Channel Surfing and Spatial Retreats: Defenses against Wireless Denial of Service

Size: px
Start display at page:

Download "Channel Surfing and Spatial Retreats: Defenses against Wireless Denial of Service"

Transcription

1 Channel Surfing and Spatial Retreats: Defenses against Wireless Denial of Service Wenyuan Xu, Timothy Wood, Wade Trappe, Yanyong Zhang WINLAB, Rutgers University IAB 2004

2 Roadmap Motivation and Introduction Detection MAC Layer Detection PHY Layer Detection DoS Defenses Channel Surfing Spatial Retreat Conclusions Ongoing works 2

3 Jamming Style DoS Bob Hello Hi Alice 3

4 Jamming Style DoS Bob Hello Hi Alice Mr. X 4

5 w2 Jamming Style Hello Hi Alice and Bob are DoS attacked by malicious Mr. X. Bob Alice A story for the problem of wireless denial of service attack we focus on. Alice and Bob two communicating nodes, A and B. Mr. X an adversarial interferer X. Mr. X s insane behavior the jamming style DoS. People and nodes in wireless network both communicate via shared medium. Mr. X R X1 Jamming style DoS Attack: Behavior that prevents other nodes from using the channel to communicate by occupying the channel that they are communicating on A X 1 B X 2 5

6 Slide 5 w2 DoS: An attack on a system or portion of a system that results in at least the temporary inability of others to use the system for its intended purpose wenyuan, 9/22/2004

7 @#$%% Hello Hi Jamming Style DoS Bob Alice Jamming style DoS: 2 styles MAC-layer DoS Bypass the MAC protocol, repeatedly send out packets Introduces packet collision PHY-layer DoS Jam transmission channel by emitting energy in the frequency band corresponding to the channel Mr. X Australian CERT [0]: This vulnerability makes a successful, low cost attack against a wireless network feasible for a semi-skilled attacker Previously, attacks against the availability of IEEE networks have required specialised hardware and relied on the ability to saturate the wireless frequency with high-power radiation, an avenue not open to discreet attack. This vulnerability makes a successful, low cost attack against a wireless network feasible for a semi-skilled attacker. A common example: turning on the Microwave is a piece of cake. [0] AusCERT,"AA denial of service vulnerability in IEEE wireless devices", 6

8 Our Jammers MAC-layer Jammer Mica2 Motes (UC Berkeley) 8-bit CPU at 4MHz, 512KB flash, 4KB RAM 916.7MHz radio OS: TinyOS Disable the CSMA Keep sending out the preamble Preamble Sync Packet PHY-layer Jammer Waveform Generator Tune frequency to 916.7MHz 7

9 Handling Jamming: Strategies What can you do when your channel is occupied? In wired network you can cut the link that causes the problem, but in wireless Make the building as resistant as possible to incoming radio signals? Find the jamming source and shoot it down? Battery drain defenses/attacks are not realistic! Protecting networks is a constant battle between the security expert and the clever adversary. Therefore, we take motivation from The Art of War by Sun Tze: He who cannot defeat his enemy should retreat. Detection Strategies MAC Detection PHY Detection Retreat Strategies: Spectral evasion Spatial evasion 8

10 Detection: MAC Layer and PHY Layer

11 DoS Detection MAC Layer Idea: Want to use channel state information to detect whether a jamming has occurred. Adversary CSMA (TinyOS) Model: There is one stationary Senses the channel until it detects the channel is idle. adversary, If collision, who wait continuously for a random time. (no blasts exponential on backoff) a single channel Adversary at Model: a time. We assume there is only one stationary adversary, who blasts on a single channel at any time. Observation: Normal scenario: nodes can pass the CSMA after some time DoS scenario: nodes might never passes the CSMA Challenges: How to discriminate a legitimate traffic jam from illegitimate traffic? What is a good model to minimize the probability of a false positive? Thresholding is the bread and butter of detection theory (Neyman-Pearson, Bayesian inference). Sensing time? 10

12 Empirically setting the threshold Problem with theoretically setting threshold: Its hard to model more complicated MACs! Let each network device collect statistics regarding waiting time D Experiment ns-2 simulator protocol Disabled the MAC layer retransmission Two nodes, A and B, collected the statistical data Using some streams (from sender Si to receiver Ri) to increase the interfering traffic Observation: When only a few streams exist, A can get the channel quickly with high probability As the number of streams increases, the competition for channel becomes more intense, thus taking longer for A to acquire the channel Cumulative Distribution A S 1 S 2 R 2 Cumulative Distribution of Sensing Time R 1 R 3 11 Sensing Time (ms) S 3 B

