BME 3511 Bioelectronics I - Laboratory Exercise #1A. Digital Multimeters

Size: px
Start display at page:

Download "BME 3511 Bioelectronics I - Laboratory Exercise #1A. Digital Multimeters"

Transcription

1 BME 3511 Bioelectronics I - Laboratory Exercise #1A Digital Multimeters Introduction: Electrical measurements are essential techniques for trouble shooting electronic equipment/circuits. The three quantities of voltage, current, and resistance are the basis for most analyses of both constant (direct current DC) and time variant (alternating current AC) circuits. Frequency, capacitive reactance, and inductive reactance are three additional factors related to AC circuits. Multimeters are the most frequently used instrument to measure current, voltage, and resistance. Digital Multimeters (DMM) are convenient, accurate, portable, and durable. MCM DMM Model is an inexpensive, yet relatively accurate DMM that will be used in BME Note on Biomedical Electronics Lab Safety: Electric shock can be fatal; read and heed the BME 3511 Bioelectronics Safety Guidelines. In general, the undergraduate BME electronic laboratory experiments conducted in BME Teaching Laboratories, do not use voltages greater than 30 V (± 15 V); therefore, the chance of receiving an electrical shock is greatly reduced. However, all voltages do have the potential to burn materials and start fires, destroy electronic components, and present hazards to the person performing the operations. Common sense and an awareness of electrical circuits is important whenever you are working on these experiments. Objective: Become familiar with DMM functions and characteristics; and with the techniques for using a DMM to measure resistance. Understand and apply the concepts of measurement accuracy and measurement precision. Laboratory Equipment and Supplies: DMM Assorted Resistors Page 1

2 Background: The MCM DMM Model features a rotary switch that can used be to select various functions and range of measurement values. See Digital Multimeter DMM Model Functions, Ranges, Resolutions, and Accuracy (page 4). Refer to the DMM itself for examples of the function labels; starting at the top center and moving clockwise: Off, AC Voltage, DC Current, Square Wave Output, Battery Tester, Diode Test, Resistance, and DC Voltage. Note: There is no AC Current function. The DMM features also include three display symbols: Low Battery Negative Value Value Exceeds Selected Range - + The terms accuracy and precision are associated with scientific and engineering measurements. Accuracy describes the difference between the measurement of a quantity and the true value of that quantity. Precision is the degree to which repeated measurements under unchanged conditions show the same conditions. A measurement system can be accurate but not precise, precise but not accurate, neither, or both. For example, if an experiment contains a systematic error, then increasing the sample size generally increases precision but does not improve accuracy. The result would be a consistent yet inaccurate string of results from the flawed experiment. Eliminating the systematic error improves accuracy but does not change precision. A measurement system is designated valid if it is both accurate and precise. Related terms include bias (non-random or directed effects caused by a factor or factors unrelated to the independent variable) and error (random variability). The terminology is also applied to indirect measurements; that is, values obtained by a computational procedure from observed data. In addition to accuracy and precision, measurements may also have a measurement resolution, which is the smallest change in the underlying physical quantity that produces a response in the measurement. Page 2

3 Procedure: Measuring Resistance Values 1. Use the DMM, (see Measuring Resistance, page 5) to measure the values of a nominal 33 Ω, a 6800 Ω, and a 1.5 MΩ resistor. Use Table 1 of the Laboratory Exercise # 1 Report Form to record values and interpretation of each of the display symbols for each of the five DMM Resistance Measuring Ranges. 2. Use thee sets of three resistors of varying values: R1A, R1B, R1C, R2A, R2B, R2C, R3A, R3B, R3C; use the resistor codes to identity the nominal values. Record the nominal values in Table 2 of the Laboratory Exercise # 1Report Form. Measure the resistance five different times for each of the nine resistors and record the measurements in Table 2. (You should have recorded a total of 45 resistance measurements.) Transfer the measurement values to an Excel spreadsheet and calculate the mean (AVERAGE) and standard deviation (STDEV) for each resistor, record the calculated values in Table 2. Note: You may also use a pencil & paper, a calculator, or an other computer application program such as MatLab, Mathematica, SPSS, JMP to perform the statistical calculations. Safe guard your five resistors from Laboratory Exercise #1. You will need these same resistors for later laboratory exercises. You must annotate any references you consulted in answering the following questions. You may wish to use a word processor to complete your answers and attach the printout to your Laboratory Exercise #1 Report Form. 3. The MCM DMM Model is described as having a so called display. Explain the meaning/interpretation of a display. 4a. Use the target analogy to differentiate among accuracy, precision, bias, and validity. 4b. Use the flawed tape measure analogy to differentiate among accuracy, precision, bias, and validity. 5a. How would the accuracy of your measurements be affected if the number of measurements had been increased to 20 measurements for each resistor? Briefly explain your answer. 5b. How would the precision of your measurements be affected if the number of measurements had been increased to 20 measurements for each resistor? Briefly explain your answer. 6a. Briefly describe factors that might affect the bias in your measurements 6b. Briefly describe the factors that might affect the error in your measurements. 6c. Briefly describe a method for increasing the precision of your measurements. 7. Describe a procedure for making low-resistance measurements. 8a In checking for a short circuit, what DMM ohmic range should you select; what measurement value would you expect for a short circuit? 8b. In checking for an open circuit, what DMM ohmic range should you select; what measurement value would you expect for an open circuit? 9. Based on the results of this resistance measuring exercise, how many measurements do you suppose should be made in determining the resistive values of a prototype circuit? Briefly explain your answer. Page 3

