ELECTRONICS LAB. OSCILLOSCOPE

Size: px
Start display at page:

Download "ELECTRONICS LAB. OSCILLOSCOPE"

Transcription

1 ELECTRONICS LAB. OSCILLOSCOPE Yrd. Doç. Dr. Taha İMECİ Arş. Gör. Ezgi YAMAÇ Arş. Gör. Ufuk ŞANVER İSTANBUL COMMERCE UNIVERSITY

2 Contents OSCILLOSCOPE... 2 CRT PART VERTICAL CONTROL PART HORIZONTAL CONTROL PART TRIGGER PART OSCILLOSCOPE PROBES MEASURING VOLTAGE WITH OSCILLOSCOPE MEASURING FREQUENCY WITH OSCILLOSCOPE... 8

3 OSCILLOSCOPE Oscilloscopes are the devices that show the electrical signals as graphs and allow them to be measured. The inner structure of oscilloscopes is highly sophisticated. We will discuss the usage of oscilloscopes. A good oscilloscope should has two abilities. The first ability is to show and measure two different signals simultaneously. The oscilloscopes that can show and measure two electrical signals are called dual channel oscilloscopes. The second ability is to show and allow the measurement of high frequency alternating current signals. The measure of this ability can be found on the oscilloscope device and its user s manual. A medium quality one has maximum working frequency at around 40MHz-60MHz. Oscilloscopes are composed of four main parts. CRT (Cathode Ray Tube) part Vertical control part Horizontal control part Trıgger part There are oscilloscopes that have more properties than the parts we have mentioned above, such as displaying values and frequencies of electrical signals directly on the screen, memory capturing of the wanted signals, etc. The front panel of a standart oscilloscope is shown in Figure. The adjustable components are numbered in Figure. At each part, the functionality of the adjustable components will be explained in order. Figure 2

4 CRT PART CRT stands for (Cathode Ray Tube) and these tubes are special electron lamps that have a screen that can show electrical signals. Most television screens that we use and watch daily are again CRT s The inner surface of the screen is covered with phosphorus. An electron beam created by an electron gun at the rear of the tube is projected onto this covered surface and the line that the beam is projected lighted. The outer surface of the screen has vertical and horizontal lines with distance cm for measuring purposes. Those cm spaces are further divided with small ticks for increasing accuracty and preventing measurement errors. In CRT part, there is generallay six control and configuration components. Power on-off switch: is the push-type switch that is used to power the oscilloscope. When pushed, power is applied to the oscilloscope. Trace rotation (horizontal smoothess control): is the potnatiometer that adjusts the paralelness of the screen output to the horizontal axis. This adjustment is only used when it is needed. Intensity: is the potantiometer that adjusts the light intensity of the screen output. Focus: is the potantiometer that adjusts the sharpness of the screen output. Scale (screen light adjustment): is the potantiometer that is used to lighten the screen with an extarnal light source when needed. It is used to see the screen lines when the environment is dark. Calibration terminal: is the terminal that is used to verify the measurements done with the oscilloscope. This terminal generally has a standart khz frequency Vpp = 0.5V square wave on it. This terminal is also used to investigate the measurement correctness of the measurement probes. The live point of the probe is connected to this terminal and the standart signal can be observed on the screen. 3

5 2 VERTICAL CONTROL PART The amplitude of the applied signal is investigated in this part of the oscilloscope. The oscilloscope shown in Figure is a dual channel one. At each channel, one independent same-type amplifier for vertical controls is present. The control components of each channel(potantiometers and switches) are controlled independently with different buttons. The left and right sides of the MODE switch in the vertical part is channel one (CH) and two (CH2), respectively. Control components at each channel accomplishes same goal for its channel Her kanaldaki aynı isimli kontrol elemanı kendi kanalında aynı işi yapar. Both two channels can be used independently or at the same time. Vertical mode select switch (MODE): This is the switch that selects the working mode of the vertical axis Dikey eksen çalışma şeklinin seçimini yapan anahtardır. The signal applied to CH and CH2 can be seen on the screen when this switch is on CH and CH2, respectively. Both signals can be seen on the screen when this switch is on DUAL position. The sum or difference of the two signals can be seen on the screen when this switch is on ADD position. CH IN: This is the connector where the electrical signal to be measured and observed is applied to the oscilloscope. The input connector for oscilloscopes are word-standart female BNC connector, with is convenient for oscilloscope probes. GND switch: When this button is pressed, the input of the oscilloscope is connected to the oscilloscope ground. A horizontal line is observed in the screen if this button is pressed. AC/DC switch: Generally input signals have both AC and DC components. When this button ispressed, both AC and DC components are reflected to the output screen symbol. When it is released, the input signal is passed over a capacitor and applied to the oscilloscope. In this released case, only AC components are shown in the screen. Position control: This is the potantiometer that shifts the screen output vertically. Volt/div control: This control component is composed of two equicentric switches. The outer switch is a multi leveled switch, whereas the inner switch is a a single switched potantiometer.the outer switch has a crucial function. There are scaled ticks in the perimeter of this switch, labeled in units of milivolt (mv) and volt (V). The vertical side of a square on a vertical axis has the voltage value determined by this switch s arrow. This process will be explained in measuring voltages with oscilloscope. The inner switched potantiometer is vertical attenuator in the input channel. When the switch of the potantiometer is open (the arrow in CAL position ), potantiometer has no effect to the circuit. The measurement verification of the oscilloscope is tested in this position. The vertical side of the squares of the screen can be adjusted to a ratio of the input signal amplitude by opening this potantiometer switch. This adjustment is necessary when following high amplitude signals. 4

