Dorf, R.C., Wan, Z. Transfer Functions of Filters The Electrical Engineering Handbook Ed. Richard C. Dorf Boca Raton: CRC Press LLC, 2000

Size: px
Start display at page:

Download "Dorf, R.C., Wan, Z. Transfer Functions of Filters The Electrical Engineering Handbook Ed. Richard C. Dorf Boca Raton: CRC Press LLC, 2000"

Transcription

1 Dorf, R.C., Wan, Z. Transfer Functions of Filters The Electrical Engineering Handbook Ed. Richard C. Dorf oca Raton: CRC Press LLC,

2 Transfer Functions of Filters Richard C. Dorf University of California, Davis Zhen Wan University of California, Davis. Introduction. Ideal Filters.3 The Ideal Linear-Phase Lo-Pass Filter.4 Ideal Linear-Phase andpass Filters.5 Causal Filters.6 utterorth Filters.7 Chebyshev Filters. Introduction Filters are idely used to pass signals at selected frequencies and reject signals at other frequencies. An electrical filter is a circuit that is designed to introduce gain or loss over a prescribed range of frequencies. In this section, e ill describe ideal filters and then a selected set of practical filters.. Ideal Filters An ideal filter is a system that completely rejects sinusoidal inputs of the form x(t) A cos t, < t <, for in certain frequency ranges and does not attenuate sinusoidal inputs hose frequencies are outside these ranges. There are four basic types of ideal filters: lo-pass, high-pass, bandpass, and bandstop. The magnitude functions of these four types of filters are displayed in Fig... Mathematical expressions for these magnitude functions are as follos: Ideal lo-pass: H ( ), îï, - > (.) Ideal high-pass: H ( ), îï, - < < ³ (.) Ideal bandpass: H ( ), îï, all other (.3) Ideal bandstop: H ( ), îï, all other (.4) by CRC Press LLC

3 H H (a) (b) H H (c) (d) FIGURE. Magnitude functions of ideal filters:(a) lo-pass; (b) high-pass; (c) bandpass; (d) bandstop. The stopband of an ideal filter is defined to be the set of all frequencies for hich the filter completely stops the sinusoidal input x(t) A cos t, < t <. The passband of the filter is the set of all frequencies for hich the input x(t) is passed ithout attenuation. More complicated examples of ideal filters can be constructed by cascading ideal lo-pass, highpass, bandpass, and bandstop filters. For instance, by cascading bandstop filters ith different values of and, e can construct an ideal comb filter, hose magnitude function is illustrated in Fig... FIGURE. H Magnitude function of an ideal comb filter..3 The Ideal Linear-Phase Lo-Pass Filter Consider the ideal lo-pass filter ith the frequency function H( ) ì - j t ïe d, - îï, < -, > (.5) here t d is a positive real number. Equation (.5) is the polar-form representation of H(). From Eq. (.5) e have and H ( ), - îï, < -, > td, / H ( ) - - îï, < -, > by CRC Press LLC

4 H() t d t d Slope t d FIGURE.3 Phase function of ideal lo-pass filter defined by Eq. (.5). H() t d t d Slope t d FIGURE.4 Phase function of ideal linear-phase bandpass filter. The phase function /H() of the filter is plotted in Fig..3. Note that over the frequency range to, the phase function of the system is linear ith slope equal to t d. The impulse response of the lo-pass filter defined by Eq. (.5) can be computed by taking the inverse Fourier transform of the frequency function H(). The impulse response of the ideal lopass filter is ht () Sat [ ( - t d )], - < t < p (.6) here Sa(x) (sin x)/x. The impulse response h(t) of the ideal lo-pass filter is not zero for t <. Thus, the filter has a response before the impulse at t and is said to be noncausal. As a result, it is not possible to build an ideal lo-pass filter..4 Ideal Linear-Phase andpass Filters One can extend the analysis to ideal linear-phase bandpass filters. The frequency function of an ideal linearphase bandpass filter is given by H( ) ì - j t ïe d, îï, all other here t d,, and are positive real numbers. The magnitude function is plotted in Fig..(c) and the phase function is plotted in Fig..4. The passband of the filter is from to. The filter ill pass the signal ithin the band ith no distortion, although there ill be a time delay of t d seconds. by CRC Press LLC

5 .77 - p p (a) (b) (c) (d) FIGURE.5 Causal filter magnitude functions: (a) lo-pass; (b) high-pass; (c) bandpass; (d) bandstop..5 Causal Filters As observed in the preceding section, ideal filters cannot be utilized in real-time filtering applications, since they are noncausal. In such applications, one must use causal filters, hich are necessarily nonideal; that is, the transition from the passband to the stopband (and vice versa) is gradual. In particular, the magnitude functions of causal versions of lo-pass, high-pass, bandpass, and bandstop filters have gradual transitions from the passband to the stopband. Examples of magnitude functions for the basic filter types are shon in Fig..5. For a causal filter ith frequency function H(), the passband is defined as the set of all frequencies for hich H( ) ³ H( p) 77. H( p) (.7) here p is the value of for hich H() is maximum. Note that Eq. (.7) is equivalent to the condition that H() d is less than 3 d don from the peak value H( p ) d. For lo-pass or bandpass filters, the idth of the passband is called the 3-d bandidth. A stopband in a causal filter is a set of frequencies for hich H() d is don some desired amount (e.g., 4 or 5 d) from the peak value H( p ) d. The range of frequencies beteen a passband and a stopband is called a transition region. In causal filter design, a key objective is to have the transition regions be suitably small in extent..6 utterorth Filters The transfer function of the to-pole utterorth filter is Hs () s n + ns + n Factoring the denominator of H(s), e see that the poles are located at s - n ± j n by CRC Press LLC