13 DoS Detection PHY Layer Idea: Want to use PHY layer information to detect whether a jamming has occurred Observations: Ambient noise levels in normal (including congested) scenarios and abnormal scenarios are statistically different. Challenges: How to capture the time variant properties efficiently? What is a good model to use for minimizing the probability of a false positive? Network devices can sample noise levels prior to DoS attack and build a statistical model describing usual energy levels in the network. Discrimination between normal noise level measurements and abnormal data by employing the various features of the data. Tools: 2 ψ statistics: Spectral Discrimination 2 χ statistics: Distributional Discrimination 12

14 DoS Detection PHY Layer Platform: Mica2 Motes (UC Berkeley) Use RSSI ADC to measure the signal strength The values are in inverse relationship to power (signal strength) Three scenario No communicator Three communicators (obey CSMA) Use waveform generator as jammer The noise level time series with a jammer and without a jammer are different No communicator Three communicators Jammer 13 Time

15 Defenses: Channel Surfing and Spatial Retreats

16 Network Types DoS detection can be employed by a single node, however, DoS defenses are group activities. R X1 Three different network scenarios are concerned: Two party radio communication Baseline case A X 1 B X 2 Infrastructured wireless network Consist of two types of device: access points and mobile devices Access points communicate with each other via wired infrastructure Mobile devices communicate via the access point to other mobile devices Mobile Ad Hoc Wireless Networks Composed of mobile devices without access points Mobile devices can communicate to each other via multi-hop routing protocol AP 1 AP 2 D A AP 0 X 0 C A B C D E X F G H I J X 1 B K L 15

17 Dos Defenses Channel Surfing Adversary Model: We assume there is only one stationary adversary, who blasts on a single channel at any time. Adversary Model: There is one stationary adversary, who continuously blasts on a single channel at a time. Objective: In case we are blocked at a particular channel, we want to resume the normal wireless communication with other legal nodes. Channel Surfing: If we are blocked at a particular channel, we can resume our communication by switching to a different (and hopefully safe) channel that does not overlap current channel. Inspired by frequency hopping techniques, but operates at the link layer System Issues: Must have ability to choose multiple orthogonal channels: Prevents Interference Practical Issue: PHY specs do not necessarily translate into correct orthogonal channels Example: MICA2 Radio recommends: choose separate channels with a minimum spacing of 150KHz but.. 16

18 Throughput VS. Channel Assignment Interferer Sender Receiver Sender sends the packet as fast as it can. Receiver counts the packet and calculates the throughput The radio frequency of the sender and receiver was fixed at 916.7MHz. Increased the interferer s communication frequency by 50kHz each time. When the Jammer s communication frequency increases to 917.5MHz, there is almost no interference 17

19 Throughput VS. Channel Assignment Interferer Receiver Sender Wave generator 18

20 Dos Defenses Channel Surfing System Issues (cont.): Orthogonal channels: The fact is that we need at least 800KHz to escape the interference. Therefore, explicit determination of the amount of orthogonal channels is important. How to determine which channel to hop? The adversary X may periodically stop its interference and try to find the new channel the nodes are currently on. Goal: Maximize the delay before X finds out the new channel Therefore, using next available channel is NOT good! Use a (keyed) pseudo-random channel assignment! Basic Channel Surfing Algorithm: Both parties detect DoS independently, and change to a pre-determined channel and establish communication there 19

21 Two Party Radio Communication A X 1 R X1 B Prototype: Two Berkeley motes A and B A sends out a packet to B every 200msecs Measure the packet delivery rate = #recv/#sent Used waveform generator as jammer X A and B try to detect the DoS attack periodically X 2 Code: task void checkdos() { sent = call SendMsg.send( TOS_BCAST_ADDR, sizeof(uint16_t), &beacon_packet); if(!sent){ if(++failures< thresh) post checkdos(); else post changechan(); } else { failures = 0;} } Packet Delivery Rate Channel Surfing Experiment Jammer turned on Trial Number (Time) Change channel 20