6 3 HORIZONTAL CONTROL PART The variation of the applied signal is investigated in this part of the oscilloscope. This part provides the behaviour in time of the applied signal to be measured. Position control: This is the potantiometer that shifts the screen output horizontally. Time/div control: This control component is a multi leveled switch. There are scaled ticks in the perimeter of this switch, labeled in units of microseconds (μs), miliseconds (ms) and seconds (s). The horizontal side of a square on a horizontal axis has the time value determined by this switch s arrow. This process will be explained in measuring frequency with oscilloscope. Variable control: This component is a switched potantiometer. When the switch of the potantiometer is open (the arrow in CAL position), potantiometer has no effect to the circuit. In this case, the value provided by time/div switch is the value of the horizontal side of a square on the screen. By opening this potantiometer and adjusting it, the time that is shown by a horizontal side can be lowered. Considering an example, if horizontal side of a square on a screen represents second when this potantiometer is open, if this potantiometer is applied and turned to the rightmost point, the horizontal side of the square represents 0. seconds. 4 TRIGGER PART The stability of the electrical signal (no shifts, no blinks) is provided with this part of the oscilloscope. For this part, a scan signal is produced in the inner part of the oscilloscope. This scan signal is can be produced internally or using DC input from city network or using an extarnal signal. Source control: This switch is used to select which source will be used for producing the scan signal. The scan signal is produced from CH / CH2 when this switch is in position CH / CH2, respectively and the source signal of scan signal is produced more stable in these conditions. When this switch is in LINE position, the scan signal is produced from the city network DC input of the oscilloscope. Finally, if this switch is in EXT position, the scan signal will be produced from an external signal applied from a connector shown with the scan symbol. This connector is shown as a line with an arrowhead in the panel. Level control: This potantiometer allows us to control the amplitude of the scan signal. If a stable signal can not be achieved on the screen, the problem is eliminated by adjusting this potantiometer. Mode switch: This switch determines the appliance mode of the scan signal. Scanning is done with a triggering signal when this switch is in AUTO position. In this case, a horizontal line can be seen when there is no input signal. The scanning is triggered with the input signal when this switch is in 5

7 NORM position. In this case, there will be no images when there is no input signal. The scan signal is adjusted with the vertical and horizontal synchronization pulses and the input signal when it is in TV/V and TV/H positions,respectively. The image on the screen is seen more stable when the switch is in TV/V and TV/H positions. Inverter switch: This button changes the polarity of the signal on the screen. When it is pressed, the image shown in the screen is mirror-imaged of the original signal. Generally oscilloscopes has z axis input jack at the backplane. This connector is again BNC. By applying an extarnal signal to this connector, the light intensity of the cathode ray tube can be controlled. 5 OSCILLOSCOPE PROBES Oscilloscope probes are the connection cables that are used to apply the electrical signal to be measured to the oscilloscope inputs. The structure of the cables are composed of two conductors one within the other. The outer conductor has the mesh shape. The inner conductor is placed to the center of the outer conductor. There is no electrical connection between two conductors. There is a male BNC connector to be plugged to the oscilloscope at one end of the probe. The outer and inner conductors are connected to the oscilloscope ground and oscilloscope amplifiers respectively over the connector. The outer and inner conductors are taken out by using a crocodile clip and a conducting pin respectively, on the other side of the cable. The pin can also be used by an attachable hat with a hook as shown in Figure 2. There is a swtch on the probe that can bypass the input signal with no attenuation or with 90% attenuation(/0 of the original signal) selectable, used when the input signal has high amplitude. An example oscilloscope probe is shown in Figure 2. Figure 2 6

8 6 MEASURING VOLTAGE WITH OSCILLOSCOPE Measuring voltage with oscilloscope provides much more insight than measuring with multimeters. There is no information about the shape of the electrical signal or any unwanted signals over the electrical signal when the voltage is measured with the multimeter. For this reason, researches in the lab are done by using oscilloscopes. The easiest values to obtain are peak to peak voltage (Epp) and maximum voltage (Emax) when using the oscilloscope for voltages. The electrical signal to be measured is applied to one of the oscilloscope channels. A shaped signal on the screen is achieved by adjusting TIME/DIV and VOLT/DIV switches. The voltage measurement is done on the voltage axis. The effective measurement component in voltage measurement is only VOLT/DIV switch. Figure 3 The signal to be measured, displayed in order on the screen, is shown in Figure 3. At this Figure, VOLT/DIV switch s arrow is at 2Volt level. This value is the voltage value of cm at amplitude axis on the screen. The space between the positive Emax point and negative Emax point of the signal is 4 cm s. This measurement is shown graphically at the left of the figure. The voltage value at the amplitude axis for 4cm is; 4cm.2V/cm=8V. Since this value is between the positive and negative maximum values, it is peak to peak voltage (Epp). The maximum value of the signal can be clearly seen on the screen and is Emax=4Volts. The effective voltage value (E) can be evaluated easily as E=Emax.0,707 E=4.0,707 E=2,8Volts. 7

9 7 MEASURING FREQUENCY WITH OSCILLOSCOPE The signal whose frequency will be measured is applied to any of the channels of the oscilloscope. A shaped signal on the screen is achieved by adjusting TIME/DIV and VOLT/DIV switches. The frequency measurement is done on the time axis. The effective measurement component in voltage measurement is only TIME/DIV switch. Figure 4 The signal to be measured, displayed on the screen, is shown in Figure 4. For clearance of the example, only one period of the signal is shown in the figure, wherease in reality the image outside of the period is also on the screen. Measuring frequency requires the total time of one period of the signal, and a simple mathematical calculation. The arrow of TIME/DIV switch is on 5 milisecond (ms) level. This value is the value in time of cm on the time axis. Since a period of the signal to be measured is 6 cms, the time of one period is; T=6cm.5ms/cm=30ms. Frequency is defined as the number of periods in one second. The matematical relation between the frequency and period is the reciprocal operation, shown below; f T 8

10 In which f= Frequency (Hertz) T= Period (seconds). The time unit in electronics is seconds. However, one second is a large time unit, so mostly smaller units of second are used. The relation between second and smaller units and their mathematical relations are shown in Figure 5. Figure 5 If we evalute the frequency of the measured signal; f T f T ,3Hertz If we assume the TIME/DIV switch is at 2 microseconds level when the measurement was taken and evaluate the frequency; f T f T ,000Hz KHz 9