6 H() One-pole filter H(s) s + To-pole filter ith z To-pole utterorth filter Passband FIGURE.6 Magnitude curves of one- and to-pole lo-pass filters. Note that the magnitude of each of the poles is equal to n. Setting s j in H(s), e have that the magnitude function of the to-pole utterorth filter is H ( ) + ( / ) n 4 (.8) From Eq. (.8) e see that the 3-d bandidth of the utterorth filter is equal to n. For the case n rad/s, the frequency response curves of the utterorth filter are plotted in Fig..6. Also displayed are the frequency response curves for the one-pole lo-pass filter ith transfer function H(s) /(s + ), and the topole lo-pass filter ith z and ith 3-d bandidth equal to rad/s. Note that the utterorth filter has the sharpest cutoff of all three filters..7 Chebyshev Filters The magnitude function of the n-pole utterorth filter has a monotone characteristic in both the passband and stopband of the filter. Here monotone means that the magnitude curve is gradually decreasing over the passband and stopband. In contrast to the utterorth filter, the magnitude function of a type Chebyshev filter has ripple in the passband and is monotone decreasing in the stopband (a type Chebyshev filter has the opposite characteristic). y alloing ripple in the passband or stopband, e are able to achieve a sharper transition beteen the passband and stopband in comparison ith the utterorth filter. The n-pole type Chebyshev filter is given by the frequency function H ( ) T n + ( / ) (.9) here T n (/ ) is the nth-order Chebyshev polynomial. Note that e is a numerical parameter related to the level of ripple in the passband. The Chebyshev polynomials can be generated from the recursion T n (x) xt n (x) T n (x) here T (x) and T (x) x. The polynomials for n, 3, 4, 5 are T (x) x(x) x T 3 (x) x(x ) x 4x 3 3x T 4 (x) x(4x 3 3x) (x ) 8x 4 8x + T 5 (x) x(8x 4 8x + ) (4x 3 3x) 6x 5 x 3 + 5x (.) by CRC Press LLC

7 H() To-pole filter Three-pole filter Passband (a) H() To-pole filter Three-pole filter (b) FIGURE.7 phase curves. Frequency curves of to- and three-pole Chebyshev filters ith c.5 rad/s: (a) magnitude curves; (b) Using Eq. (.), the to-pole type Chebyshev filter has the folloing frequency function H( ) + [( / ) - ] For the case of a 3-d ripple ( ), the transfer functions of the to-pole and three-pole type Chebyshev filters are Hs () Hs () s 5. c cs c 3 5. c 3 3 c c c s s s + 5. here c 3-d bandidth. The frequency curves for these to filters are plotted in Fig..7 for the case c.5 rad. The magnitude response functions of the three-pole utterorth filter and the three-pole type Chebyshev filter are compared in Fig..8 ith the 3-d bandidth of both filters equal to rad. Note that the transition from passband to stopband is sharper in the Chebyshev filter; hoever, the Chebyshev filter does have the 3- d ripple over the passband. by CRC Press LLC

8 H() Three-pole utterorth Three-pole Chebyshev Passband FIGURE.8 to.5 rad/s. Magnitude curves of three-pole utterorth and three-pole Chebyshev filters ith 3-d bandidth equal Defining Terms Causal filter: A filter of hich the transition from the passband to the stopband is gradual, not ideal. This filter is realizable. 3-d bandidth: For a causal lo-pass or bandpass filter ith a frequency function H(j): the frequency at hich H() d is less than 3 d don from the peak value H( p ) d. Ideal filter: An ideal filter is a system that completely rejects sinusoidal inputs of the form x(t) A cos t, < t <, for ithin a certain frequency range, and does not attenuate sinusoidal inputs hose frequencies are outside this range. There are four basic types of ideal filters:lo-pass, high-pass, bandpass, and bandstop. Passband: Range of frequencies for hich the input is passed ithout attenuation. Stopband: Range of frequencies for hich the filter completely stops the input signal. Transition region: The range of frequencies of a filter beteen a passband and a stopband. Related Topics 4. Lo-Pass Filter Functions 4.3 Lo Pass Filters. Introduction 9. Synthesis of Lo-Pass Forms References R.C. Dorf, Introduction to Electrical Circuits, 3rd ed., Ne York: Wiley, 996. E.W. Kamen, Introduction to Signals and Systems, nd ed., Ne York: Macmillan, 99. G.R. Cooper and C.D. McGillem, Modern Communications and Spread Spectrum, Ne York: McGra-Hill, 986. Further Information IEEE Transactions on Circuits and Systems, Part I: Fundamental Theory and Applications. IEEE Transactions on Circuits and Systems, Part II: Analog and Digital Signal Processing. Available from IEEE. by CRC Press LLC

Kerwin, W.J. Passive Signal Processing The Electrical Engineering Handbook Ed. Richard C. Dorf Boca Raton: CRC Press LLC, 2000

Kerwin, W.J. Passive Signal Processing The Electrical Engineering Handbook Ed. Richard C. Dorf Boca Raton: CRC Press LLC, 2000 Kerwin, W.J. Passive Signal Processing The Electrical Engineering Handbook Ed. Richard C. Dorf Boca Raton: CRC Press LLC, 000 4 Passive Signal Processing William J. Kerwin University of Arizona 4. Introduction

More information

Lecture XII: Ideal filters

Lecture XII: Ideal filters BME 171: Signals and Systems Duke University October 29, 2008 This lecture Plan for the lecture: 1 LTI systems with sinusoidal inputs 2 Analog filtering frequency-domain description: passband, stopband

More information

LECTURER NOTE SMJE3163 DSP

LECTURER NOTE SMJE3163 DSP LECTURER NOTE SMJE363 DSP (04/05-) ------------------------------------------------------------------------- Week3 IIR Filter Design -------------------------------------------------------------------------

