CubeSat Mission NASA s ELaNa Program and it s First CubeSat Mission Educational Launch of Nanosatellite NASA s Kennedy Space Center Launch Service Providers Colorado Space Grant Consortium Kentucky Space and Montana State

More information

From the Delfi-C3 nano-satellite towards the Delfi-n3Xt nano-satellite

From the Delfi-C3 nano-satellite towards the Delfi-n3Xt nano-satellite From the Delfi-C3 nano-satellite towards the Delfi-n3Xt nano-satellite Geert F. Brouwer, Jasper Bouwmeester Delft University of Technology, The Netherlands Faculty of Aerospace Engineering Chair of Space

More information

The LoRa Protocol. Overview. Interference Immunity. Technical Brief AN205 Rev A0

The LoRa Protocol. Overview. Interference Immunity. Technical Brief AN205 Rev A0 Technical Brief AN205 Rev A0 The LoRa Protocol By John Sonnenberg Raveon Technologies Corp Overview The LoRa (short for Long Range) modulation scheme is a modulation technique combined with a data encoding

More information

BENEFITS FOR DEPLOYABLE QUADRIFILAR HELICAL ANTENNA MODULES FOR SMALL SATELLITES

BENEFITS FOR DEPLOYABLE QUADRIFILAR HELICAL ANTENNA MODULES FOR SMALL SATELLITES BENEFITS FOR DEPLOYABLE ANTENNA MODULES FOR SMALL SATELLITES 436.5 and 2400 MHz QHA s compared with Monopole Antennas on Small Satellites 1 2400 MHZ ISO-FLUX ANTENNA MOUNTED ON A 2U SMALL SATELLITE Axial

More information

Satellite Signals and Communications Principles. Dr. Ugur GUVEN Aerospace Engineer (P.hD)

Satellite Signals and Communications Principles. Dr. Ugur GUVEN Aerospace Engineer (P.hD) Satellite Signals and Communications Principles Dr. Ugur GUVEN Aerospace Engineer (P.hD) Principle of Satellite Signals In essence, satellite signals are electromagnetic waves that travel from the satellite

More information

Range Considerations for RF Networks

Range Considerations for RF Networks TI Technology Days 2010 Range Considerations for RF Networks Richard Wallace Abstract The antenna can be one of the most daunting components of wireless designs. Most information available relates to large

More information

5G Antenna System Characteristics and Integration in Mobile Devices Sub 6 GHz and Milli-meter Wave Design Issues

5G Antenna System Characteristics and Integration in Mobile Devices Sub 6 GHz and Milli-meter Wave Design Issues 5G Antenna System Characteristics and Integration in Mobile Devices Sub 6 GHz and Milli-meter Wave Design Issues November 2017 About Ethertronics Leader in advanced antenna system technology and products

More information

Electronically Steerable planer Phased Array Antenna

Electronically Steerable planer Phased Array Antenna Electronically Steerable planer Phased Array Antenna Amandeep Kaur Department of Electronics and Communication Technology, Guru Nanak Dev University, Amritsar, India Abstract- A planar phased-array antenna

More information

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION COMPASS-1 PICOSATELLITE: STRUCTURES & MECHANISMS Marco Hammer, Robert Klotz, Ali Aydinlioglu Astronautical Department University of Applied Sciences Aachen Hohenstaufenallee 6, 52064 Aachen, Germany Phone:

More information

Drag and Atmospheric Neutral Density Explorer

Drag and Atmospheric Neutral Density Explorer Drag and Atmospheric Neutral Density Explorer Winner of University Nanosat V Competition Engineering Challenges of Designing a Spherical Spacecraft Colorado Undergraduate Space Research Symposium April

More information

Glossary of Satellite Terms

Glossary of Satellite Terms Glossary of Satellite Terms Satellite Terms A-D The following terms and definitions will help familiarize you with your Satellite solution. Adaptive Coding and Modulation (ACM) Technology which automatically

More information

RECOMMENDATION ITU-R S.1512

RECOMMENDATION ITU-R S.1512 Rec. ITU-R S.151 1 RECOMMENDATION ITU-R S.151 Measurement procedure for determining non-geostationary satellite orbit satellite equivalent isotropically radiated power and antenna discrimination The ITU

More information

TABLE OF CONTENTS 1. GENERAL INFORMATION... 4

TABLE OF CONTENTS 1. GENERAL INFORMATION... 4 TABLE OF CONTENTS 1. GENERAL INFORMATION... 4 1.1. EUT DESCRIPTION... 4 1.2. TEST STANDARDS AND RESULTS... 5 1.3. FACILITIES AND ACCREDITATIONS... 6 1.3.1. FACILITIES... 6 1.3.2. TEST ENVIRONMENT CONDITIONS...