The University of Jordan Mechatronics Engineering Department Electronics Lab.( ) Experiment 1: Lab Equipment Familiarization

The University of Jordan Mechatronics Engineering Department Electronics Lab.( ) Experiment 1: Lab Equipment Familiarization The University of Jordan Mechatronics Engineering Department Electronics Lab.(0908322) Experiment 1: Lab Equipment Familiarization Objectives To be familiar with the main blocks of the oscilloscope and

More information

Oscilloscope Measurements

Oscilloscope Measurements PC1143 Physics III Oscilloscope Measurements 1 Purpose Investigate the fundamental principles and practical operation of the oscilloscope using signals from a signal generator. Measure sine and other waveform

More information

Exp. #2-6 : Measurement of the Characteristics of,, and Circuits by Using an Oscilloscope

Exp. #2-6 : Measurement of the Characteristics of,, and Circuits by Using an Oscilloscope PAGE 1/14 Exp. #2-6 : Measurement of the Characteristics of,, and Circuits by Using an Oscilloscope Student ID Major Name Team No. Experiment Lecturer Student's Mentioned Items Experiment Class Date Submission

More information

ELECTROTECHNICH LAB. PART 1 EXPERIMENTS

ELECTROTECHNICH LAB. PART 1 EXPERIMENTS ELECTROTECHNICH LAB. PART 1 EXPERIMENTS Yrd. Doç. Dr. Taha İMECİ Arş. Gör. Ezgi YAMAÇ Arş. Gör. Ufuk ŞANVER İSTANBUL COMMERCE UNIVERSITY Contents EXPERIMENT: 1.1... 2 COLOUR CODES OF RESISTORS... 2 EXPERIMENT:

More information

Cornerstone Electronics Technology and Robotics Week 21 Electricity & Electronics Section 10.5, Oscilloscope

Cornerstone Electronics Technology and Robotics Week 21 Electricity & Electronics Section 10.5, Oscilloscope Cornerstone Electronics Technology and Robotics Week 21 Electricity & Electronics Section 10.5, Oscilloscope Field trip to Deerhaven Generation Plant: Administration: o Prayer o Turn in quiz Electricity

More information

Department of Electrical and Computer Engineering. Laboratory Experiment 1. Function Generator and Oscilloscope

Department of Electrical and Computer Engineering. Laboratory Experiment 1. Function Generator and Oscilloscope Department of Electrical and Computer Engineering Laboratory Experiment 1 Function Generator and Oscilloscope The purpose of this first laboratory assignment is to acquaint you with the function generator

More information

ELECTRONICS LAB. PART 2 EXPERIMENTS

ELECTRONICS LAB. PART 2 EXPERIMENTS ELECTRONICS LAB. PART 2 EXPERIMENTS Yrd. Doç. Dr. Taha İMECİ Arş. Gör. Ezgi YAMAÇ Arş. Gör. Ufuk ŞANVER İSTANBUL COMMERCE UNIVERSITY Contents EXPERIMENT: 2.1... 2 EXAMINATION OF A CAPACITOR FILTER... 2

More information

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 4. Alternating Current Measurement

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 4. Alternating Current Measurement PHYSICS 171 UNIVERSITY PHYSICS LAB II Experiment 4 Alternating Current Measurement Equipment: Supplies: Oscilloscope, Function Generator. Filament Transformer. A sine wave A.C. signal has three basic properties:

More information

THE CATHODE RAY OSCILLOSCOPE

THE CATHODE RAY OSCILLOSCOPE The Department of Engineering SS1.2 THE CATHODE RAY OSCILLOSCOPE Objectives The objective of this laboratory is for you to familiarise yourself with the operation of a cathode ray oscilloscope (CRO). Once

More information

Experiment 5 The Oscilloscope

Experiment 5 The Oscilloscope Experiment 5 The Oscilloscope Vision is the art of seeing things invisible. J. Swift (1667-1745) OBJECTIVE To learn to operate a cathode ray oscilloscope. THEORY The oscilloscope, or scope for short, is

More information

EECE208 INTRO To ELECTRICAL ENG LAB. LAB 2. Instrumentation

EECE208 INTRO To ELECTRICAL ENG LAB. LAB 2. Instrumentation EECE208 INTRO To ELECTRICAL ENG LAB Dr. Charles Kim LAB 2. Instrumentation Objectives A brief description of the equipment (Oscilloscope, Function Generator, Power Supply, and Digital Multimeter) and its

More information

EE 201 Function / Arbitrary Waveform Generator and Oscilloscope Tutorial

EE 201 Function / Arbitrary Waveform Generator and Oscilloscope Tutorial EE 201 Function / Arbitrary Waveform Generator and Oscilloscope Tutorial 1 This is a programmed learning instruction manual. It is written for the Agilent DSO3202A Digital Storage Oscilloscope. The prerequisite

More information

EXPERIMENT 1 PRELIMINARY MATERIAL

EXPERIMENT 1 PRELIMINARY MATERIAL EXPERIMENT 1 PRELIMINARY MATERIAL BREADBOARD A solderless breadboard, like the basic model in Figure 1, consists of a series of square holes, and those columns of holes are connected to each other via

More information

Laboratory 3 (drawn from lab text by Alciatore)

Laboratory 3 (drawn from lab text by Alciatore) Laboratory 3 (drawn from lab text by Alciatore) The Oscilloscope Required Components: 1 10 resistor 2 100 resistors 2 lk resistors 1 2k resistor 2 4.7M resistors 1 0.F capacitor 1 0.1 F capacitor 1 1.0uF

More information

Electric Circuit II Lab Manual Session #1

Electric Circuit II Lab Manual Session #1 Department of Electrical Engineering Electric Circuit II Lab Manual Session #1 Subject Lecturer Dr. Yasser Hegazy Name:-------------------------------------------------- Group:--------------------------------------------------

More information

Sonoma State University Department of Engineering Science Spring 2017

Sonoma State University Department of Engineering Science Spring 2017 EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 4 Introduction to AC Measurements (I) AC signals, Function Generators and Oscilloscopes Function Generator (AC) Battery

More information

The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a digital oscilloscope.