22 DoS Defenses Spatial Retreats Adversary Model: We assume there is only one stationary adversary, who blasts on a single channel at any time. Adversary Model: There is one stationary adversary, who continuously blasts on a single Objective: No channel to switch to...then find a new place to reestablish channel connectivity! at a time. What will you do when your nearby microwaves almost kills the wireless connection of your laptop? Spatial Retreats: In order to resume our communication under the jamming style attack, we should move to a place that is outside of the jamming regions System Issues: Where to move? How to ensure that both parties leave the adversary s interference range? How to maintain radio connectivity following a spatial retreat? How to adapt to non-circular jamming regions? 21

23 Two Party Radio communication Three stage protocol: Establish Local coordinates Exit the Interference Region Move into Radio Range 22

24 Two Party Radio communication Three stage protocol: Establish Local coordinates Decide the initial positions prior to the introduction of adversary Y A X B Determine a local coordinate system Agree on the direction of the retreats. for example, y axis. Exit the Interference Region Move into Radio Range 23

25 Two Party Radio communication Three stage protocol: Establish Local coordinates Decide the initial positions prior to the introduction of adversary Determine a local coordinate system Y A X X B Agree on the direction of the retreats. for example, y axis. Exit the Interference Region Move into Radio Range 24

26 Two Party Radio communication Three stage protocol: Establish Local coordinates Y A X Exit the Interference Region Once A and B detect the DoS scenario, they try to move away from adversary along the y-axis. A and B stop, as soon as they detect that it is out of the interference range. Problem: A and B cannot talk to each other any more. A1 X B B Move into Radio Range 25

27 Two Party Radio communication Three stage protocol: Establish Local coordinates Y A X Exit the Interference Region Once A and B detect the DoS scenario, they try to move away from adversary along the y-axis. A and B stop, as soon as they detect that it is out of the interference range. Problem: A and B cannot talk to each other any more. A1 X B B Move into Radio Range 26

28 Two Party Radio communication Three stage protocol: Establish Local coordinates Y A X Exit the interference Region B Move into Radio Range What if they bypass each other? Let B be master and A be slave. Only slave moves A moves along x-axis (toward B, never beyond B) What if moving into the interference range again? tops moving along the x-axis, moving along y-axis A1 X B 27

29 Two Party Radio communication Three stage protocol: Establish Local coordinates Y A X Exit the interference Region B Move into Radio Range What if they bypass each other? Let B be master and A be slave. Only slave moves A moves along x-axis (toward B, never beyond B) What if moving into the interference range again? tops moving along the x-axis, moving along y-axis A1 A2 X B 28

30 Two Party Radio communication Three stage protocol: Establish Local coordinates X Y A Exit the interference Region B Move into Radio Range X What if they bypass each other? A1 A2 Let B be master and A be slave. Only slave moves A moves along x-axis (toward B, never beyond B) A3 A A4 What if moving into the interference range again? B stops moving along the x- axis, moving along y-axis 29

31 Conclusions: Due to the shared nature of the wireless medium, it is an easy feat for adversaries to perform a jamming-style denial of service against wireless networks We proposed two approaches that a single node may employ to detect a DoS Attack MAC layer: monitoring the sensing time PHY layer: observing the noise levels in the channel We have presented two different strategies to defend against the jamming style of DoS attacks Channel-surfing: changing the transmission frequency to a range where there is no interference from the adversary Spatial retreat: moving to a new location where there is no interference 30

32 Ongoing works: Study the detection strategies Jammer turns on for 95% of the time and keeps silent for the rest of 5% of the time Jammer will start to jam only if someone is sending out the message Investigate the channel-surfing and spatial retreat algorithm in new wireless network topologies: Infrastructured wireless networks Ad-hoc network Study the defenses against DoS with other issues: High mobility High redundant (in sensor network) A large scale (approximately 50 nodes) jamming-tolerant sensor network is being developed and results will be reported soon. 31