4 Digital Multimeter DMM Model Functions, Ranges, Resolutions, and Accuracy Measurement Range Resolution Accuracy Notes Resistance 200 Ω 0.1 Ω 2K Ω 1 Ω 20K Ω 10 Ω ± (2.5% +5) 200K Ω 100 Ω 2M Ω 1000 Ω Input Resistance 1M Ω DC Voltage 0.2 VDC 0.1 mv 2.0 VDC 1.0 mv 20 VDC 10 mv 200 VDC 100 mv 300 VDC 1 V ± (2.5% +2) DC Current 2 ma 1 ua 20 ma 10 ua 200 ma 100 ua ± (2.5% +10) AC Voltage 200 VAC 0.1 V 300 VAC 1.0 V ± (2.5% +15) Input Resistance 500K Ω Frequency HZ AC Current NA Battery Test Range Internal Resistance Maximum Current 1.5 V 60 Ω 25 ma 9.0 V 1800 Ω 5 ma Out-of-Range / Negative Value - Source: MCM DMM Model Operating Manual Page 4

5 Measuring Resistance Using the MCM DMM Model Warning To avoid damage to the meter or to the device under test, disconnect circuit power and discharge all the high-voltage capacitors before measuring resistance. Measurement Procedure The resistance measurement positions are: 200Ω, 2000Ω, 20kΩ, 200kΩ and 2000kΩ. To measure resistance, connect the meter as follows: 1. Set the rotary switch to an appropriate measurement position in Ω range. The rotary switch should be placed in the desired position prior to connecting leads. This position should not be changed while the leads are connected. 2. Connect the test leads across with the component being measured. The measured value shows on the display. 3. When resistance measurement has been completed, disconnect the connection between the testing leads and the circuit under test. Notes If the value of resistance to be measured is unknown, use the maximum measurement position (2000kΩ) and reduce the range step by step until a satisfactory reading is obtained. The test leads can add 0.1Ω to 0.2Ω of error to resistance measurement. To obtain precision readings in low-resistance measurement, that is in the range of 200Ω, short-circuit the input terminals beforehand and record the reading obtained (call this reading as X). X is the additional resistance from the test leads. Then use the equation: Measured Resistance Value (Y) - (X) = Precision Readings of Resistance. For high-resistance measurement (> 1M Ω), it may require several seconds to obtain a stable reading. If Ω reading with shorted test leads is not 0.5 Ω, check for loose test leads, or incorrect positioning of the function selection switch. The LCD displays / indicating an open-circuit for the tested resistor or the resistor value is higher than the maximum range of the meter. Source: MCM DMM Model Operating Manual Page 5

6 BME 3511 Bioelectronics I Laboratory Exercise #1 Report Form Digital Multimeters I affirm that I personally participated in the collection and analysis of the data for this laboratory exercise and that I personally contributed to the completion of this laboratory report. Student Name: Signature: Date: I affirm that I personally participated in the collection and analysis of the data for this laboratory exercise and that I personally contributed to the completion of this laboratory report. Student Name: Signature: Date: Grade: Grader Comments:

7 BME 3511 Bioelectronics I Laboratory Exercise #1 Report Form 33 Ohm Nominal Value Resistor DMM Resistive Range Display Value Interpreted Value K 200k 2000k 6800 Ohm Nominal Value Resistor DMM Resistive Range Display Value Interpreted Value K 200k 2000k Table 1 Interpreting DMM Displayed Values 1.5M Ohm Nominal Value Resistor DMM Resistive Range Display Value Interpreted Value K 200k 2000k Nominal Value (Ohms) Tolerance (%) Lower Bound (Ohms) Upper Bound (Ohms) R 1A R 1B R 1C R 2A R 2B R 2C R 3A R 3B R 3C Measurement #1 #2 #3 #4 #5 Average Standard Deviation DMM Accuracy (Ohms) Range of Values (Ohms) Table 2 Recorded DMM Measured Resistances and Calculated Average Values

BME 3511 Bioelectronics I - Laboratory Exercise #2. Series Resistive Circuits

BME 3511 Bioelectronics I - Laboratory Exercise #2. Series Resistive Circuits BME 3511 Bioelectronics I - Laboratory Exercise #2 Series Resistive Circuits Introduction: Electrical measurements are essential techniques for trouble shooting electronic equipment/circuits. The three

More information

BME/ISE 3511 Bioelectronics I - Laboratory Exercise #4. Variable Resistors (Potentiometers and Rheostats)

BME/ISE 3511 Bioelectronics I - Laboratory Exercise #4. Variable Resistors (Potentiometers and Rheostats) BME/ISE 3511 Bioelectronics I - Laboratory Exercise #4 Variable Resistors (Potentiometers and Rheostats) Introduction: Variable resistors are known by several names (potentiometer, rheostat, variable resistor,

More information

User Manual Digital Multimeter

User Manual Digital Multimeter User Manual Digital Multimeter model no.: MSR-R500 Questions or Concerns? support@etekcity.com visit etekcity.com for more products Safe and Proper Usage Thank you for purchasing the Etekcity MSR-R500

More information

BME 3511 Laboratory 2 Digital Multimeter (DMM)

BME 3511 Laboratory 2 Digital Multimeter (DMM) BME 3511 Laboratory 2 Digital Multimeter (DMM) Objective: The objective of this exercise is to further explore the usage of digital multimeters (DMM). Upon the completion of this lab, the student will:

More information

PHYS 1402 General Physics II Experiment 5: Ohm s Law

PHYS 1402 General Physics II Experiment 5: Ohm s Law PHYS 1402 General Physics II Experiment 5: Ohm s Law Student Name Objective: To investigate the relationship between current and resistance for ordinary conductors known as ohmic conductors. Theory: For

More information

Pre-Laboratory Assignment

Pre-Laboratory Assignment Measurement of Electrical Resistance and Ohm's Law PreLaboratory Assignment Read carefully the entire description of the laboratory and answer the following questions based upon the material contained

More information

Figure 1(a) shows a complicated circuit with five batteries and ten resistors all in a box. The