More information

Analog Lowpass Filter Specifications

Analog Lowpass Filter Specifications Analog Lowpass Filter Specifications Typical magnitude response analog lowpass filter may be given as indicated below H a ( j of an Copyright 005, S. K. Mitra Analog Lowpass Filter Specifications In the

More information

4/14/15 8:58 PM C:\Users\Harrn...\tlh2polebutter10rad see.rn 1 of 1

4/14/15 8:58 PM C:\Users\Harrn...\tlh2polebutter10rad see.rn 1 of 1 4/14/15 8:58 PM C:\Users\Harrn...\tlh2polebutter10rad see.rn 1 of 1 % Example 2pole butter tlh % Analog Butterworth filter design % design an 2-pole filter with a bandwidth of 10 rad/sec % Prototype H(s)

More information

ECE 203 LAB 2 PRACTICAL FILTER DESIGN & IMPLEMENTATION

ECE 203 LAB 2 PRACTICAL FILTER DESIGN & IMPLEMENTATION Version 1. 1 of 7 ECE 03 LAB PRACTICAL FILTER DESIGN & IMPLEMENTATION BEFORE YOU BEGIN PREREQUISITE LABS ECE 01 Labs ECE 0 Advanced MATLAB ECE 03 MATLAB Signals & Systems EXPECTED KNOWLEDGE Understanding

More information

Electric Circuit Theory

Electric Circuit Theory Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Chapter 15 Active Filter Circuits Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Contents and Objectives 3 Chapter Contents 15.1 First-Order

More information

Continuous-Time Analog Filters

Continuous-Time Analog Filters ENGR 4333/5333: Digital Signal Processing Continuous-Time Analog Filters Chapter 2 Dr. Mohamed Bingabr University of Central Oklahoma Outline Frequency Response of an LTIC System Signal Transmission through

More information

4. Design of Discrete-Time Filters

4. Design of Discrete-Time Filters 4. Design of Discrete-Time Filters 4.1. Introduction (7.0) 4.2. Frame of Design of IIR Filters (7.1) 4.3. Design of IIR Filters by Impulse Invariance (7.1) 4.4. Design of IIR Filters by Bilinear Transformation

More information

IIR Filter Design Chapter Intended Learning Outcomes: (i) Ability to design analog Butterworth filters

IIR Filter Design Chapter Intended Learning Outcomes: (i) Ability to design analog Butterworth filters IIR Filter Design Chapter Intended Learning Outcomes: (i) Ability to design analog Butterworth filters (ii) Ability to design lowpass IIR filters according to predefined specifications based on analog

More information

8: IIR Filter Transformations

8: IIR Filter Transformations DSP and Digital (5-677) IIR : 8 / Classical continuous-time filters optimize tradeoff: passband ripple v stopband ripple v transition width There are explicit formulae for pole/zero positions. Butterworth:

More information

Research Article Extended Composite Right/Left-Handed Transmission Line and Dual-Band Reactance Transformation

Research Article Extended Composite Right/Left-Handed Transmission Line and Dual-Band Reactance Transformation Electrical and Computer Engineering Volume, Article ID 33864, 5 pages doi:.55//33864 Research Article Extended Composite Right/Left-Handed Transmission Line and Dual-Band Reactance Transformation Yuming

More information

NH 67, Karur Trichy Highways, Puliyur C.F, Karur District DEPARTMENT OF INFORMATION TECHNOLOGY DIGITAL SIGNAL PROCESSING UNIT 3

NH 67, Karur Trichy Highways, Puliyur C.F, Karur District DEPARTMENT OF INFORMATION TECHNOLOGY DIGITAL SIGNAL PROCESSING UNIT 3 NH 67, Karur Trichy Highways, Puliyur C.F, 639 114 Karur District DEPARTMENT OF INFORMATION TECHNOLOGY DIGITAL SIGNAL PROCESSING UNIT 3 IIR FILTER DESIGN Structure of IIR System design of Discrete time

More information

Part B. Simple Digital Filters. 1. Simple FIR Digital Filters

Part B. Simple Digital Filters. 1. Simple FIR Digital Filters Simple Digital Filters Chapter 7B Part B Simple FIR Digital Filters LTI Discrete-Time Systems in the Transform-Domain Simple Digital Filters Simple IIR Digital Filters Comb Filters 3. Simple FIR Digital

More information

DIGITAL FILTERS. !! Finite Impulse Response (FIR) !! Infinite Impulse Response (IIR) !! Background. !! Matlab functions AGC DSP AGC DSP

DIGITAL FILTERS. !! Finite Impulse Response (FIR) !! Infinite Impulse Response (IIR) !! Background. !! Matlab functions AGC DSP AGC DSP DIGITAL FILTERS!! Finite Impulse Response (FIR)!! Infinite Impulse Response (IIR)!! Background!! Matlab functions 1!! Only the magnitude approximation problem!! Four basic types of ideal filters with magnitude

More information

Digital Processing of Continuous-Time Signals

Digital Processing of Continuous-Time Signals Chapter 4 Digital Processing of Continuous-Time Signals 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 Original PowerPoint slides prepared by S. K. Mitra 4-1-1 Digital Processing of Continuous-Time Signals Digital

More information

APPENDIX A to VOLUME A1 TIMS FILTER RESPONSES

APPENDIX A to VOLUME A1 TIMS FILTER RESPONSES APPENDIX A to VOLUME A1 TIMS FILTER RESPONSES A2 TABLE OF CONTENTS... 5 Filter Specifications... 7 3 khz LPF (within the HEADPHONE AMPLIFIER)... 8 TUNEABLE LPF... 9 BASEBAND CHANNEL FILTERS - #2 Butterworth

More information

Design of IIR Digital Filters with Flat Passband and Equiripple Stopband Responses