33 Other Investigations Many wireless security threats are being addressed Secure routing protocol, Temporal Key Integrity Protocol (TKIP), 802.1x, privacy Validation of the possibility of DDOS in wireless by mathematical models.[1] Using FAIR-MAC to prevent nodes from monopolizing the channel. Prerequisite: every node follows the fair MAC protocol.[2] DOMINO: System for Detection Of greedy behavior in the MAC layer of IEEE public Networks. [3] However, the jamming style DoS is not well studied Australian CERT announced the issue of MAC layer weaknesses in MAC. [0] Mapping a jamming-area for sensor networks.[4] [1] Q. Huang, H. Kobayashi, and B. Liu, Modeling of Distributed Denial of Service Attacks in Wireless Network, IEEE Pacific Rim Conference on Communications, Computers and Signal Processing [2] V. Gupta, S. Krishnamurthy, and M. Faloutsos, Denial of Service Attacks at the MAC layer in Wireless Ad Hoc Network, IEEE Milcom 2002, Anaheim, California, October 7-10, 2002 [3] M. Raya, J. Hubaux, and I. Aad, DOMINO: a system to detect greedy behavior in IEEE hotspots, 2004, MobiSYS, pp [4] A. Wood, J. Stankovic, and S. Son, JAM: A jammed-area Mapping Service for Sensor Networks, 2003, 24th IEEE International Real-Time Systems Symposium, pp

Jamming Wireless Networks: Attack and Defense Strategies

Jamming Wireless Networks: Attack and Defense Strategies Jamming Wireless Networks: Attack and Defense Strategies Wenyuan Xu, Ke Ma, Wade Trappe, Yanyong Zhang, WINLAB, Rutgers University IAB, Dec. 6 th, 2005 Roadmap Introduction and Motivation Jammer Models

More information

Wireless Network Security Spring 2014

Wireless Network Security Spring 2014 Wireless Network Security 14-814 Spring 2014 Patrick Tague Class #5 Jamming 2014 Patrick Tague 1 Travel to Pgh: Announcements I'll be on the other side of the camera on Feb 4 Let me know if you'd like

More information

Wireless Network Security Spring 2015

Wireless Network Security Spring 2015 Wireless Network Security Spring 2015 Patrick Tague Class #5 Jamming, Physical Layer Security 2015 Patrick Tague 1 Class #5 Jamming attacks and defenses Secrecy using physical layer properties Authentication

More information

Wireless Network Security Spring 2016

Wireless Network Security Spring 2016 Wireless Network Security Spring 2016 Patrick Tague Class #5 Jamming (cont'd); Physical Layer Security 2016 Patrick Tague 1 Class #5 Anti-jamming Physical layer security Secrecy using physical layer properties

More information

Wireless Sensor Networks

Wireless Sensor Networks DEEJAM: Defeating Energy-Efficient Jamming in IEEE 802.15.4-based Wireless Networks Anthony D. Wood, John A. Stankovic, Gang Zhou Department of Computer Science University of Virginia June 19, 2007 Wireless

More information

DEEJAM: Defeating Energy-Efficient Jamming in IEEE based Wireless Networks

DEEJAM: Defeating Energy-Efficient Jamming in IEEE based Wireless Networks DEEJAM: Defeating Energy-Efficient Jamming in IEEE 802.15.4-based Wireless Networks Anthony D. Wood, John A. Stankovic, Gang Zhou Department of Computer Science University of Virginia Wireless Sensor Networks

More information

Multiple Receiver Strategies for Minimizing Packet Loss in Dense Sensor Networks

Multiple Receiver Strategies for Minimizing Packet Loss in Dense Sensor Networks Multiple Receiver Strategies for Minimizing Packet Loss in Dense Sensor Networks Bernhard Firner Chenren Xu Yanyong Zhang Richard Howard Rutgers University, Winlab May 10, 2011 Bernhard Firner (Winlab)

More information

Wireless Network Security Spring 2012

Wireless Network Security Spring 2012 Wireless Network Security 14-814 Spring 2012 Patrick Tague Class #8 Interference and Jamming Announcements Homework #1 is due today Questions? Not everyone has signed up for a Survey These are required,

More information

UNDERSTANDING AND MITIGATING

UNDERSTANDING AND MITIGATING UNDERSTANDING AND MITIGATING THE IMPACT OF RF INTERFERENCE ON 802.11 NETWORKS RAMAKRISHNA GUMMADI UCS DAVID WETHERALL INTEL RESEARCH BEN GREENSTEIN UNIVERSITY OF WASHINGTON SRINIVASAN SESHAN CMU 1 Presented

More information

Badri Nath Dept. of Computer Science/WINLAB Rutgers University Jointly with Wade Trappe, Yanyong Zhang WINLAB IAB meeting November, 2004

Badri Nath Dept. of Computer Science/WINLAB Rutgers University Jointly with Wade Trappe, Yanyong Zhang WINLAB IAB meeting November, 2004 Secure Localization Services Badri Nath Dept. of Computer Science/WINLAB Rutgers University Jointly with Wade Trappe, Yanyong Zhang WINLAB IAB meeting November, 24 badri@cs.rutgers.edu Importance of localization