The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a digital oscilloscope. The Oscilloscope Vision is the art of seeing things invisible. J. Swift (1667-1745) OBJECTIVE To learn to operate a digital oscilloscope. THEORY The oscilloscope, or scope for short, is a device for drawing

More information

Notes on Experiment #1

Notes on Experiment #1 Notes on Experiment #1 Bring graph paper (cm cm is best) From this week on, be sure to print a copy of each experiment and bring it with you to lab. There will not be any experiment copies available in

More information

FYSP1110/K1 (FYSP110/K1) USE OF AN OSCILLOSCOPE

FYSP1110/K1 (FYSP110/K1) USE OF AN OSCILLOSCOPE FYSP1110/K1 (FYSP110/K1) USE OF AN OSCILLOSCOPE 1 Introduction In this exercise you will get basic knowledge about how to use an oscilloscope. You ll also measure properties of components, which you are

More information

General Construction & Operation of Oscilloscopes

General Construction & Operation of Oscilloscopes Science 14 Lab 2: The Oscilloscope Introduction General Construction & Operation of Oscilloscopes An oscilloscope is a widely used device which uses a beam of high speed electrons (on the order of 10 7

More information

How to Setup and Use an Oscilloscope

How to Setup and Use an Oscilloscope How to Setup and Use an Oscilloscope An oscilloscope is a device that is used to measure voltage with respect to time. Oscilloscopes are essential pieces of test equipment used in the development and testing

More information

Sirindhorn International Institute of Technology Thammasat University at Rangsit

Sirindhorn International Institute of Technology Thammasat University at Rangsit Sirindhorn International Institute of Technology Thammasat University at Rangsit School of Information, Computer and Communication Technology COURSE : ECS 210 Basic Electrical Engineering Lab INSTRUCTOR

More information

Oscilloscope. 1 Introduction

Oscilloscope. 1 Introduction Oscilloscope Equipment: Capstone, BK Precision model 2120B oscilloscope, Wavetek FG3C function generator, 2-3 foot coax cable with male BNC connectors, 2 voltage sensors, 2 BNC banana female adapters,

More information

CHAPTER 6. Motor Driver

CHAPTER 6. Motor Driver CHAPTER 6 Motor Driver In this lab, we will construct the circuitry that your robot uses to drive its motors. However, before testing the motor circuit we will begin by making sure that you are able to

More information

PHY152 Experiment 4: Oscillations in the RC-Circuits (Measurements with an oscilloscope)

PHY152 Experiment 4: Oscillations in the RC-Circuits (Measurements with an oscilloscope) PHY152 Experiment 4: Oscillations in the RC-Circuits (Measurements with an oscilloscope) If you have not used an oscilloscope before, the web site http://www.upscale.utoronto.ca/generalinterest/harrison/oscilloscope/oscilloscope.html

More information

Oscilloscope and Function Generators

Oscilloscope and Function Generators MEHRAN UNIVERSITY OF ENGINEERING AND TECHNOLOGY, JAMSHORO DEPARTMENT OF ELECTRONIC ENGINEERING ELECTRONIC WORKSHOP # 02 Oscilloscope and Function Generators Roll. No: Checked by: Date: Grade: Object: To

More information

Physics 323. Experiment # 1 - Oscilloscope and Breadboard

Physics 323. Experiment # 1 - Oscilloscope and Breadboard Physics 323 Experiment # 1 - Oscilloscope and Breadboard Introduction In order to familiarise yourself with the laboratory equipment, a few simple experiments are to be performed. References: XYZ s of

More information

LAB INSTRUMENTATION. RC CIRCUITS.

LAB INSTRUMENTATION. RC CIRCUITS. LAB INSTRUMENTATION. RC CIRCUITS. I. OBJECTIVE a) Becoming accustomed to using the lab instrumentation (voltage supply, digital multimeter, signal generator, oscilloscope) necessary to the experimental

More information

EECE208 INTRO To ELECTRICAL ENG LAB. LAB 2. Instrumentation

EECE208 INTRO To ELECTRICAL ENG LAB. LAB 2. Instrumentation EECE208 INTRO To ELECTRICAL ENG LAB Dr. Charles Kim LAB 2. Instrumentation Objectives A brief description of the equipment (Oscilloscope, Function Generator, Power Supply, and Digital Multimeter) and its

More information

EXPERIMENT NUMBER 2 BASIC OSCILLOSCOPE OPERATIONS

EXPERIMENT NUMBER 2 BASIC OSCILLOSCOPE OPERATIONS 1 EXPERIMENT NUMBER 2 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides

More information

Introduction to Basic Laboratory Instruments

Introduction to Basic Laboratory Instruments Introduction to Contents: 1. Objectives... 2 2. Laboratory Safety... 2 3.... 2 4. Using a DC Power Supply... 2 5. Using a Function Generator... 3 5.1 Turn on the Instrument... 3 5.2 Setting Signal Type...

More information

AP034-OM-E Rev D ISSUED: January 2000 ²

AP034-OM-E Rev D ISSUED: January 2000 ² 3HUIRUPDQFH9HULILFDWLRQ 3HUIRUPDQFH9HULILFDWLRQ This procedure can be used to verify the warranted characteristics of the AP034 Active Differential Probe. The recommended calibration interval for the model

More information

LAB 7: THE OSCILLOSCOPE

LAB 7: THE OSCILLOSCOPE LAB 7: THE OSCILLOSCOPE Equipment List: Dual Trace Oscilloscope HP function generator HP-DMM 2 BNC-to-BNC 1 cables (one long, one short) 1 BNC-to-banana 1 BNC-probe Hand-held DMM (freq mode) Purpose: To

More information

Appendix A: Laboratory Equipment Manual

Appendix A: Laboratory Equipment Manual Appendix A: Laboratory Equipment Manual 1. Introduction: This appendix is a manual for equipment used in experiments 1-8. As a part of this series of laboratory exercises, students must acquire a minimum

More information

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope.