Figure 1(a) shows a complicated circuit with five batteries and ten resistors all in a box. The 1 Lab 1a Input and Output Impedance Fig. 1: (a) Complicated circuit. (b) Its Thévenin equivalent Figure 1(a) shows a complicated circuit with five batteries and ten resistors all in a box. The circuit

More information

AMM-1022 Digital Multimeter USER`S MANUAL

AMM-1022 Digital Multimeter USER`S MANUAL Digital Multimeter USER`S MANUAL www.tmatlantic.com CONTENTS 1. SAFETY INFORMATION.3 2. DESCRIPTION..6 3. SPECIFICATIONS.8 4. OPERATING INSTRUCTION..11 4.1 Voltage measurement...11 4.2 Current measurement

More information

AC/DC ELECTRONICS LABORATORY

AC/DC ELECTRONICS LABORATORY Includes Teacher's Notes and Typical Experiment Results Instruction Manual and Experiment Guide for the PASCO scientific Model EM-8656 012-05892A 1/96 AC/DC ELECTRONICS LABORATORY 1995 PASCO scientific

More information

MS8250A/B OPERATION MANUAL MS8250A. Hz% FUNC REL RANGE REL HOLD OFF 10A. Hz% A NCV. Hz% COM. A ma 10A FUSED 600V CAT IV.

MS8250A/B OPERATION MANUAL MS8250A. Hz% FUNC REL RANGE REL HOLD OFF 10A. Hz% A NCV. Hz% COM. A ma 10A FUSED 600V CAT IV. MS8250A/B DIGITAL MULTIMETER OPERATION MANUAL AUTO DC AC REL hfe PCLINK % C F kmωkz nµmfav MS8250A DIGITAL MULTIMETER Auto Power Off RANGE REL HOLD FUNC NCV A ma OFF 10A A ma 10A FUSED 600V CAT IV COM

More information

Experiment #1: Solid State Diodes Testing & Characterization. Type Value Symbol Name Multisim Part Description Resistor 1MΩ R 2 Basic/Resistor ---

Experiment #1: Solid State Diodes Testing & Characterization. Type Value Symbol Name Multisim Part Description Resistor 1MΩ R 2 Basic/Resistor --- SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Experiment #1: Solid State Diodes Testing & Characterization COMPONENTS

More information

EET 1150 Lab 6 Ohm s Law

EET 1150 Lab 6 Ohm s Law Name EQUIPMENT and COMPONENTS Digital Multimeter Trainer with Breadboard Resistors: 220, 1 k, 1.2 k, 2.2 k, 3.3 k, 4.7 k, 6.8 k Red light-emitting diode (LED) EET 1150 Lab 6 Ohm s Law In this lab you ll

More information

Precalculations Individual Portion Introductory Lab: Basic Operation of Common Laboratory Instruments

Precalculations Individual Portion Introductory Lab: Basic Operation of Common Laboratory Instruments Name: Date of lab: Section number: M E 345. Lab 1 Precalculations Individual Portion Introductory Lab: Basic Operation of Common Laboratory Instruments Precalculations Score (for instructor or TA use only):

More information

EE1020 Diodes and Resistors in Electrical Circuits Spring 2018

EE1020 Diodes and Resistors in Electrical Circuits Spring 2018 PURPOSE The purpose of this project is for you to become familiar with some of the language, parts, and tools used in electrical engineering. You will also be introduced to some simple rule and laws. MATERIALS

More information

R/C SMD Tweezers Multimeter Model RC200

R/C SMD Tweezers Multimeter Model RC200 User's Guide R/C SMD Tweezers Multimeter Model RC200 Introduction Congratulations on your purchase of the Extech RC200 RC Tweezers Multimeter This meter, using the tweezers adaptor, measures SMD capacitors,

More information

USER'S MANUAL DMR-2400

USER'S MANUAL DMR-2400 USER'S MANUAL DIGITAL MULTIMETER DMR-2400 CIRCUIT-TEST ELECTRONICS www.circuittest.com TABLE OF CONTENTS SAFETY Safety Information...................................... 2 Safety Symbols........................................

More information

1. SAFETY INFORMATION.1 2. DESCRIPTION SPECIFICATIONS.6 4. OPERATING INSTRUCTION Voltage measurement Current measurement 10

1. SAFETY INFORMATION.1 2. DESCRIPTION SPECIFICATIONS.6 4. OPERATING INSTRUCTION Voltage measurement Current measurement 10 CONTENTS 1. SAFETY INFORMATION.1 2. DESCRIPTION..4 3. SPECIFICATIONS.6 4. OPERATING INSTRUCTION..9 4.1 Voltage measurement...10 4.2 Current measurement 10 4.3 Resistance measurement...12 4.4 Diode test.12

More information

Pen Multimeter. Model

Pen Multimeter. Model Pen Multimeter Model 381626 CAUTION: Read, understand and follow all Safety Rules and Operating Instructions in this manual before using this product. This instrument is a 3200 count pen style digital

More information

Resistive Circuits. Lab 2: Resistive Circuits ELECTRICAL ENGINEERING 42/43/100 INTRODUCTION TO MICROELECTRONIC CIRCUITS

Resistive Circuits. Lab 2: Resistive Circuits ELECTRICAL ENGINEERING 42/43/100 INTRODUCTION TO MICROELECTRONIC CIRCUITS NAME: NAME: SID: SID: STATION NUMBER: LAB SECTION: Resistive Circuits Pre-Lab: /46 Lab: /54 Total: /100 Lab 2: Resistive Circuits ELECTRICAL ENGINEERING 42/43/100 INTRODUCTION TO MICROELECTRONIC CIRCUITS