Design of IIR Digital Filters with Flat Passband and Equiripple Stopband Responses Electronics and Communications in Japan, Part 3, Vol. 84, No. 11, 2001 Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. J82-A, No. 3, March 1999, pp. 317 324 Design of IIR Digital Filters with

More information

Signals and Systems Lecture 6: Fourier Applications

Signals and Systems Lecture 6: Fourier Applications Signals and Systems Lecture 6: Fourier Applications Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2012 arzaneh Abdollahi Signal and Systems Lecture 6

More information

Continuous-Time Signal Analysis FOURIER Transform - Applications DR. SIGIT PW JAROT ECE 2221

Continuous-Time Signal Analysis FOURIER Transform - Applications DR. SIGIT PW JAROT ECE 2221 Continuous-Time Signal Analysis FOURIER Transform - Applications DR. SIGIT PW JAROT ECE 2221 Inspiring Message from Imam Shafii You will not acquire knowledge unless you have 6 (SIX) THINGS Intelligence

More information

NOVEMBER 13, 1996 EE 4773/6773: LECTURE NO. 37 PAGE 1 of 5

NOVEMBER 13, 1996 EE 4773/6773: LECTURE NO. 37 PAGE 1 of 5 NOVEMBER 3, 996 EE 4773/6773: LECTURE NO. 37 PAGE of 5 Characteristics of Commonly Used Analog Filters - Butterworth Butterworth filters are maimally flat in the passband and stopband, giving monotonicity

More information

ECE438 - Laboratory 7a: Digital Filter Design (Week 1) By Prof. Charles Bouman and Prof. Mireille Boutin Fall 2015

ECE438 - Laboratory 7a: Digital Filter Design (Week 1) By Prof. Charles Bouman and Prof. Mireille Boutin Fall 2015 Purdue University: ECE438 - Digital Signal Processing with Applications 1 ECE438 - Laboratory 7a: Digital Filter Design (Week 1) By Prof. Charles Bouman and Prof. Mireille Boutin Fall 2015 1 Introduction

More information

A Three-Microphone Adaptive Noise Canceller for Minimizing Reverberation and Signal Distortion

A Three-Microphone Adaptive Noise Canceller for Minimizing Reverberation and Signal Distortion American Journal of Applied Sciences 5 (4): 30-37, 008 ISSN 1546-939 008 Science Publications A Three-Microphone Adaptive Noise Canceller for Minimizing Reverberation and Signal Distortion Zayed M. Ramadan

More information

Digital Processing of

Digital Processing of Chapter 4 Digital Processing of Continuous-Time Signals 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 Original PowerPoint slides prepared by S. K. Mitra 4-1-1 Digital Processing of Continuous-Time Signals Digital

More information

The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #2

The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #2 The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #2 Date: November 18, 2010 Course: EE 313 Evans Name: Last, First The exam is scheduled to last 75 minutes. Open books

More information

Designing Filters Using the NI LabVIEW Digital Filter Design Toolkit

Designing Filters Using the NI LabVIEW Digital Filter Design Toolkit Application Note 097 Designing Filters Using the NI LabVIEW Digital Filter Design Toolkit Introduction The importance of digital filters is well established. Digital filters, and more generally digital

More information

DSP Laboratory (EELE 4110) Lab#10 Finite Impulse Response (FIR) Filters

DSP Laboratory (EELE 4110) Lab#10 Finite Impulse Response (FIR) Filters Islamic University of Gaza OBJECTIVES: Faculty of Engineering Electrical Engineering Department Spring-2011 DSP Laboratory (EELE 4110) Lab#10 Finite Impulse Response (FIR) Filters To demonstrate the concept

More information

Frequency Response Analysis

Frequency Response Analysis Frequency Response Analysis Continuous Time * M. J. Roberts - All Rights Reserved 2 Frequency Response * M. J. Roberts - All Rights Reserved 3 Lowpass Filter H( s) = ω c s + ω c H( jω ) = ω c jω + ω c

More information

Copyright S. K. Mitra

Copyright S. K. Mitra 1 In many applications, a discrete-time signal x[n] is split into a number of subband signals by means of an analysis filter bank The subband signals are then processed Finally, the processed subband signals

More information

Filters and Tuned Amplifiers

Filters and Tuned Amplifiers CHAPTER 6 Filters and Tuned Amplifiers Introduction 55 6. Filter Transmission, Types, and Specification 56 6. The Filter Transfer Function 60 6.7 Second-Order Active Filters Based on the Two-Integrator-Loop

More information

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters FIR Filter Design Chapter Intended Learning Outcomes: (i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters (ii) Ability to design linear-phase FIR filters according

More information

Infinite Impulse Response (IIR) Filter. Ikhwannul Kholis, ST., MT. Universitas 17 Agustus 1945 Jakarta

Infinite Impulse Response (IIR) Filter. Ikhwannul Kholis, ST., MT. Universitas 17 Agustus 1945 Jakarta Infinite Impulse Response (IIR) Filter Ihwannul Kholis, ST., MT. Universitas 17 Agustus 1945 Jaarta The Outline 8.1 State-of-the-art 8.2 Coefficient Calculation Method for IIR Filter 8.2.1 Pole-Zero Placement

More information

Classic Filters. Figure 1 Butterworth Filter. Chebyshev

Classic Filters. Figure 1 Butterworth Filter. Chebyshev Classic Filters There are 4 classic analogue filter types: Butterworth, Chebyshev, Elliptic and Bessel. There is no ideal filter; each filter is good in some areas but poor in others. Butterworth: Flattest

More information

Poles and Zeros of H(s), Analog Computers and Active Filters

Poles and Zeros of H(s), Analog Computers and Active Filters Poles and Zeros of H(s), Analog Computers and Active Filters Physics116A, Draft10/28/09 D. Pellett LRC Filter Poles and Zeros Pole structure same for all three functions (two poles) HR has two poles and