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope. 3.5 Laboratory Procedure / Summary Sheet Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope. Set the function generator to produce a 5 V pp 1kHz sinusoidal output.

More information

Laboratory Equipment Instruction Manual 2011

Laboratory Equipment Instruction Manual 2011 University of Toronto Department of Electrical and Computer Engineering Instrumentation Laboratory GB341 Laboratory Equipment Instruction Manual 2011 Page 1. Wires and Cables A-2 2. Protoboard A-3 3. DC

More information

2 Oscilloscope Familiarization

2 Oscilloscope Familiarization Lab 2 Oscilloscope Familiarization What You Need To Know: Voltages and currents in an electronic circuit as in a CD player, mobile phone or TV set vary in time. Throughout the course you will investigate

More information

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17 LABORATORY 4 ASSIGNED: 3/21/17 OBJECTIVE: The purpose of this lab is to evaluate the transient and steady-state circuit response of first order and second order circuits. MINIMUM EQUIPMENT LIST: You will

More information

B. Equipment. Advanced Lab

B. Equipment. Advanced Lab Advanced Lab Measuring Periodic Signals Using a Digital Oscilloscope A. Introduction and Background We will use a digital oscilloscope to characterize several different periodic voltage signals. We will

More information

30 MHz Oscilloscope Scientech 801C

30 MHz Oscilloscope Scientech 801C 30 MHz Oscilloscope Scientech 801C Learning Material Ver. 1.1 An ISO 9001:2008 company Scientech Technologies Pvt. Ltd. 94, Electronic Complex, Pardesipura, Indore - 452 010 India, + 91-731 4211100, :

More information

Test No. 1. Introduction to Scope Measurements. Report History. University of Applied Sciences Hamburg. Last chance!! EEL2 No 1

Test No. 1. Introduction to Scope Measurements. Report History. University of Applied Sciences Hamburg. Last chance!! EEL2 No 1 University of Applied Sciences Hamburg Group No : DEPARTMENT OF INFORMATION ENGINEERING Laboratory for Instrumentation and Measurement L: in charge of the report Test No. Date: Assistant A2: Professor:

More information

UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Electrical and Computer Engineering. ECE 2A & 2B Laboratory Equipment Information

UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Electrical and Computer Engineering. ECE 2A & 2B Laboratory Equipment Information UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Electrical and Computer Engineering ECE 2A & 2B Laboratory Equipment Information Table of Contents Digital Multi-Meter (DMM)... 1 Features... 1 Using

More information

DEPARTMENT OF INFORMATION ENGINEERING. Test No. 1. Introduction to Scope Measurements. 1. Correction. Term Correction. Term...

DEPARTMENT OF INFORMATION ENGINEERING. Test No. 1. Introduction to Scope Measurements. 1. Correction. Term Correction. Term... 2. Correction. Correction Report University of Applied Sciences Hamburg Group No : DEPARTMENT OF INFORMATION ENGINEERING Laboratory for Instrumentation and Measurement L: in charge of the report Test No.

More information

OSCILLOSCOPES. Oscilloscopes CS-5400 SERIES CS-5400/5450 FEATURES OUTLINE CS-5400

OSCILLOSCOPES. Oscilloscopes CS-5400 SERIES CS-5400/5450 FEATURES OUTLINE CS-5400 99 Washington Street Melrose, MA 02176 Fax 781-665-0780 TestEquipmentDepot.com Oscilloscopes 100MHz 3-Channel Oscilloscope (With Digital Readout / Cursor) CS-5400 100MHz 3-Channel Oscilloscope CS-5405

More information

Lab #1 Lab Introduction

Lab #1 Lab Introduction Cir cuit s 212 Lab Lab #1 Lab Introduction Special Information for this Lab s Report Because this is a one-week lab, please hand in your lab report for this lab at the beginning of next week s lab. The

More information

EE EXPERIMENT 1 (2 DAYS) BASIC OSCILLOSCOPE OPERATIONS INTRODUCTION DAY 1

EE EXPERIMENT 1 (2 DAYS) BASIC OSCILLOSCOPE OPERATIONS INTRODUCTION DAY 1 EE 2101 - EXPERIMENT 1 (2 DAYS) BASIC OSCILLOSCOPE OPERATIONS INTRODUCTION The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer

More information

ENGR 210 Lab 6 Use of the Function Generator & Oscilloscope

ENGR 210 Lab 6 Use of the Function Generator & Oscilloscope ENGR 210 Lab 6 Use of the Function Generator & Oscilloscope In this laboratory you will learn to use two additional instruments in the laboratory, namely the function/arbitrary waveform generator, which

More information

2 : AC signals, the signal generator and the Oscilloscope

2 : AC signals, the signal generator and the Oscilloscope 2 : AC signals, the signal generator and the Oscilloscope Expected outcomes After conducting this practical, the student should be able to do the following Set up a signal generator to provide a specific

More information

The Digital Oscilloscope and the Breadboard

The Digital Oscilloscope and the Breadboard The Digital Oscilloscope and the Breadboard Will Johns, and Med Webster Aug. 26,2003, Revised by Julia Velkovska, September 6, 2010 1 Oscilloscope - General Introduction An oscilloscope is a very powerful

More information

Operating Manual Ver 1.1

Operating Manual Ver 1.1 Oscilloscope Caddo 802 with Logic Scope Operating Manual Ver 1.1. An ISO 9001 : 2000 company 94-101, Electronic Complex, Pardeshipura Indore - 452 010 India Tel : 91-731-2570301/02, 4211100 Fax : 91-731-2555643

More information

Voltage (measured on the vertical axis)

Voltage (measured on the vertical axis) Operate a Digital Storage Oscilloscope Name(s) It is important to understand these basic features of the oscilloscope. VOLTAGE measured on the vertical axis. TIME measured on the horizontal axis. TRIGGER

More information

ENG 100 Lab #2 Passive First-Order Filter Circuits

ENG 100 Lab #2 Passive First-Order Filter Circuits ENG 100 Lab #2 Passive First-Order Filter Circuits In Lab #2, you will construct simple 1 st -order RL and RC filter circuits and investigate their frequency responses (amplitude and phase responses).