More information

MS8268 HANDHELD DIGITAL MULTIMETER OPERATOR S INSTRUCTION MANUAL

MS8268 HANDHELD DIGITAL MULTIMETER OPERATOR S INSTRUCTION MANUAL MS8268 HANDHELD DIGITAL MULTIMETER OPERATOR S INSTRUCTION MANUAL Table of Contents TITLE PAGE 1. GENERAL INSTRUCTIONS 1 1.1 Precaution safety measures 1 1.1.1 Preliminary 1 1.1.2 During use 2 1.1.3 Symbols

More information

M-1000D DIGITAL MULTIMETER

M-1000D DIGITAL MULTIMETER OPERATOR S INSTRUCTION MANUAL DIGITAL MULTIMETER M-1000D Elenco Electronics, Inc. 150 Carpenter Avenue Wheeling, IL 60090 (847) 541-3800 Website: www.elenco.com e-mail: elenco@elenco.com Copyright 2008

More information

DVM98. True RMS Digital Multimeter. 1 Safety information. 1.1 Preliminary. 1.2 During use

DVM98. True RMS Digital Multimeter. 1 Safety information. 1.1 Preliminary. 1.2 During use True RMS Digital Multimeter DVM98 1 Safety information This multimeter has been designed according to IEC - 1010 concerning electronic measuring instruments with an overvoltage category (CAT II) and pollution

More information

Model UT20B: OPERATING MANUAL Table of Contents (1)

Model UT20B: OPERATING MANUAL Table of Contents (1) Table of Contents (1) Title Overview Unpacking Inspection Safety Information Rules For Safe Operation International Electrical Symbols Rotary Switch Display Symbols Measurement Operation A. AC Voltage

More information

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I ECE285 Electric Circuit Analysis I Spring 2014 Nathalia Peixoto Rev.2.0: 140124. Rev 2.1. 140813 1 Lab reports Background: these 9 experiments are designed as simple building blocks (like Legos) and students

More information

METRAVI. Table of Contents

METRAVI. Table of Contents Table of Contents A. Your Meter s Feature B. Specifications C. Making Measurements D. Maintenance E. Accessories F. Using Holster G. Using Strap Introduction 540 is brand new Multimeter with 4 1/2 digits,

More information

ENGR 120 LAB #2 Electronic Tools and Ohm s Law

ENGR 120 LAB #2 Electronic Tools and Ohm s Law ENGR 120 LAB #2 Electronic Tools and Ohm s Law Objectives Understand how to use a digital multi-meter, power supply and proto board and apply that knowledge to constructing circuits to demonstrate ohm

More information

LABORATORY Experiment 1

LABORATORY Experiment 1 LABORATORY Experiment 1 Resistivity Measurement, Resistors and Ohm s Law 1. Objectives To measure the resistance of conductors, insulators and semiconductor and calculate the resistivity of a copper wire.

More information

Table of Contents Title Page

Table of Contents Title Page Table of Contents Title Page Overview Unpacking Inspection Safety Information Rules For Safe Operation International Electrical Symbols The Meter Structure Rotary Switch Functional Buttons Display Symbols

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 2 BASIC CIRCUIT ELEMENTS OBJECTIVES The purpose of this experiment is to familiarize the student with

More information

User s Guide. MultiView Series Digital MultiMeters Models: MV110 MV120 MV130

User s Guide. MultiView Series Digital MultiMeters Models: MV110 MV120 MV130 User s Guide MultiView Series Digital MultiMeters Models: MV110 MV120 MV130 WARRANTY EXTECH INSTRUMENTS CORPORATION warrants this instrument to be free of defects in parts and workmanship for one year

More information

AC Clamp Meter + Phase Rotation Tester

AC Clamp Meter + Phase Rotation Tester User's Manual AC Clamp Meter + Phase Rotation Tester Model 380974 Hz Introduction Congratulations on your purchase of the Extech 380974 AC Clamp Meter + Phase Rotation Tester. This professional 1000A Clamp

More information

Item ref: UK MTM01 DIGITAL MULTITESTER. User Manual

Item ref: UK MTM01 DIGITAL MULTITESTER. User Manual Item ref: 600.100UK MTM01 DIGITAL MULTITESTER User Manual Please read this manual thoroughly and ensure all contents are fully understood before using the apparatus. Warning To avoid possible electric

More information

Model DIGITAL MULTIMETER

Model DIGITAL MULTIMETER Model 57070 DIGITAL MULTIMETER INSTRUCTION MANUAL SAFETY INFORMATION To ensure safe operation, and in order to exploit to the full the functionality of the meter, please follow the directions in this section

More information

Lab Exercise # 9 Operational Amplifier Circuits

Lab Exercise # 9 Operational Amplifier Circuits Objectives: THEORY Lab Exercise # 9 Operational Amplifier Circuits 1. To understand how to use multiple power supplies in a circuit. 2. To understand the distinction between signals and power. 3. To understand

More information

OPERATOR S INSTRUCTION MANUAL M-2625 AUTO RANGING DIGITAL MULTIMETER

OPERATOR S INSTRUCTION MANUAL M-2625 AUTO RANGING DIGITAL MULTIMETER OPERATOR S INSTRUCTION MANUAL M-2625 AUTO RANGING DIGITAL MULTIMETER with Temperature Probe Copyright 2007 Elenco Electronics, Inc. Contents 1. Safety Information 3,4 2. Safety Symbols 5 3. Front Plate

More information

R-X SERIES. Decade Resistor

R-X SERIES. Decade Resistor PRECISION INSTRUMENTS FOR TEST AND MEASUREMENT R-X SERIES Decade Resistor User and Service Manual Effectivity: Serial Numbers beginning with P2 RX im/august, 2002 Copyright 2002 IET Labs, Inc. IET LABS,

More information

APPENDIX D DISCUSSION OF ELECTRONIC INSTRUMENTS

APPENDIX D DISCUSSION OF ELECTRONIC INSTRUMENTS APPENDIX D DISCUSSION OF ELECTRONIC INSTRUMENTS DC POWER SUPPLIES We will discuss these instruments one at a time, starting with the DC power supply. The simplest DC power supplies are batteries which