More information

Design of infinite impulse response (IIR) bandpass filter structure using particle swarm optimization

Design of infinite impulse response (IIR) bandpass filter structure using particle swarm optimization Standard Scientific Research and Essays Vol1 (1): 1-8, February 13 http://www.standresjournals.org/journals/ssre Research Article Design of infinite impulse response (IIR) bandpass filter structure using

More information

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters FIR Filter Design Chapter Intended Learning Outcomes: (i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters (ii) Ability to design linear-phase FIR filters according

More information

Filters. Phani Chavali

Filters. Phani Chavali Filters Phani Chavali Filters Filtering is the most common signal processing procedure. Used as echo cancellers, equalizers, front end processing in RF receivers Used for modifying input signals by passing

More information

Signals and Systems Lecture 6: Fourier Applications

Signals and Systems Lecture 6: Fourier Applications Signals and Systems Lecture 6: Fourier Applications Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2012 arzaneh Abdollahi Signal and Systems Lecture 6

More information

Experiment 4- Finite Impulse Response Filters

Experiment 4- Finite Impulse Response Filters Experiment 4- Finite Impulse Response Filters 18 February 2009 Abstract In this experiment we design different Finite Impulse Response filters and study their characteristics. 1 Introduction The transfer

More information

3 Analog filters. 3.1 Analog filter characteristics

3 Analog filters. 3.1 Analog filter characteristics Chapter 3, page 1 of 11 3 Analog filters This chapter deals with analog filters and the filter approximations of an ideal filter. The filter approximations that are considered are the classical analog

More information

A Compact Narrow-Band Bandstop Filter Using Spiral-Shaped Defected Microstrip Structure

A Compact Narrow-Band Bandstop Filter Using Spiral-Shaped Defected Microstrip Structure RADIOENGINEERING, VOL. 23, NO. 1, APRIL 21 29 A Compact Narro-Band Bandstop Filter Using Spiral-Shaped Defected Microstrip Structure Jun WANG 1, Huansheng NING 1,2, Qingxu XIONG 1, Lingfeng MAO 3 1 School

More information

Analog Filters D R. T A R E K T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N

Analog Filters D R. T A R E K T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N Analog Filters D. T A E K T U T U N J I P H I L A D E L P H I A U N I V E S I T Y, J O D A N 2 0 4 Introduction Electrical filters are deigned to eliminate unwanted frequencies Filters can be classified

More information

Digital Filters IIR (& Their Corresponding Analog Filters) 4 April 2017 ELEC 3004: Systems 1. Week Date Lecture Title

Digital Filters IIR (& Their Corresponding Analog Filters) 4 April 2017 ELEC 3004: Systems 1. Week Date Lecture Title http://elec3004.com Digital Filters IIR (& Their Corresponding Analog Filters) 4 April 017 ELEC 3004: Systems 1 017 School of Information Technology and Electrical Engineering at The University of Queensland

More information

Brief Introduction to Signals & Systems. Phani Chavali

Brief Introduction to Signals & Systems. Phani Chavali Brief Introduction to Signals & Systems Phani Chavali Outline Signals & Systems Continuous and discrete time signals Properties of Systems Input- Output relation : Convolution Frequency domain representation

More information

Rahman Jamal, et. al.. "Filters." Copyright 2000 CRC Press LLC. <

Rahman Jamal, et. al.. Filters. Copyright 2000 CRC Press LLC. < Rahman Jamal, et. al.. "Filters." Copyright 000 CRC Press LLC. . Filters Rahman Jamal National Instruments Germany Robert Steer Frequency Devices 8. Introduction 8. Filter Classification

More information

EELE503. Modern filter design. Filter Design - Introduction

EELE503. Modern filter design. Filter Design - Introduction EELE503 Modern filter design Filter Design - Introduction A filter will modify the magnitude or phase of a signal to produce a desired frequency response or time response. One way to classify ideal filters

More information

Filters occur so frequently in the instrumentation and

Filters occur so frequently in the instrumentation and FILTER Design CHAPTER 3 Filters occur so frequently in the instrumentation and communications industries that no book covering the field of RF circuit design could be complete without at least one chapter

More information

Chapter 15: Active Filters

Chapter 15: Active Filters Chapter 15: Active Filters 15.1: Basic filter Responses A filter is a circuit that passes certain frequencies and rejects or attenuates all others. The passband is the range of frequencies allowed to pass

More information

Computer-Aided Design (CAD) of Recursive/Non-Recursive Filters

Computer-Aided Design (CAD) of Recursive/Non-Recursive Filters Paper ID #12370 Computer-Aided Design (CAD) of Recursive/Non-Recursive Filters Chengying Xu, Florida State University Dr. Chengying Xu received the Ph.D. in 2006 in mechanical engineering from Purdue University,

More information

ECE 5650/4650 Exam II November 20, 2018 Name:

ECE 5650/4650 Exam II November 20, 2018 Name: ECE 5650/4650 Exam II November 0, 08 Name: Take-Home Exam Honor Code This being a take-home exam a strict honor code is assumed. Each person is to do his/her own work. Bring any questions you have about

More information

PHYS225 Lecture 15. Electronic Circuits

PHYS225 Lecture 15. Electronic Circuits PHYS225 Lecture 15 Electronic Circuits Last lecture Difference amplifier Differential input; single output Good CMRR, accurate gain, moderate input impedance Instrumentation amplifier Differential input;

More information

Electrical & Computer Engineering Technology

Electrical & Computer Engineering Technology Electrical & Computer Engineering Technology EET 419C Digital Signal Processing Laboratory Experiments by Masood Ejaz Experiment # 1 Quantization of Analog Signals and Calculation of Quantized noise Objective:

More information

4. K. W. Henderson, "Nomograph for Designing Elliptic-Function Filters," Proc. IRE, vol. 46, pp , 1958.

4. K. W. Henderson, Nomograph for Designing Elliptic-Function Filters, Proc. IRE, vol. 46, pp , 1958. BIBLIOGRAPHY Books. W. Cauer, Synthesis of Linear Communication Networks (English translation from German edition), McGraw-Hill Book Co., New York, 958. 2. W. K. Chen, Theory and Design of Broadband Matching

More information

Frequency-Response Masking FIR Filters

Frequency-Response Masking FIR Filters Frequency-Response Masking FIR Filters Georg Holzmann June 14, 2007 With the frequency-response masking technique it is possible to design sharp and linear phase FIR filters. Therefore a model filter and

More information

Pseudo-Elliptic Function Bandstop filter with shunt Foster Sections

Pseudo-Elliptic Function Bandstop filter with shunt Foster Sections Pseudo-Elliptic Function Bandstop filter with shunt Foster Sections J.A.G. Malherbe and J.J. Louw Department of Electrical, Electronic and Computer Engineering University of Pretoria, Pretoria, South Africa

More information

EE 470 Signals and Systems

EE 470 Signals and Systems EE 470 Signals and Systems 9. Introduction to the Design of Discrete Filters Prof. Yasser Mostafa Kadah Textbook Luis Chapparo, Signals and Systems Using Matlab, 2 nd ed., Academic Press, 2015. Filters

More information

Lecture 17 Date: Parallel Resonance Active and Passive Filters

Lecture 17 Date: Parallel Resonance Active and Passive Filters Lecture 17 Date: 09.10.2017 Parallel Resonance Active and Passive Filters Parallel Resonance At resonance: The voltage V as a function of frequency. At resonance, the parallel LC combination acts like

More information

Transfer function: a mathematical description of network response characteristics.

Transfer function: a mathematical description of network response characteristics. Microwave Filter Design Chp3. Basic Concept and Theories of Filters Prof. Tzong-Lin Wu Department of Electrical Engineering National Taiwan University Transfer Functions General Definitions Transfer function:

More information

CHAPTER 8 ANALOG FILTERS

CHAPTER 8 ANALOG FILTERS ANALOG FILTERS CHAPTER 8 ANALOG FILTERS SECTION 8.: INTRODUCTION 8. SECTION 8.2: THE TRANSFER FUNCTION 8.5 THE SPLANE 8.5 F O and Q 8.7 HIGHPASS FILTER 8.8 BANDPASS FILTER 8.9 BANDREJECT (NOTCH) FILTER

More information

Filter Banks I. Prof. Dr. Gerald Schuller. Fraunhofer IDMT & Ilmenau University of Technology Ilmenau, Germany. Fraunhofer IDMT

Filter Banks I. Prof. Dr. Gerald Schuller. Fraunhofer IDMT & Ilmenau University of Technology Ilmenau, Germany. Fraunhofer IDMT Filter Banks I Prof. Dr. Gerald Schuller Fraunhofer IDMT & Ilmenau University of Technology Ilmenau, Germany 1 Structure of perceptual Audio Coders Encoder Decoder 2 Filter Banks essential element of most

More information

Fourier Transform Analysis of Signals and Systems

Fourier Transform Analysis of Signals and Systems Fourier Transform Analysis of Signals and Systems Ideal Filters Filters separate what is desired from what is not desired In the signals and systems context a filter separates signals in one frequency

More information

A PACKAGE FOR FILTER DESIGN BASED ON MATLAB

A PACKAGE FOR FILTER DESIGN BASED ON MATLAB A PACKAGE FOR FILTER DESIGN BASED ON MATLAB David Báez-López 1, David Báez-Villegas 2, René Alcántara 3, Juan José Romero 1, and Tomás Escalante 1 Session F4D Abstract Electric filters have a relevant

More information

Active Filter Design Techniques

Active Filter Design Techniques Active Filter Design Techniques 16.1 Introduction What is a filter? A filter is a device that passes electric signals at certain frequencies or frequency ranges while preventing the passage of others.

More information

Microwave Circuits Design. Microwave Filters. high pass

Microwave Circuits Design. Microwave Filters. high pass Used to control the frequency response at a certain point in a microwave system by providing transmission at frequencies within the passband of the filter and attenuation in the stopband of the filter.

More information

WiMax PLL's FIR Filter Design Using LMIs

WiMax PLL's FIR Filter Design Using LMIs International Journal of Scientific & Engineering Research, Volume 3, Issue, November- WiMax PLL's FIR Filter Design Using LMIs Hatem Elaydi, Ayman Alquqa, H Khozondar Abstract WiMax technology evolved

More information

APPLIED SIGNAL PROCESSING

APPLIED SIGNAL PROCESSING APPLIED SIGNAL PROCESSING 2004 Chapter 1 Digital filtering In this section digital filters are discussed, with a focus on IIR (Infinite Impulse Response) filters and their applications. The most important

More information

Modeling and Analysis of Systems Lecture #9 - Frequency Response. Guillaume Drion Academic year

Modeling and Analysis of Systems Lecture #9 - Frequency Response. Guillaume Drion Academic year Modeling and Analysis of Systems Lecture #9 - Frequency Response Guillaume Drion Academic year 2015-2016 1 Outline Frequency response of LTI systems Bode plots Bandwidth and time-constant 1st order and

More information

Digital Filtering: Realization

Digital Filtering: Realization Digital Filtering: Realization Digital Filtering: Matlab Implementation: 3-tap (2 nd order) IIR filter 1 Transfer Function Differential Equation: z- Transform: Transfer Function: 2 Example: Transfer Function