More information

Exercise 4 - THE OSCILLOSCOPE

Exercise 4 - THE OSCILLOSCOPE Exercise 4 - THE OSCILLOSCOPE INTRODUCTION You have been exposed to analogue oscilloscopes in the first year lab. As you are probably aware, the complexity of the instruments, along with their importance

More information

332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title: Function Generators and Oscilloscopes Suggested Equipment:

332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title: Function Generators and Oscilloscopes Suggested Equipment: RUTGERS UNIVERSITY The State University of New Jersey School of Engineering Department Of Electrical and Computer Engineering 332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title:

More information

On-Line Students Analog Discovery 2: Arbitrary Waveform Generator (AWG). Two channel oscilloscope

On-Line Students Analog Discovery 2: Arbitrary Waveform Generator (AWG). Two channel oscilloscope EET 150 Introduction to EET Lab Activity 5 Oscilloscope Introduction Required Parts, Software and Equipment Parts Figure 1, Figure 2, Figure 3 Component /Value Quantity Resistor 10 kω, ¼ Watt, 5% Tolerance

More information

2 AC and RMS. To pass this lab you must solve tasks 1-2. Tasks 3 and 4 are included in the grading of the course.

2 AC and RMS. To pass this lab you must solve tasks 1-2. Tasks 3 and 4 are included in the grading of the course. 2 AC and RMS Purpose of the lab: to familiarize yourself with the oscilloscope to familiarize yourself with AC voltages and different waveforms to study RMS and average values In this lab, you have the

More information

OSCILLOSCOPES. Oscilloscopes CS-5300 SERIES RS-232C OPTION OPTION CS-5370P/5370/5350 FEATURES OUTLINE. Photo: CS-5370P

OSCILLOSCOPES. Oscilloscopes CS-5300 SERIES RS-232C OPTION OPTION CS-5370P/5370/5350 FEATURES OUTLINE. Photo: CS-5370P Oscilloscopes 100MHz 2-Channel Programmable Oscilloscope ( With Digital Readout / Cursor) CS-5370P CS-5370 100MHz 3-Channel Oscilloscope ( With Digital Readout / Cursor) 50MHz 3-Channel Oscilloscope (

More information

Introduction to basic laboratory instruments

Introduction to basic laboratory instruments Introduction to basic laboratory instruments 1. OBJECTIVES... 2 2. LABORATORY SAFETY... 2 3. BASIC LABORATORY INSTRUMENTS... 2 4. USING A DC POWER SUPPLY... 2 5. USING A FUNCTION GENERATOR... 3 5.1 TURN

More information

Experiment 1: Instrument Familiarization (8/28/06)

Experiment 1: Instrument Familiarization (8/28/06) Electrical Measurement Issues Experiment 1: Instrument Familiarization (8/28/06) Electrical measurements are only as meaningful as the quality of the measurement techniques and the instrumentation applied

More information

Test No. 2. Advanced Scope Measurements. History. University of Applied Sciences Hamburg. Last chance!! EEL2 No 2

Test No. 2. Advanced Scope Measurements. History. University of Applied Sciences Hamburg. Last chance!! EEL2 No 2 University of Applied Sciences Hamburg Group No : DEPARTMENT OF INFORMATION ENGINEERING Laboratory for Instrumentation and Measurement L1: in charge of the report Test No. 2 Date: Assistant A2: Professor:

More information

Ph 3455 The Franck-Hertz Experiment

Ph 3455 The Franck-Hertz Experiment Ph 3455 The Franck-Hertz Experiment Required background reading Tipler, Llewellyn, section 4-5 Prelab Questions 1. In this experiment, we will be using neon rather than mercury as described in the textbook.

More information

Introduction to oscilloscope. and time dependent circuits

Introduction to oscilloscope. and time dependent circuits Physics 9 Intro to oscilloscope, v.1.0 p. 1 NAME: SECTION DAY/TIME: TA: LAB PARTNER: Introduction to oscilloscope and time dependent circuits Introduction In this lab, you ll learn the basics of how to

More information

Experiment #2: Introduction to Lab Equipment: Function Generator, Oscilloscope, and Multisim

Experiment #2: Introduction to Lab Equipment: Function Generator, Oscilloscope, and Multisim SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2110: CIRCUIT THEORY LABORATORY Experiment #2: Introduction to Lab Equipment: Function Generator, Oscilloscope,

More information

ECE 480: SENIOR DESIGN LABORATORY

ECE 480: SENIOR DESIGN LABORATORY ECE 480: SENIOR DESIGN LABORATORY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING MICHIGAN STATE UNIVERSITY I. TITLE: Lab I - Introduction to the Oscilloscope, Function Generator, Digital Multimeter

More information

On-Line Students Analog Discovery 2: Arbitrary Waveform Generator (AWG). Two channel oscilloscope

On-Line Students Analog Discovery 2: Arbitrary Waveform Generator (AWG). Two channel oscilloscope EET 150 Introduction to EET Lab Activity 8 Function Generator Introduction Required Parts, Software and Equipment Parts Figure 1 Component /Value Quantity Resistor 10 kω, ¼ Watt, 5% Tolerance 1 Resistor

More information

Lab 0: Orientation. 1 Introduction: Oscilloscope. Refer to Appendix E for photos of the apparatus

Lab 0: Orientation. 1 Introduction: Oscilloscope. Refer to Appendix E for photos of the apparatus Lab 0: Orientation Major Divison 1 Introduction: Oscilloscope Refer to Appendix E for photos of the apparatus Oscilloscopes are used extensively in the laboratory courses Physics 2211 and Physics 2212.