More information

The NaoSat nanosatellite platform for in-flight radiation testing. Jose A Carrasco CEO EMXYS Spain

The NaoSat nanosatellite platform for in-flight radiation testing. Jose A Carrasco CEO EMXYS Spain Jose A Carrasco CEO EMXYS Spain Presentation outline: - Purpose and objectives of EMXYS NaoSat plattform - The Platform: service module - The platform: payload module and ICD - NaoSat intended missions

More information

Antennas and Propagation. Chapter 5

Antennas and Propagation. Chapter 5 Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

Industrial Wireless Systems

Industrial Wireless Systems Application Considerations Don Pretty Principal Engineer Geometric Controls Inc Bethlehem, PA Sheet 1 Ethernet Dominates on the Plant Floor Sheet 2 Recognize Any of These? Sheet 3 Answers: 10 BASE 2 RG

More information

EMG4066:Antennas and Propagation Exp 1:ANTENNAS MMU:FOE. To study the radiation pattern characteristics of various types of antennas.

EMG4066:Antennas and Propagation Exp 1:ANTENNAS MMU:FOE. To study the radiation pattern characteristics of various types of antennas. OBJECTIVES To study the radiation pattern characteristics of various types of antennas. APPARATUS Microwave Source Rotating Antenna Platform Measurement Interface Transmitting Horn Antenna Dipole and Yagi

More information

EISCAT_3D: Preparation for Production EISCAT3D_PfP

EISCAT_3D: Preparation for Production EISCAT3D_PfP EISCAT_3D: Preparation for Production EISCAT3D_PfP Deliverable D2.2 Test plan for the Test Sub-array Work Package 2 Coordination and Outreach Leading Beneficiary: EISCAT Scientific Association Authors

More information

AN4949 Application note

AN4949 Application note Application note Using the S2-LP transceiver under FCC title 47 part 15 in the 902 928 MHz band Introduction The S2-LP is a very low power RF transceiver, intended for RF wireless applications in the sub-1

More information

Advanced Electrical Bus (ALBus) CubeSat Technology Demonstration Mission

Advanced Electrical Bus (ALBus) CubeSat Technology Demonstration Mission Advanced Electrical Bus (ALBus) CubeSat Technology Demonstration Mission April 2015 David Avanesian, EPS Lead Tyler Burba, Software Lead 1 Outline Introduction Systems Engineering Electrical Power System

More information

RECOMMENDATION ITU-R S *

RECOMMENDATION ITU-R S * Rec. ITU-R S.1339-1 1 RECOMMENDATION ITU-R S.1339-1* Rec. ITU-R S.1339-1 SHARING BETWEEN SPACEBORNE PASSIVE SENSORS OF THE EARTH EXPLORATION-SATELLITE SERVICE AND INTER-SATELLITE LINKS OF GEOSTATIONARY-SATELLITE

More information

ANTENNA INTRODUCTION / BASICS

ANTENNA INTRODUCTION / BASICS Rules of Thumb: 1. The Gain of an antenna with losses is given by: G 0A 8 Where 0 ' Efficiency A ' Physical aperture area 8 ' wavelength ANTENNA INTRODUCTION / BASICS another is:. Gain of rectangular X-Band

More information

Scalable Ionospheric Analyser SIA 24/6

Scalable Ionospheric Analyser SIA 24/6 Scalable Ionospheric Analyser SIA 24/6 Technical Overview Functional description The ATRAD Scalable Ionospheric Analyser SIA24/6 is designed to observe ionospheric irregularities and their drift in the

More information

CubeSat Communication System, a New Design Approach

CubeSat Communication System, a New Design Approach CubeSat Communication System, a New Design Approach Ayman N. Mohi, Jabir S. Aziz, Lubab A. Salman # Department of Electronic and Communications Engineering, College of Engineering, Al-Nahrain University

More information

You will need the following pieces of equipment to complete this experiment: Wilkinson power divider (3-port board with oval-shaped trace on it)

You will need the following pieces of equipment to complete this experiment: Wilkinson power divider (3-port board with oval-shaped trace on it) UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING The Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE422H1S: RADIO AND MICROWAVE WIRELESS SYSTEMS EXPERIMENT 1:

More information

Worst-Case GPS Constellation for Testing Navigation at Geosynchronous Orbit for GOES-R

Worst-Case GPS Constellation for Testing Navigation at Geosynchronous Orbit for GOES-R Worst-Case GPS Constellation for Testing Navigation at Geosynchronous Orbit for GOES-R Kristin Larson, Dave Gaylor, and Stephen Winkler Emergent Space Technologies and Lockheed Martin Space Systems 36