More information

RECURSIVE BLIND IDENTIFICATION AND EQUALIZATION OF FIR CHANNELS FOR CHAOTIC COMMUNICATION SYSTEMS

RECURSIVE BLIND IDENTIFICATION AND EQUALIZATION OF FIR CHANNELS FOR CHAOTIC COMMUNICATION SYSTEMS 6th European Signal Processing Conference (EUSIPCO 008), Lausanne, Sitzerland, August 5-9, 008, copyright by EURASIP RECURSIVE BLIND IDENIFICAION AND EQUALIZAION OF FIR CHANNELS FOR CHAOIC COMMUNICAION

More information

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August ISSN

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August ISSN International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August-06 447 ISSN 9-558 Proposed Computer-Aided Design Algorithms for nth Order Chebyshev Active Filter. Haider Faher Radhi

More information

Review of Filter Types

Review of Filter Types ECE 440 FILTERS Review of Filters Filters are systems with amplitude and phase response that depends on frequency. Filters named by amplitude attenuation with relation to a transition or cutoff frequency.

More information

EE 311 February 13 and 15, 2019 Lecture 10

EE 311 February 13 and 15, 2019 Lecture 10 EE 311 February 13 and 15, 219 Lecture 1 Figure 4.22 The top figure shows a quantized sinusoid as the darker stair stepped curve. The bottom figure shows the quantization error. The quantized signal to

More information

Design Digital Non-Recursive FIR Filter by Using Exponential Window

Design Digital Non-Recursive FIR Filter by Using Exponential Window International Journal of Emerging Engineering Research and Technology Volume 3, Issue 3, March 2015, PP 51-61 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Design Digital Non-Recursive FIR Filter by

More information

Design and comparison of butterworth and chebyshev type-1 low pass filter using Matlab

Design and comparison of butterworth and chebyshev type-1 low pass filter using Matlab Research Cell: An International Journal of Engineering Sciences ISSN: 2229-6913 Issue Sept 2011, Vol. 4 423 Design and comparison of butterworth and chebyshev type-1 low pass filter using Matlab Tushar

More information

F I R Filter (Finite Impulse Response)

F I R Filter (Finite Impulse Response) F I R Filter (Finite Impulse Response) Ir. Dadang Gunawan, Ph.D Electrical Engineering University of Indonesia The Outline 7.1 State-of-the-art 7.2 Type of Linear Phase Filter 7.3 Summary of 4 Types FIR

More information

ELEC-C5230 Digitaalisen signaalinkäsittelyn perusteet

ELEC-C5230 Digitaalisen signaalinkäsittelyn perusteet ELEC-C5230 Digitaalisen signaalinkäsittelyn perusteet Lecture 10: Summary Taneli Riihonen 16.05.2016 Lecture 10 in Course Book Sanjit K. Mitra, Digital Signal Processing: A Computer-Based Approach, 4th

More information

Characteristics of a Novel Slow-Wave Defected Ground Structure for Planar Wideband Filters

Characteristics of a Novel Slow-Wave Defected Ground Structure for Planar Wideband Filters 2011 Internationa Conference on Information and Eectronics Engineering IPCSIT vo.6 (2011) (2011) IACSIT Press, Singapore Characteristics of a Nove So-Wave Defected Ground Structure for Panar Wideband Fiters

More information

The above figure represents a two stage circuit. Recall, the transfer function relates. Vout

The above figure represents a two stage circuit. Recall, the transfer function relates. Vout LABORATORY 12: Bode plots/second Order Filters Material covered: Multistage circuits Bode plots Design problem Overview Notes: Two stage circuits: Vin1 H1(s) Vout1 Vin2 H2(s) Vout2 The above figure represents

More information

The University of Texas at Austin Dept. of Electrical and Computer Engineering Final Exam

The University of Texas at Austin Dept. of Electrical and Computer Engineering Final Exam The University of Texas at Austin Dept. of Electrical and Computer Engineering Final Exam Date: December 18, 2017 Course: EE 313 Evans Name: Last, First The exam is scheduled to last three hours. Open

More information

CHAPTER 14. Introduction to Frequency Selective Circuits

CHAPTER 14. Introduction to Frequency Selective Circuits CHAPTER 14 Introduction to Frequency Selective Circuits Frequency-selective circuits Varying source frequency on circuit voltages and currents. The result of this analysis is the frequency response of

More information

AUDIO SIEVING USING SIGNAL FILTERS

AUDIO SIEVING USING SIGNAL FILTERS AUDIO SIEVING USING SIGNAL FILTERS A project under V.6.2 Signals and System Engineering Yatharth Aggarwal Sagar Mayank Chauhan Rajan Table of Contents Introduction... 2 Filters... 4 Butterworth Filter...

More information

RECOMMENDATION ITU-R P Attenuation by atmospheric gases

RECOMMENDATION ITU-R P Attenuation by atmospheric gases Rec. ITU-R P.676-6 1 RECOMMENDATION ITU-R P.676-6 Attenuation by atmospheric gases (Question ITU-R 01/3) (1990-199-1995-1997-1999-001-005) The ITU Radiocommunication Assembly, considering a) the necessity

More information

Preliminary Design for the Digital Processing Subsystem of a Long Wavelength Array Station I. Introduction and Summary II.