More information

ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION

ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION Objectives: ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION The primary goal of this laboratory is to study the operation and limitations of several commonly used pieces of instrumentation:

More information

Experiment 1: Instrument Familiarization

Experiment 1: Instrument Familiarization Electrical Measurement Issues Experiment 1: Instrument Familiarization Electrical measurements are only as meaningful as the quality of the measurement techniques and the instrumentation applied to the

More information

Sound Wave Measurements using an Oscilloscope and Waveform Generator

Sound Wave Measurements using an Oscilloscope and Waveform Generator Sound Wave Measurements using an Oscilloscope and Waveform Generator In this module students will learn to make sound wave measurements using an oscilloscope and a function generator. This equipment will

More information

ECE65 Introduction to the Function Generator and the Oscilloscope Created by: Eldridge Alcantara (Spring 2007)

ECE65 Introduction to the Function Generator and the Oscilloscope Created by: Eldridge Alcantara (Spring 2007) ECE65 Introduction to the Function Generator and the Oscilloscope Created by: Eldridge Alcantara (Spring 2007) I. Getting Started with the Function Generator OUTPUT Red Clip Small Black Clip 1) Turn on

More information

Waveform Generators and Oscilloscopes. Lab 6

Waveform Generators and Oscilloscopes. Lab 6 Waveform Generators and Oscilloscopes Lab 6 1 Equipment List WFG TEK DPO 4032A (or MDO3012) Resistors: 10kΩ, 1kΩ Capacitors: 0.01uF 2 Waveform Generators (WFG) The WFG supplies a variety of timevarying

More information

Faculty of Engineering, Thammasat University

Faculty of Engineering, Thammasat University Faculty of Engineering, Thammasat University Experiment 6: Oscilloscope (For room 506) Objectives: 1. To familiarize you with the Oscilloscope and Function Generator User Manual: Oscilloscope 1 5 9 4 7

More information

UNIVERSITY OF CALIFORNIA, DAVIS Department of Electrical and Computer Engineering. EEC 180A DIGITAL SYSTEMS I Winter 2015

UNIVERSITY OF CALIFORNIA, DAVIS Department of Electrical and Computer Engineering. EEC 180A DIGITAL SYSTEMS I Winter 2015 UNIVERSITY OF CALIFORNIA, DAVIS Department of Electrical and Computer Engineering EEC 180A DIGITAL SYSTEMS I Winter 2015 LAB 2: INTRODUCTION TO LAB INSTRUMENTS The purpose of this lab is to introduce the

More information

CRO AIM:- To study the use of Cathode Ray Oscilloscope (CRO).

CRO AIM:- To study the use of Cathode Ray Oscilloscope (CRO). 1. 1 To study CRO. CRO AIM:- To study the use of Cathode Ray Oscilloscope (CRO). Apparatus: - C.R.O, Connecting probe (BNC cable). Theory:An CRO is easily the most useful instrument available for testing

More information

electrical noise and interference, environmental changes, instrument resolution, or uncertainties in the measurement process itself.

electrical noise and interference, environmental changes, instrument resolution, or uncertainties in the measurement process itself. MUST 382 / EELE 491 Spring 2014 Basic Lab Equipment and Measurements Electrical laboratory work depends upon various devices to supply power to a circuit, to generate controlled input signals, and for

More information

UCE-DSO210 DIGITAL OSCILLOSCOPE USER MANUAL. FATIH GENÇ UCORE ELECTRONICS REV1

UCE-DSO210 DIGITAL OSCILLOSCOPE USER MANUAL. FATIH GENÇ UCORE ELECTRONICS REV1 UCE-DSO210 DIGITAL OSCILLOSCOPE USER MANUAL FATIH GENÇ UCORE ELECTRONICS www.ucore-electronics.com 2017 - REV1 Contents 1. Introduction... 2 2. Turn on or turn off... 3 3. Oscilloscope Mode... 3 3.1. Display

More information

Basic Communication Laboratory Manual. Shimshon Levy&Harael Mualem

Basic Communication Laboratory Manual. Shimshon Levy&Harael Mualem Basic Communication Laboratory Manual Shimshon Levy&Harael Mualem September 2006 CONTENTS 1 The oscilloscope 2 1.1 Objectives... 2 1.2 Prelab... 2 1.3 Background Theory- Analog Oscilloscope...... 3 1.4

More information

Elizabethtown College Department of Physics and Engineering PHY104. Lab # 9- Oscilloscope and RC Circuit

Elizabethtown College Department of Physics and Engineering PHY104. Lab # 9- Oscilloscope and RC Circuit Elizabethtown College Department of Physics and Engineering PHY104 Lab # 9- Oscilloscope and RC Circuit Introduction This lab introduces you to very important tools, the oscilloscope and the waveform generator.

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Reading Horowitz & Hill handout Notes, Chapter 9 Introduction and Objective In this lab we will examine op-amps. We will look at a few of their vast number of uses and also investigate

More information

Exercise 1-3. Radar Antennas EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION OF FUNDAMENTALS. Antenna types

Exercise 1-3. Radar Antennas EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION OF FUNDAMENTALS. Antenna types Exercise 1-3 Radar Antennas EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the role of the antenna in a radar system. You will also be familiar with the intrinsic characteristics

More information

Laboratory equipments. Parameters of digital signals.

Laboratory equipments. Parameters of digital signals. Laboratory 1 Laboratory equipments. Parameters of digital signals. 1.1 Objectives This laboratory presents detailed description of the equipments used during the lab and measurement techniques specifically

More information

EENG-201 Experiment # 4: Function Generator, Oscilloscope

EENG-201 Experiment # 4: Function Generator, Oscilloscope EENG-201 Experiment # 4: Function Generator, Oscilloscope I. Objectives Upon completion of this experiment, the student should be able to 1. To become familiar with the use of a function generator. 2.

More information

University of TN Chattanooga Physics1040L 8/29/2012 PHYSICS 1040L LAB LAB 6: USE OF THE OSCILLOSCOPE

University of TN Chattanooga Physics1040L 8/29/2012 PHYSICS 1040L LAB LAB 6: USE OF THE OSCILLOSCOPE PHYSICS 1040L LAB LAB 6: USE OF THE OSCILLOSCOPE Object: To become familiar with the operation of the oscilloscope and be able to use an oscilloscope for: 1. Measuring the frequency of an oscillator, 2.