More information

Lightweight Decentralized Algorithm for Localizing Reactive Jammers in Wireless Sensor Network

Lightweight Decentralized Algorithm for Localizing Reactive Jammers in Wireless Sensor Network International Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue. 3 Lightweight Decentralized Algorithm for Localizing Reactive Jammers in Wireless Sensor Network 1, Vinothkumar.G,

More information

Wireless LAN Applications LAN Extension Cross building interconnection Nomadic access Ad hoc networks Single Cell Wireless LAN

Wireless LAN Applications LAN Extension Cross building interconnection Nomadic access Ad hoc networks Single Cell Wireless LAN Wireless LANs Mobility Flexibility Hard to wire areas Reduced cost of wireless systems Improved performance of wireless systems Wireless LAN Applications LAN Extension Cross building interconnection Nomadic

More information

Using Channel Hopping to Increase Resilience to Jamming Attacks

Using Channel Hopping to Increase Resilience to Jamming Attacks Using Channel Hopping to Increase 82.11 Resilience to Jamming Attacks Vishnu Navda, Aniruddha Bohra, Samrat Ganguly NEC Laboratories America {vnavda,bohra,samrat}@nec-labs.com Dan Rubenstein Columbia University

More information

LOCALIZATION AND ROUTING AGAINST JAMMERS IN WIRELESS NETWORKS

LOCALIZATION AND ROUTING AGAINST JAMMERS IN WIRELESS NETWORKS Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 5, May 2015, pg.955

More information

Improving Reliability of Jamming Attack Detection in Ad hoc Networks

Improving Reliability of Jamming Attack Detection in Ad hoc Networks Improving Reliability of Jamming Attack Detection in Ad hoc Networks Geethapriya Thamilarasu 1, Sumita Mishra 2 and Ramalingam Sridhar 3 1 State University of New York, Institute of Technology, Utica,

More information

AS-MAC: An Asynchronous Scheduled MAC Protocol for Wireless Sensor Networks

AS-MAC: An Asynchronous Scheduled MAC Protocol for Wireless Sensor Networks AS-MAC: An Asynchronous Scheduled MAC Protocol for Wireless Sensor Networks By Beakcheol Jang, Jun Bum Lim, Mihail Sichitiu, NC State University 1 Presentation by Andrew Keating for CS577 Fall 2009 Outline

More information

Wireless Network Security Spring 2016

Wireless Network Security Spring 2016 Wireless Network Security Spring 2016 Patrick Tague Class #4 Physical Layer Threats; Jamming 2016 Patrick Tague 1 Class #4 PHY layer basics and threats Jamming 2016 Patrick Tague 2 PHY 2016 Patrick Tague

More information

A Combined Approach for Distinguishing Different Types of Jamming Attacks Against Wireless Networks

A Combined Approach for Distinguishing Different Types of Jamming Attacks Against Wireless Networks A Combined Approach for Distinguishing Different Types of Jamming Attacks Against Wireless Networks Le Wang, Alexander M. Wyglinski Wireless Innovation Laboratory Department of Electrical and Computer

More information

Anti-Jamming: A Study

Anti-Jamming: A Study Anti-Jamming: A Study Karthikeyan Mahadevan, Sojeong Hong, John Dullum December 14, 25 Abstract Addressing jamming in wireless networks is important as the number of wireless networks is on the increase.

More information

Detection and Prevention of Physical Jamming Attacks in Vehicular Environment

Detection and Prevention of Physical Jamming Attacks in Vehicular Environment Detection and Prevention of Physical Jamming Attacks in Vehicular Environment M-Tech Student 1 Mahendri 1, Neha Sawal 2 Assit. Prof. 2 &Department of CSE & NGF College of Engineering &Technology Palwal,

More information

Avoid Impact of Jamming Using Multipath Routing Based on Wireless Mesh Networks

Avoid Impact of Jamming Using Multipath Routing Based on Wireless Mesh Networks Avoid Impact of Jamming Using Multipath Routing Based on Wireless Mesh Networks M. KIRAN KUMAR 1, M. KANCHANA 2, I. SAPTHAMI 3, B. KRISHNA MURTHY 4 1, 2, M. Tech Student, 3 Asst. Prof 1, 4, Siddharth Institute