Preliminary Design for the Digital Processing Subsystem of a Long Wavelength Array Station I. Introduction and Summary II. LWA Memo No. 154 Preliminary Design for the Digital Processing of a Long Wavelength Array Station L. D'Addario and R. Navarro Jet Propulsion Laboratory, California Institute of Technology 1 11 February

More information

Electronic PRINCIPLES

Electronic PRINCIPLES MALVINO & BATES Electronic PRINCIPLES SEVENTH EDITION Chapter 21 Active Filters Topics Covered in Chapter 21 Ideal responses Approximate responses Passive ilters First-order stages VCVS unity-gain second-order

More information

WAN_0247. DRC Attack and Decay Times for Real Audio Signals INTRODUCTION SCOPE

WAN_0247. DRC Attack and Decay Times for Real Audio Signals INTRODUCTION SCOPE DRC Attack and Decay Times for Real Audio Signals INTRODUCTION SCOPE Dynamic range controllers (DRCs) are systems used to dynamically adjust the signal gain in conditions here the input amplitude is unknon

More information

MULTIRATE DIGITAL SIGNAL PROCESSING

MULTIRATE DIGITAL SIGNAL PROCESSING AT&T MULTIRATE DIGITAL SIGNAL PROCESSING RONALD E. CROCHIERE LAWRENCE R. RABINER Acoustics Research Department Bell Laboratories Murray Hill, New Jersey Prentice-Hall, Inc., Upper Saddle River, New Jersey

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Processing System Analysis and Design Paulo S. R. Diniz Eduardo A. B. da Silva and Sergio L. Netto Federal University of Rio de Janeiro CAMBRIDGE UNIVERSITY PRESS Preface page xv Introduction

More information

Digital Filter Design

Digital Filter Design Chapter9 Digital Filter Design Contents 9.1 Overview of Approximation Techniques........ 9-3 9.1.1 Approximation Approaches........... 9-3 9.1.2 FIR Approximation Approaches......... 9-3 9.2 Continuous-Time

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signals & Systems Prof. Mark Fowler Note Set #19 C-T Systems: Frequency-Domain Analysis of Systems Reading Assignment: Section 5.2 of Kamen and Heck 1/17 Course Flow Diagram The arrows here show

More information

Final Exam. EE313 Signals and Systems. Fall 1999, Prof. Brian L. Evans, Unique No

Final Exam. EE313 Signals and Systems. Fall 1999, Prof. Brian L. Evans, Unique No Final Exam EE313 Signals and Systems Fall 1999, Prof. Brian L. Evans, Unique No. 14510 December 11, 1999 The exam is scheduled to last 50 minutes. Open books and open notes. You may refer to your homework

More information

EE247 Lecture 2. Butterworth Chebyshev I Chebyshev II Elliptic Bessel Group delay comparison example. EECS 247 Lecture 2: Filters

EE247 Lecture 2. Butterworth Chebyshev I Chebyshev II Elliptic Bessel Group delay comparison example. EECS 247 Lecture 2: Filters EE247 Lecture 2 Material covered today: Nomenclature Filter specifications Quality factor Frequency characteristics Group delay Filter types Butterworth Chebyshev I Chebyshev II Elliptic Bessel Group delay

More information

Basics of Digital Filtering

Basics of Digital Filtering 4 Basics of Digital Filtering Willis J. Tompkins and Pradeep Tagare In this chapter we introduce the concept of digital filtering and look at the advantages, disadvantages, and differences between analog

More information

EELE 4310: Digital Signal Processing (DSP)

EELE 4310: Digital Signal Processing (DSP) EELE 4310: Digital Signal Processing (DSP) Chapter # 10 : Digital Filter Design (Part One) Spring, 2012/2013 EELE 4310: Digital Signal Processing (DSP) - Ch.10 Dr. Musbah Shaat 1 / 19 Outline 1 Introduction

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #25 Wednesday, November 5, 23 Aliasing in the impulse invariance method: The impulse invariance method is only suitable for filters with a bandlimited

More information

Bandpass Filters Using Capacitively Coupled Series Resonators

Bandpass Filters Using Capacitively Coupled Series Resonators 8.8 Filters Using Coupled Resonators 441 B 1 B B 3 B N + 1 1 3 N (a) jb 1 1 jb jb 3 jb N jb N + 1 N (b) 1 jb 1 1 jb N + 1 jb N + 1 N + 1 (c) J 1 J J Z N + 1 0 Z +90 0 Z +90 0 Z +90 0 (d) FIGURE 8.50 Development

More information

IJSER. Chen [2] has gave a lot of information in digital filtering with additions in the area of computer-aided design of digital filters.

IJSER. Chen [2] has gave a lot of information in digital filtering with additions in the area of computer-aided design of digital filters. Computer-Aided Design using New Algorithms for nth Order Chebyshev Digital Filter Haider Fakher Radhi Al-Saidy Computer Teaching Unit, Medicine of Community Branch, Al-Kindy Medicine College Baghdad University,

More information

FIR Filter Design by Frequency Sampling or Interpolation *

FIR Filter Design by Frequency Sampling or Interpolation * OpenStax-CX module: m689 FIR Filter Design by Frequency Sampling or Interpolation * C. Sidney Burrus This work is produced by OpenStax-CX and licensed under the Creative Commons Attribution License 2.

More information

REDUCING THE PEAK TO AVERAGE RATIO OF MULTICARRIER GSM AND EDGE SIGNALS

REDUCING THE PEAK TO AVERAGE RATIO OF MULTICARRIER GSM AND EDGE SIGNALS REDUCING THE PEAK TO AVERAGE RATIO OF MULTICARRIER GSM AND EDGE SIGNALS Olli Väänänen, Jouko Vankka and Kari Halonen Electronic Circuit Design Laboratory, Helsinki University of Technology, Otakaari 5A,

More information

16 MICROSTRIP LINE FILTERS

16 MICROSTRIP LINE FILTERS 16 Microstrip Line Filters 16 MICRSTRIP LINE FILTERS Receiver De- Mod 99 Washington Street Melrose, MA 176 Phone 781-665-14 Toll Free 1-8-517-8431 Visit us at.testequipmentdepot.com Antenna Lo-Pass Filter

More information

An active filter offers the following advantages over a passive filter:

An active filter offers the following advantages over a passive filter: ACTIVE FILTERS An electric filter is often a frequency-selective circuit that passes a specified band of frequencies and blocks or attenuates signals of frequencies outside this band. Filters may be classified

More information