More information

Experiment 1: Circuits Experiment Board

Experiment 1: Circuits Experiment Board 01205892C AC/DC Electronics Laboratory Experiment 1: Circuits Experiment Board EQUIPMENT NEEDED: AC/DC Electronics Lab Board: Wire Leads Dcell Battery Graph Paper Purpose The purpose of this lab is to

More information

Digital Clamp Meter Model: &

Digital Clamp Meter Model: & Digital Clamp Meter Model: 72-7224 & 72-7226 1 SAFETY INFORMATION Please read these instructions carefully before use and retain for future reference. This meter is designed to meet IEC61010-1, 61010-2-032,

More information

JTM-97a CALIBRATION PROCEDURE

JTM-97a CALIBRATION PROCEDURE EICMEX505-CP January 2008 Revision: Release JTM-97a CALIBRATION PROCEDURE Revision Log Revision Number Date Approved Pages Affected Description of Revision January 2008 All Release Written By: Dolores

More information

AC/DC DIGITAL CLAMP METER OPERATION MANUAL

AC/DC DIGITAL CLAMP METER OPERATION MANUAL AC/DC DIGITAL CLAMP METER OPERATION MANUAL HYS005661 A0 ACCESSORIES 6. ACCESSORIES 1) Test Leads: Electric Ratings 1000V 10A 1 pair (set) 2) Operating Manual 1 copy 3) 1.5V AAA Battery 3 piece - - 55 -

More information

Group: Names: Resistor Band Colors Measured Value ( ) R 1 : 1k R 2 : 1k R 3 : 2k R 4 : 1M R 5 : 1M

Group: Names: Resistor Band Colors Measured Value ( ) R 1 : 1k R 2 : 1k R 3 : 2k R 4 : 1M R 5 : 1M 2.4 Laboratory Procedure / Summary Sheet Group: Names: (1) Select five separate resistors whose nominal values are listed below. Record the band colors for each resistor in the table below. Then connect

More information

Pen Multimeter. Model

Pen Multimeter. Model Pen Multimeter Model 381626 CAUTION: Read, understand and follow all Safety Rules and Operating Instructions in this manual before using this product. This instrument is a 3200 count pen style digital

More information

Meters and Test Equipment

Meters and Test Equipment Installation Knowledge and Techniques Meters and Test Equipment OBJECTIVES Meters and Test Equipment DMM s and VOM s Describe the difference between a DMM and a VOM. Describe the methods for measuring

More information

AUTO RANGING DIGITAL MULTIMETER

AUTO RANGING DIGITAL MULTIMETER AUTO RANGING DIGITAL MULTIMETER 12 MONTH WARRANTY LARGE DIGITAL DISPLAY AC/DC VOLTAGE & CURRENT MEASUREMENT CAT II SAFETY RATING CAT III TEST LEAD SAFETY RATING K8315 ED1 May 17 Table of Contents Know

More information

Experiment E7 DC Power Supply Worst-Case Design for Half-Wave Rectifier Circuit James J. Whalen Fall 2000

Experiment E7 DC Power Supply Worst-Case Design for Half-Wave Rectifier Circuit James J. Whalen Fall 2000 Experiment E7 DC Power Supply Worst-Case Design for Half-Wave Rectifier Circuit James J. Whalen Fall 2000 Experiment No. 7 DC Power Supply (Half-Wave Rectifier Circuit) provides an opportunity to perform

More information

MODEL: D03128 CLAMP METER

MODEL: D03128 CLAMP METER MODEL: D03128 CLAMP METER 1 CONTENTS Page Number Details 3 Important Safety Information 3 Features 4 Product Overview 5 Switches, Buttons & Input Jacks 5 LCD 6 Specifications 6 Electrical Specifications

More information

Lab 2: Linear and Nonlinear Circuit Elements and Networks

Lab 2: Linear and Nonlinear Circuit Elements and Networks OPTI 380B Intermediate Optics Laboratory Lab 2: Linear and Nonlinear Circuit Elements and Networks Objectives: Lean how to use: Function of an oscilloscope probe. Characterization of capacitors and inductors

More information

Model ST Instruction Manual. True RMS Autoranging Digital Multimeter. reedinstruments. www. com

Model ST Instruction Manual. True RMS Autoranging Digital Multimeter. reedinstruments. www. com Model ST-9933 True RMS Autoranging Digital Multimeter Instruction Manual reedinstruments com Table of Contents Safety... 3 Features... 4 Specifications...4-8 Technical...4-5 Accuracy...5-8 Display Description...

More information

DM-45 Digital Multimeter

DM-45 Digital Multimeter INSTRUCTION MANUAL DM-45 Digital Multimeter Read and understand all of the instructions and safety information in this manual before operating or servicing this tool. Description The Greenlee DM-45 Digital

More information

EE 210: CIRCUITS AND DEVICES

EE 210: CIRCUITS AND DEVICES EE 210: CIRCUITS AND DEVICES LAB #3: VOLTAGE AND CURRENT MEASUREMENTS This lab features a tutorial on the instrumentation that you will be using throughout the semester. More specifically, you will see

More information

DMM8900 SERIES USERS MANUAL

DMM8900 SERIES USERS MANUAL DMM8900 SERIES USERS MANUAL WARRANTY This instrument is warranted to be free from defects in material and workmanship for a period of one year. Any instrument found defective within one year from the delivery

More information

USER MANUAL 600A AC Clamp Meter + NCV Model MA610

USER MANUAL 600A AC Clamp Meter + NCV Model MA610 USER MANUAL 600A AC Clamp Meter + NCV Model MA610 Additional User Manual Translations available at www.extech.com Introduction Thank you for selecting the Extech MA610 Clamp Meter. This meter measures

More information

INSTRUCTION MANUAL. Model Autoranging DMM ProbeMeter TM. Measures voltage, resistance, frequency, capacitance, temperature, and duty cycle.