More information

Simulation Based Analysis of Jamming Attack in OLSR, GRP, TORA. and Improvement with PCF in TORA using OPNET tool

Simulation Based Analysis of Jamming Attack in OLSR, GRP, TORA. and Improvement with PCF in TORA using OPNET tool Simulation Based Analysis of Jamming Attack in OLSR, GRP, TORA and Improvement with PCF in TORA using OPNET tool Anupam Sharma, Deepinderjeet Kaur Dhaliwal Desh Bhagat University Mandi Gobindgarh Punjab

More information

Medium Access Control Protocol for WBANS

Medium Access Control Protocol for WBANS Medium Access Control Protocol for WBANS Using the slides presented by the following group: An Efficient Multi-channel Management Protocol for Wireless Body Area Networks Wangjong Lee *, Seung Hyong Rhee

More information

Increasing Broadcast Reliability for Vehicular Ad Hoc Networks. Nathan Balon and Jinhua Guo University of Michigan - Dearborn

Increasing Broadcast Reliability for Vehicular Ad Hoc Networks. Nathan Balon and Jinhua Guo University of Michigan - Dearborn Increasing Broadcast Reliability for Vehicular Ad Hoc Networks Nathan Balon and Jinhua Guo University of Michigan - Dearborn I n t r o d u c t i o n General Information on VANETs Background on 802.11 Background

More information

Defending Wireless Sensor Networks from Radio Interference through Channel Adaptation

Defending Wireless Sensor Networks from Radio Interference through Channel Adaptation 18 Defending Wireless Sensor Networks from Radio Interference through Channel Adaptation WENYUAN XU University of South Carolina and WADE TRAPPE and YANYONG ZHANG WINLAB, Rutgers University Radio interference,

More information

Prevention of Selective Jamming Attack Using Cryptographic Packet Hiding Methods

Prevention of Selective Jamming Attack Using Cryptographic Packet Hiding Methods Prevention of Selective Jamming Attack Using Cryptographic Packet Hiding Methods S.B.Gavali 1, A. K. Bongale 2 and A.B.Gavali 3 1 Department of Computer Engineering, Dr.D.Y.Patil College of Engineering,

More information

olsr.org 'Optimized Link State Routing' and beyond December 28th, 2005 Elektra

olsr.org 'Optimized Link State Routing' and beyond December 28th, 2005 Elektra olsr.org 'Optimized Link State Routing' and beyond December 28th, 2005 Elektra www.scii.nl/~elektra Introduction Olsr.org is aiming to an efficient opensource routing solution for wireless networks Work

More information

Lecture on Sensor Networks

Lecture on Sensor Networks Lecture on Sensor Networks Copyright (c) 2008 Dr. Thomas Haenselmann (University of Mannheim, Germany). Permission is granted to copy, distribute and/or modify this document under the terms of the GNU

More information

CS434/534: Topics in Networked (Networking) Systems

CS434/534: Topics in Networked (Networking) Systems CS434/534: Topics in Networked (Networking) Systems Wireless Foundation: Wireless Mesh Networks Yang (Richard) Yang Computer Science Department Yale University 08A Watson Email: yry@cs.yale.edu http://zoo.cs.yale.edu/classes/cs434/

More information

Jamming Attacks with its Various Techniques and AODV in Wireless Networks

Jamming Attacks with its Various Techniques and AODV in Wireless Networks IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 11, Issue 4 Ver. II (Jul. Aug. 2016), PP 48-52 www.iosrjournals.org Jamming Attacks with its

More information

Medium Access Control. Wireless Networks: Guevara Noubir. Slides adapted from Mobile Communications by J. Schiller

Medium Access Control. Wireless Networks: Guevara Noubir. Slides adapted from Mobile Communications by J. Schiller Wireless Networks: Medium Access Control Guevara Noubir Slides adapted from Mobile Communications by J. Schiller S200, COM3525 Wireless Networks Lecture 4, Motivation Can we apply media access methods

More information

Fine-grained Channel Access in Wireless LAN. Cristian Petrescu Arvind Jadoo UCL Computer Science 20 th March 2012

Fine-grained Channel Access in Wireless LAN. Cristian Petrescu Arvind Jadoo UCL Computer Science 20 th March 2012 Fine-grained Channel Access in Wireless LAN Cristian Petrescu Arvind Jadoo UCL Computer Science 20 th March 2012 Physical-layer data rate PHY layer data rate in WLANs is increasing rapidly Wider channel