More information

Combinational logic: Breadboard adders

Combinational logic: Breadboard adders ! ENEE 245: Digital Circuits & Systems Lab Lab 1 Combinational logic: Breadboard adders ENEE 245: Digital Circuits and Systems Laboratory Lab 1 Objectives The objectives of this laboratory are the following:

More information

EECS 318 Electronics Lab Laboratory #2 Electronic Test Equipment

EECS 318 Electronics Lab Laboratory #2 Electronic Test Equipment EECS 318 Electronics Lab Laboratory #2 Electronic Test Equipment Objectives: The purpose of this laboratory is to acquaint you with the electronic sources and measuring equipment you will be using throughout

More information

Agilent 33522A Function Arbitrary Waveform Generator. Tektronix TDS 3012B Oscilloscope

Agilent 33522A Function Arbitrary Waveform Generator. Tektronix TDS 3012B Oscilloscope Agilent 33522A Function/Arbitrary Waveform Generator and Tektronix TDS 3012B Oscilloscope Agilent 33522A Function Arbitrary Waveform Generator The signal source for this lab is the Agilent 33522A Function

More information

10.00 (1/2) PAC series

10.00 (1/2) PAC series Clamp-on AC/DC current probes PAC Series The is a range of professional AC/DC clamp-on current probes designed to meet the very latest in safety and performance standards. There are two different jaw designs

More information

AME140 Lab #2 INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS

AME140 Lab #2 INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS The purpose of this document is to guide students through a few simple activities to increase familiarity with basic electronics

More information

FREQUENCY RESPONSE OF COMMON COLLECTOR AMPLIFIER

FREQUENCY RESPONSE OF COMMON COLLECTOR AMPLIFIER Exp. No #5 FREQUENCY RESPONSE OF COMMON COLLECTOR AMPLIFIER Date: OBJECTIVE The purpose of the experiment is to analyze and plot the frequency response of a common collector amplifier. EQUIPMENT AND COMPONENTS

More information

Name EET 1131 Lab #2 Oscilloscope and Multisim

Name EET 1131 Lab #2 Oscilloscope and Multisim Name EET 1131 Lab #2 Oscilloscope and Multisim Section 1. Oscilloscope Introduction Equipment and Components Safety glasses Logic probe ETS-7000 Digital-Analog Training System Fluke 45 Digital Multimeter

More information

Ahsanullah University of Science and Technology

Ahsanullah University of Science and Technology Ahsanullah University of Science and Technology Department of Electrical and Electronic Engineering AU ST /E EE LABORATORY MANUAL FOR ELECTRICAL AND ELECTRONIC SESSIONAL COURSE Student Name : Student ID

More information

CLEANING CALIBRATION INTERVAL

CLEANING CALIBRATION INTERVAL &DUHDQG0DLQWHQDQFH! &DUHDQG0DLQWHQDQFH CLEANING CALIBRATION INTERVAL SERVICE STRATEGY TROUBLESHOOTING A. Trace Off Scale The exterior of the probe and cable should be cleaned only using a soft cloth moistened

More information

University of Utah Electrical & Computer Engineering Department ECE 2210/2200 Lab 4 Oscilloscope

University of Utah Electrical & Computer Engineering Department ECE 2210/2200 Lab 4 Oscilloscope University of Utah Electrical & Computer Engineering Department ECE 2210/2200 Lab 4 Oscilloscope Objectives 1 Introduce the Oscilloscope and learn some uses. 2 Observe Audio signals. 3 Introduce the Signal

More information

Introduction to basic laboratory instruments

Introduction to basic laboratory instruments BEE 233 Laboratory-1 Introduction to basic laboratory instruments 1. Objectives To learn safety procedures in the laboratory. To learn how to use basic laboratory instruments: power supply, function generator,

More information

Lab 0: Introduction to basic laboratory instruments. Revised by Dan Hoang & Tai-Chang Chen 03/30/2009

Lab 0: Introduction to basic laboratory instruments. Revised by Dan Hoang & Tai-Chang Chen 03/30/2009 Lab 0: Introduction to basic laboratory instruments Revised by Dan Hoang & Tai-Chang Chen 03/30/2009 1. Objectives 1. To learn safety procedures in the laboratory. 2. To learn how to use basic laboratory

More information

Exercise 4. Angle Tracking Techniques EXERCISE OBJECTIVE

Exercise 4. Angle Tracking Techniques EXERCISE OBJECTIVE Exercise 4 Angle Tracking Techniques EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the principles of the following angle tracking techniques: lobe switching, conical

More information

DIGITAL STORAGE OSCILLOSCOPES

DIGITAL STORAGE OSCILLOSCOPES 99 Washington Street Melrose, MA 02176 Fax 781-665-0780 TestEquipmentDepot.com DIGITAL STORAGE OSCILLOSCOPES Digital Storage Oscilloscope 100MS/s Acquisition (40MS/s 2 Acquisition) 100MHz 2 channel. OUTLINE

More information

DIGITAL STORAGE OSCILLOSCOPES

DIGITAL STORAGE OSCILLOSCOPES DIGITAL STORAGE OSCILLOSCOPES Electronic Measurements Lab Massimo Ortolano 2016 POLITECNICO DI TORINO c 2011 2016 Massimo Ortolano Dipartimento di Elettronica e Telecomunicazioni (DET) Politecnico di Torino

More information

Q107/Q107A State Variable Filter

Q107/Q107A State Variable Filter Apr 28, 2017 The Q107 is dual-wide, full-featured State Variable filter. The Q107A is a single-wide version without the Notch output and input mixer attenuator. These two models share the same circuit

More information

Specifications for DS1000CA Series

Specifications for DS1000CA Series Revised December, 2009 RIGOL Specifications for DS1000CA Series All specifications apply to the DS1000CA Series Oscilloscopes unless noted otherwise. To meet these specifications, two conditions must first

More information