INSTRUCTION MANUAL. Model Autoranging DMM ProbeMeter TM. Measures voltage, resistance, frequency, capacitance, temperature, and duty cycle. INSTRUCTION MANUAL Model 403380 Autoranging DMM ProbeMeter TM Measures voltage, resistance, frequency, capacitance, temperature, and duty cycle. Back lit LCD with Autorange and full function displays Audible

More information

INSTRUCTION MANUAL DIGITAL MULTIMETER

INSTRUCTION MANUAL DIGITAL MULTIMETER INSTRUCTION MANUAL DIGITAL MULTIMETER 600 OFF 600 20 2m 2 20m m m 2M 10A k 20k 2k O C NPN PNP hfe E B C E 10A DC 10A MAX UNFUSED MAX 600V COM V ma ma MAX FUSED CAT II 600V Thanks for buying our products,

More information

Digital Clamp Meter. User Manual

Digital Clamp Meter. User Manual Digital Clamp Meter User Manual CM240 WWW.OWON.COM.CN Mar. 2016 edition V1.2 Copyright LILLIPUT Company. All rights reserved. The LILLIPUT's products are under the protection of the patent rights, including

More information

Instrument Usage in Circuits Lab

Instrument Usage in Circuits Lab Instrument Usage in Circuits Lab This document contains descriptions of the various components and instruments that will be used in Circuit Analysis laboratory. Descriptions currently exist for the following

More information

Revision: Jan 29, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: Jan 29, E Main Suite D Pullman, WA (509) Voice and Fax Revision: Jan 29, 2011 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The purpose of this lab assignment is to provide users with an introduction to some of the equipment which

More information

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2)

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2) EE 368 Electronics Lab Experiment 10 Operational Amplifier Applications (2) 1 Experiment 10 Operational Amplifier Applications (2) Objectives To gain experience with Operational Amplifier (Op-Amp). To

More information

Lab 1: Basic Lab Equipment and Measurements

Lab 1: Basic Lab Equipment and Measurements Abstract: Lab 1: Basic Lab Equipment and Measurements This lab exercise introduces the basic measurement instruments that will be used throughout the course. These instruments include multimeters, oscilloscopes,

More information

Lab #1: Electrical Measurements I Resistance

Lab #1: Electrical Measurements I Resistance Lab #: Electrical Measurements I esistance Goal: Learn to measure basic electrical quantities; study the effect of measurement apparatus on the quantities being measured by investigating the internal resistances

More information

DIGITAL MULTIMETER CONTENTS DIGITAL MULTIMETER CONTENTS

DIGITAL MULTIMETER CONTENTS DIGITAL MULTIMETER CONTENTS CONTENTS CONTENTS CONTENTS 1. SAFETY INFORMATION...1 1.1 Preliminary...1 1.2 Dos and don ts...2 1.3 Symbols...3 1.4 Precautions...4 2. DESCRIPTION...5 2.1 Names of parts...6 2.2 Switches, buttons and input

More information

DIGITAL MULTIMETER OPERATING INSTRUCTIONS MODEL CDM-35. Part No

DIGITAL MULTIMETER OPERATING INSTRUCTIONS MODEL CDM-35. Part No DIGITAL MULTIMETER MODEL CDM-35 Part No.4500055 OPERATING INSTRUCTIONS 0304 The Meter may be hung on a wall, or supported as shown, depending upon which support is used. The probes may be located as shown,

More information

MS8211 DIGITAL MULTIMETER INSTRUCTION MANUAL

MS8211 DIGITAL MULTIMETER INSTRUCTION MANUAL MS8211 DIGITAL MULTIMETER INSTRUCTION MANUAL Ω CONTENTS CONTENTS 1. SAFETY INFORM...1 4.4 Range Transform...10 1.1 Preliminary...1 4.5 Auto Power Off...10 1.2 During use...2 4.6 Preparation For Measurement...11

More information

Model : OPERATING MANUAL Table of Contents (1)

Model : OPERATING MANUAL Table of Contents (1) Table of Contents (1) Title Overview Unpacking Inspection Safety Information Rules For Safe Operation International Electrical Symbols The Meter Structure Functional Buttons Measurement Operation A. DC

More information

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Digital Multimeter E 1018832 Instruction sheet 12/16 SD/UD 1 probe 1a Finger guards 2 Measurement socket 10 A for current measurement in 10-A (positive) 3 Measurement socket COM (negative)

More information

Ohm's Law and DC Circuits

Ohm's Law and DC Circuits Physics Lab II Ohm s Law Name: Partner: Partner: Partner: Ohm's Law and DC Circuits EQUIPMENT NEEDED: Circuits Experiment Board Two Dcell Batteries Wire leads Multimeter 100, 330, 560, 1k, 10k, 100k, 220k

More information

Report Documentation Page

Report Documentation Page Svetlana Avramov-Zamurovic 1, Bryan Waltrip 2 and Andrew Koffman 2 1 United States Naval Academy, Weapons and Systems Engineering Department Annapolis, MD 21402, Telephone: 410 293 6124 Email: avramov@usna.edu

More information

OPERATOR S INSTRUCTION MANUAL DIGITAL MULTIMETER

OPERATOR S INSTRUCTION MANUAL DIGITAL MULTIMETER OPERATOR S INSTRUCTION MANUAL DIGITAL MULTIMETER SAFETY INFORMATION This multimeter has been designed according to IEC 1010 concerning electronic measuring instruments with an overvoltage category (CATⅡ)