More information

Medium Access Control

Medium Access Control CMPE 477 Wireless and Mobile Networks Medium Access Control Motivation for Wireless MAC SDMA FDMA TDMA CDMA Comparisons CMPE 477 Motivation Can we apply media access methods from fixed networks? Example

More information

FPGA-BASED DESIGN AND IMPLEMENTATION OF THREE-PRIORITY PERSISTENT CSMA PROTOCOL

FPGA-BASED DESIGN AND IMPLEMENTATION OF THREE-PRIORITY PERSISTENT CSMA PROTOCOL U.P.B. Sci. Bull., Series C, Vol. 79, Iss. 4, 2017 ISSN 2286-3540 FPGA-BASED DESIGN AND IMPLEMENTATION OF THREE-PRIORITY PERSISTENT CSMA PROTOCOL Xu ZHI 1, Ding HONGWEI 2, Liu LONGJUN 3, Bao LIYONG 4,

More information

TRIESTE: A Trusted Radio Infrastructure for Enforcing SpecTrum Etiquettes

TRIESTE: A Trusted Radio Infrastructure for Enforcing SpecTrum Etiquettes TRIESTE: A Trusted Radio Infrastructure for Enforcing SpecTrum Etiquettes Wade Trappe Rutgers, The State University of New Jersey www.winlab.rutgers.edu 1 Talk Overview Motivation TRIESTE overview Spectrum

More information

Interleaving And Channel Encoding Of Data Packets In Wireless Communications

Interleaving And Channel Encoding Of Data Packets In Wireless Communications Interleaving And Channel Encoding Of Data Packets In Wireless Communications B. Aparna M. Tech., Computer Science & Engineering Department DR.K.V.Subbareddy College Of Engineering For Women, DUPADU, Kurnool-518218

More information

Wireless Networked Systems

Wireless Networked Systems Wireless Networked Systems CS 795/895 - Spring 2013 Lec #4: Medium Access Control Power/CarrierSense Control, Multi-Channel, Directional Antenna Tamer Nadeem Dept. of Computer Science Power & Carrier Sense

More information

Security in Sensor Networks. Written by: Prof. Srdjan Capkun & Others Presented By : Siddharth Malhotra Mentor: Roland Flury

Security in Sensor Networks. Written by: Prof. Srdjan Capkun & Others Presented By : Siddharth Malhotra Mentor: Roland Flury Security in Sensor Networks Written by: Prof. Srdjan Capkun & Others Presented By : Siddharth Malhotra Mentor: Roland Flury Mobile Ad-hoc Networks (MANET) Mobile Random and perhaps constantly changing

More information

Vulnerability modelling of ad hoc routing protocols a comparison of OLSR and DSR

Vulnerability modelling of ad hoc routing protocols a comparison of OLSR and DSR 5 th Scandinavian Workshop on Wireless Ad-hoc Networks May 3-4, 2005 Vulnerability modelling of ad hoc routing protocols a comparison of OLSR and DSR Mikael Fredin - Ericsson Microwave Systems, Sweden

More information

Spectrum Sensing Brief Overview of the Research at WINLAB

Spectrum Sensing Brief Overview of the Research at WINLAB Spectrum Sensing Brief Overview of the Research at WINLAB P. Spasojevic IAB, December 2008 What to Sense? Occupancy. Measuring spectral, temporal, and spatial occupancy observation bandwidth and observation

More information

Cognitive Wireless Network : Computer Networking. Overview. Cognitive Wireless Networks

Cognitive Wireless Network : Computer Networking. Overview. Cognitive Wireless Networks Cognitive Wireless Network 15-744: Computer Networking L-19 Cognitive Wireless Networks Optimize wireless networks based context information Assigned reading White spaces Online Estimation of Interference

More information

Fiber Distributed Data Interface

Fiber Distributed Data Interface Fiber istributed ata Interface FI: is a 100 Mbps fiber optic timed token ring LAN Standard, over distance up to 200 km with up to 1000 stations connected, and is useful as backbone Token bus ridge FI uses

More information

Wireless ad hoc networks. Acknowledgement: Slides borrowed from Richard Y. Yale

Wireless ad hoc networks. Acknowledgement: Slides borrowed from Richard Y. Yale Wireless ad hoc networks Acknowledgement: Slides borrowed from Richard Y. Yang @ Yale Infrastructure-based v.s. ad hoc Infrastructure-based networks Cellular network 802.11, access points Ad hoc networks