More information

Planning Your Wireless Transportation Infrastructure. Presented By: Jeremy Hiebert

Planning Your Wireless Transportation Infrastructure. Presented By: Jeremy Hiebert Planning Your Wireless Transportation Infrastructure Presented By: Jeremy Hiebert Agenda Agenda o Basic RF Theory o Wireless Technology Options o Antennas 101 o Designing a Wireless Network o Questions

More information

RoamAbout Outdoor Antenna Site Preparation Guide

RoamAbout Outdoor Antenna Site Preparation Guide 9033153 RoamAbout 802.11 Outdoor Antenna Site Preparation Guide Notice Notice Cabletron Systems reserves the right to make changes in specifications and other information contained in this document without

More information

Methodology for Analysis of LMR Antenna Systems

Methodology for Analysis of LMR Antenna Systems Methodology for Analysis of LMR Antenna Systems Steve Ellingson June 30, 2010 Contents 1 Introduction 2 2 System Model 2 2.1 Receive System Model................................... 2 2.2 Calculation of

More information

SATELLITES WITH A COLLINEAR ANTENNA

SATELLITES WITH A COLLINEAR ANTENNA SATELLITES WITH A COLLINEAR ANTENNA Juan Antonio Fernández Montaña EA4CYQ Radio amateurs have not yet been able to cross the Atlantic Ocean in the high bands (145 MHz up), but we have to say in terrestrial

More information

A Feasibility Study of Techniques for Interplanetary Microspacecraft Communications

A Feasibility Study of Techniques for Interplanetary Microspacecraft Communications 1 A Feasibility Study of Techniques for Interplanetary Microspacecraft Communications By: G. James Wells Dr. Robert Zee University of Toronto Institute for Aerospace Studies Space Flight Laboratory August

More information

Chapter 5.0 Antennas Section 5.1 Theory & Principles

Chapter 5.0 Antennas Section 5.1 Theory & Principles Chapter 5.0 Antennas Section 5.1 Theory & Principles G3C11 (B) p.135 Which of the following antenna types will be most effective for skip communications on 40-meters during the day? A. A vertical antenna

More information

Half-Wave Dipole. Radiation Resistance. Antenna Efficiency

Half-Wave Dipole. Radiation Resistance. Antenna Efficiency Antennas Simple Antennas Isotropic radiator is the simplest antenna mathematically Radiates all the power supplied to it, equally in all directions Theoretical only, can t be built Useful as a reference:

More information

RECOMMENDATION ITU-R SA.364-5* PREFERRED FREQUENCIES AND BANDWIDTHS FOR MANNED AND UNMANNED NEAR-EARTH RESEARCH SATELLITES (Question 132/7)

RECOMMENDATION ITU-R SA.364-5* PREFERRED FREQUENCIES AND BANDWIDTHS FOR MANNED AND UNMANNED NEAR-EARTH RESEARCH SATELLITES (Question 132/7) Rec. ITU-R SA.364-5 1 RECOMMENDATION ITU-R SA.364-5* PREFERRED FREQUENCIES AND BANDWIDTHS FOR MANNED AND UNMANNED NEAR-EARTH RESEARCH SATELLITES (Question 132/7) Rec. ITU-R SA.364-5 (1963-1966-1970-1978-1986-1992)

More information

DESIGN AND PERFORMANCE EVALUATION OF TWO-UNIT YAGI-UDA ARRAY FOR UHF SATELLITE COMMUNICATION

DESIGN AND PERFORMANCE EVALUATION OF TWO-UNIT YAGI-UDA ARRAY FOR UHF SATELLITE COMMUNICATION DESIGN AND PERFORMANCE EVALUATION OF TWO-UNIT YAGI-UDA ARRAY FOR UHF SATELLITE COMMUNICATION Rupesh Lad 1, Pritesh Chhajed 2, Lokeshsingh Bais 3, Shyam Dahiwal 4, Sukhada Saoji 5, Vaibhav Rekhate 6, Pushkar

More information

Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator. International Radar Symposium 2012 Warsaw, 24 May 2012

Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator. International Radar Symposium 2012 Warsaw, 24 May 2012 Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator F. Winterstein, G. Sessler, M. Montagna, M. Mendijur, G. Dauron, PM. Besso International Radar Symposium 2012 Warsaw,

More information

Advanced Communication Systems -Wireless Communication Technology

Advanced Communication Systems -Wireless Communication Technology Advanced Communication Systems -Wireless Communication Technology Dr. Junwei Lu The School of Microelectronic Engineering Faculty of Engineering and Information Technology Outline Introduction to Wireless

More information