More information

1. SAFETY 1.1. SAFETY INFORMATION 1.2. SAFETY SYMBOLS

1. SAFETY 1.1. SAFETY INFORMATION 1.2. SAFETY SYMBOLS To all residents of the European Union Important environmental information about this product This symbol on the device or the package indicates that disposal of the device after its lifecycle could harm

More information

2. Meter Measurements and Loading Effects in Resistance Circuits

2. Meter Measurements and Loading Effects in Resistance Circuits 2. Meter Measurements and Loading Effects in Resistance Circuits 2.1. Purpose 1. To measure and predict the affects of multimeter(s) on a circuit when measuring electrical quantities. 2. To make use of

More information

USER S MANUAL DMR-1500

USER S MANUAL DMR-1500 USER S MANUAL DIGITAL POCKET MULTIMETER DMR-1500 CIRCUIT-TEST ELECTRONICS www.circuittest.com TABLE OF CONTENTS SAFETY Safety Information............................... 2-3 Safety Symbols...................................

More information

DIGITAL CLAMP METER Use s Manual

DIGITAL CLAMP METER Use s Manual MS2026 MS2026R DIGITAL CLAMP METER Use s Manual MS2026 FUNC. RANGE MAX/MIN Hz/% HOLD AC CLAMP METER Auto Range AUTO DC AC MAX MIN REL μnf %Hz kmω mva CAT III 600 V CONTENTS 1. Safety Information...1 1.1

More information

Laboratory Exercises for Analog Circuits and Electronics as Hardware Homework with Student Laptop Computer Instrumentation

Laboratory Exercises for Analog Circuits and Electronics as Hardware Homework with Student Laptop Computer Instrumentation Laboratory Exercises for Analog Circuits and Electronics as Hardware Homework with Student Laptop Computer Instrumentation Marion O. Hagler Department of Electrical and Computer Engineering Mississippi

More information

ECE 53A: Fundamentals of Electrical Engineering I

ECE 53A: Fundamentals of Electrical Engineering I ECE 53A: Fundamentals of Electrical Engineering I Laboratory Assignment #1: Instrument Operation, Basic Resistor Measurements and Kirchhoff s Laws Fall 2007 General Guidelines: - Record data and observations

More information

PEN TYPE DIGITAL MULTIMETER OPERATION MANUAL T8211D

PEN TYPE DIGITAL MULTIMETER OPERATION MANUAL T8211D PEN TYPE DIGITAL MULTIMETER OPERATION MANUAL T8211D T8211D 1 1. SAFETY INFORMATION BE EXTREMELY CAREFUL IN THE USE OF THIS METER. Improper use of this device can result in electric shock or destroy of

More information

USER'S MANUAL DMR-6700

USER'S MANUAL DMR-6700 USER'S MANUAL Multimeter True RMS DMR-6700 CIRCUIT-TEST ELECTRONICS www.circuittest.com Introduction This meter measures AC/DC Voltage, AC/DC Current, Resistance, Capacitance, Frequency (electrical & electronic),

More information

Lab 2: DC Circuits Lab Assignment

Lab 2: DC Circuits Lab Assignment 2 class days 1. I-V curve for various components Source: Curtis, 1.2.1. (HH 1.1, 1.2, 1.3) Lab 2: DC Circuits Lab Assignment A passive element is a two-contact device that contains no source of power or

More information

Homework Assignment True or false. For both the inverting and noninverting op-amp configurations, V OS results in

Homework Assignment True or false. For both the inverting and noninverting op-amp configurations, V OS results in Question 1 (Short Takes), 2 points each. Homework Assignment 02 1. An op-amp has input bias current I B = 1 μa. Make an estimate for the input offset current I OS. Answer. I OS is normally an order of

More information

DIGITAL MULTIMETER OPERATOR'S INSTRUCTION MANUAL HOLD 10A COM LIGHT MS8265 ON/OFF. 200M KHz 2K 20K μ μ μ n.

DIGITAL MULTIMETER OPERATOR'S INSTRUCTION MANUAL HOLD 10A COM LIGHT MS8265 ON/OFF. 200M KHz 2K 20K μ μ μ n. MS8265 DIGITAL MULTIMETER OPERATOR'S INSTRUCTION MANUAL HOLD ON/OFF LIGHT 1000V CAT II 600V CAT III MS8265 200K 2M 20M 20K 200M KHz 2K 20 200 2 20 200μ 200 20μ 750 2μ 1000 200n F 20n 10A 2m 200m 10 10

More information

DIGITAL MULTIMETER AUTORANGING

DIGITAL MULTIMETER AUTORANGING MODEL: D03124 DIGITAL MULTIMETER AUTORANGING 1 CONTENTS Page Number Details 2 Introduction 2 What s Included 3 Important Safety Information 3 Symbol Guide 4 Overview 5 Buttons 5 Display Indicators 6 General

More information

1.General instructions Specifications Description...7

1.General instructions Specifications Description...7 USER S Manual CONTENTS 1.General instructions...1 1.1 Precautions safety measures...1 1.1.1 Preliminary...1 1.1.2 During use...2 1.1.3 Symbols...4 1.1.4 Instructions...5 1.2 Protection mechanisms...6 2.

More information

# Digital Multimeter

# Digital Multimeter #61-797 Digital Multimeter - 1 - TABLE OF CONTENTS 1.Introduction Precautions and Safety Information Symbols Safety 2.Specifications General Specifications Electrical Specifications Required Equipment

More information

OWNER S MANUAL HH0308C. AUTO-RANGING DC/True RMS AC DIGITAL MULTIMETER

OWNER S MANUAL HH0308C. AUTO-RANGING DC/True RMS AC DIGITAL MULTIMETER OWNER S MANUAL HH0308C AUTO-RANGING DC/True RMS AC DIGITAL MULTIMETER IMPORTANT! Read and understand this manual before using the tester. Failure to understand and comply with safety rules and operating

More information

GAMMA 12 DIGITAL MULTIMETER

GAMMA 12 DIGITAL MULTIMETER Gamma 12 www.sifamtinsley.co.uk DATASHEET Issue 1.0 Multifunction Meters Transducers & Isolators Temperature Controllers Converters & Recorders Digital Panel Meters Current Transformers Analogue Panel

More information

User's Guide. 800 Amp AC/DC True RMS Clamp Meter. Model EX Washington Street Melrose, MA Phone Toll Free

User's Guide. 800 Amp AC/DC True RMS Clamp Meter. Model EX Washington Street Melrose, MA Phone Toll Free User's Guide 99 Washington Street Melrose, MA 02176 Phone 781-665-1400 Toll Free 1-800-517-8431 Visit us at www.testequipmentdepot.com 800 Amp AC/DC True RMS Clamp Meter Model EX730 Introduction Congratulations

More information

Electricity Basics

Electricity Basics Western Technical College 31660310 Electricity Basics Course Outcome Summary Course Information Description Career Cluster Instructional Level Total Credits 4.00 Total Hours 144.00 DC/AC electrical theory

More information

ECE 2274 Lab 2 (Network Theorems)

ECE 2274 Lab 2 (Network Theorems) ECE 2274 Lab 2 (Network Theorems) Forward (DO NOT TURN IN) You are expected to use engineering exponents for all answers (p,n,µ,m, N/A, k, M, G) and to give each with a precision between one and three

More information

BME 3512 Bioelectronics Laboratory Five - Operational Amplifiers

BME 3512 Bioelectronics Laboratory Five - Operational Amplifiers BME 351 Bioelectronics Laboratory Five - Operational Amplifiers Learning Objectives: Be familiar with the operation of a basic op-amp circuit. Be familiar with the characteristics of both ideal and real

More information

Lab 4: Analysis of the Stereo Amplifier

Lab 4: Analysis of the Stereo Amplifier ECE 212 Spring 2010 Circuit Analysis II Names: Lab 4: Analysis of the Stereo Amplifier Objectives In this lab exercise you will use the power supply to power the stereo amplifier built in the previous

More information

User Manual. All rights reserved. Specifications are subject to change without notice.

User Manual. All rights reserved. Specifications are subject to change without notice. User Manual All rights reserved. Specifications are subject to change without notice. LIMITED WARRANTY AND LIMITATION OF LIABILITY Customers enjoy one-year warranty from the date of purchase. This warranty

More information

Homework Assignment 01

Homework Assignment 01 Homework Assignment 01 In this homework set students review some basic circuit analysis techniques, as well as review how to analyze ideal op-amp circuits. Numerical answers must be supplied using engineering

More information

User s Manual. MiniTec TM Series. Model MN26 (Model MN26T includes temperature probe) Mini Autoranging MultiMeter

User s Manual. MiniTec TM Series. Model MN26 (Model MN26T includes temperature probe) Mini Autoranging MultiMeter User s Manual MiniTec TM Series Model MN26 (Model MN26T includes temperature probe) Mini Autoranging MultiMeter Introduction Congratulations on your purchase of Extech s MN26 Autoranging Multimeter. This

More information

Not for Reproduction

Not for Reproduction 1 ADVANCE PRODUCT SERVICE INFORMATION SUBJECT: OPERATING PROCEDURES FOR EXTECH DIGITAL MULTIMETER No: #66 DATE: 05/31/2010 MODELS: 19602 DIGITAL MULTIMETER A digital multimeter is necessary for electrical

More information

Experiment 2 Soldering Parallel and Series Circuits and using the Digital Multimeter

Experiment 2 Soldering Parallel and Series Circuits and using the Digital Multimeter Experiment 2 Soldering Parallel and Series Circuits and using the Digital Multimeter Introduction Soldering is the most common means of joining components to each other or to circuit boards in electronics.

More information

Notes on Experiment #3

Notes on Experiment #3 Notes on Experiment #3 This week you learn to measure voltage, current, and resistance with the digital multimeter (DMM) You must practice measuring each of these quantities (especially current) as much

More information

ECE 2274 Pre-Lab for Experiment # 4 Diode Basics and a Rectifier Completed Prior to Coming to Lab

ECE 2274 Pre-Lab for Experiment # 4 Diode Basics and a Rectifier Completed Prior to Coming to Lab Part I I-V Characteristic Curve ECE 2274 Pre-Lab for Experiment # 4 Diode Basics and a Rectifier Completed Prior to Coming to Lab 1. Construct the circuit shown in figure 4-1. Using a DC Sweep, simulate

More information

BME/ISE 3512 Bioelectronics. Laboratory Five - Operational Amplifiers

BME/ISE 3512 Bioelectronics. Laboratory Five - Operational Amplifiers BME/ISE 3512 Bioelectronics Laboratory Five - Operational Amplifiers Learning Objectives: Be familiar with the operation of a basic op-amp circuit. Be familiar with the characteristics of both ideal and

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab University of Jordan School of Engineering Electrical Engineering Department EE 204 Electrical Engineering Lab EXPERIMENT 1 MEASUREMENT DEVICES Prepared by: Prof. Mohammed Hawa EXPERIMENT 1 MEASUREMENT

More information

Ohm s and Kirchhoff s Circuit Laws. Abstract. Introduction and Theory. EE 101 Spring 2006 Date: Lab Section #: Lab #2

Ohm s and Kirchhoff s Circuit Laws. Abstract. Introduction and Theory. EE 101 Spring 2006 Date: Lab Section #: Lab #2 EE 101 Spring 2006 Date: Lab Section #: Lab #2 Name: Ohm s and Kirchhoff s Circuit Laws Abstract Rev. 20051222JPB Partner: Electrical circuits can be described with mathematical expressions. In fact, it

More information