More information

Isolation Mechanism for Jamming Attack in MANET

Isolation Mechanism for Jamming Attack in MANET Isolation Mechanism for Jamming Attack in MANET Aditi 1, Joy Karan Singh 2 1 M.tech Student, Dept. of CSE,CT Institute of Technology & Research, Jalandhar,India 2 Assistant Professor, Dept. of ECE,CT Institute

More information

Mitigating Inside Jammers in Manet Using Localized Detection Scheme

Mitigating Inside Jammers in Manet Using Localized Detection Scheme International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 7ǁ July 2013 ǁ PP.13-19 Mitigating Inside Jammers in Manet Using Localized Detection

More information

The Impact of Channel Bonding on n Network Management

The Impact of Channel Bonding on n Network Management The Impact of Channel Bonding on 802.11n Network Management --- Lara Deek --- Eduard Garcia-Villegas Elizabeth Belding Sung-Ju Lee Kevin Almeroth UC Santa Barbara, UPC-Barcelona TECH, Hewlett-Packard Labs

More information

On Denial of Service Attacks for Wireless Sensor Networks

On Denial of Service Attacks for Wireless Sensor Networks On Denial of Service Attacks for Wireless Sensor Networks Nischay Bahl of Technology, Jalandhar, India Ajay K. Sharma of Technology, Jalandhar, India Harsh K. Verma of Technology, Jalandhar India ABSTRACT

More information

INTRODUCTION TO WIRELESS SENSOR NETWORKS. CHAPTER 3: RADIO COMMUNICATIONS Anna Förster

INTRODUCTION TO WIRELESS SENSOR NETWORKS. CHAPTER 3: RADIO COMMUNICATIONS Anna Förster INTRODUCTION TO WIRELESS SENSOR NETWORKS CHAPTER 3: RADIO COMMUNICATIONS Anna Förster OVERVIEW 1. Radio Waves and Modulation/Demodulation 2. Properties of Wireless Communications 1. Interference and noise

More information

A Framework for Energy-efficient Adaptive Jamming of Adversarial Communications

A Framework for Energy-efficient Adaptive Jamming of Adversarial Communications A Framework for Energy-efficient Adaptive Jamming of Adversarial Communications Jiasi Chen, Soumya Sen, Mung Chiang Princeton University Princeton, NJ, USA David J. Dorsey Lockheed Martin ATL Cherry Hill,

More information

Feasibility and Benefits of Passive RFID Wake-up Radios for Wireless Sensor Networks

Feasibility and Benefits of Passive RFID Wake-up Radios for Wireless Sensor Networks Feasibility and Benefits of Passive RFID Wake-up Radios for Wireless Sensor Networks He Ba, Ilker Demirkol, and Wendi Heinzelman Department of Electrical and Computer Engineering University of Rochester

More information

Mohammed Ghowse.M.E 1, Mr. E.S.K.Vijay Anand 2

Mohammed Ghowse.M.E 1, Mr. E.S.K.Vijay Anand 2 AN ATTEMPT TO FIND A SOLUTION FOR DESTRUCTING JAMMING PROBLEMS USING GAME THERORITIC ANALYSIS Abstract Mohammed Ghowse.M.E 1, Mr. E.S.K.Vijay Anand 2 1 P. G Scholar, E-mail: ghowsegk2326@gmail.com 2 Assistant

More information

ARCH: Prac+cal Channel Hopping for Reliable Home- Area Sensor Networks. Chenyang Lu

ARCH: Prac+cal Channel Hopping for Reliable Home- Area Sensor Networks. Chenyang Lu ARCH: Prac+cal Channel Hopping for Reliable Home- Area Sensor Networks Chenyang Lu Home Area Network for Smart Energy Connecting power meters, thermostats, HVAC, appliances. Source: AT&T Labs 2 Wireless

More information

Randomized Channel Hopping Scheme for Anti-Jamming Communication

Randomized Channel Hopping Scheme for Anti-Jamming Communication Randomized Channel Hopping Scheme for Anti-Jamming Communication Eun-Kyu Lee, Soon Y. Oh, and Mario Gerla Computer Science Department University of California at Los Angeles, Los Angeles, CA, USA {eklee,

More information

Understanding and Mitigating the Impact of Interference on Networks. By Gulzar Ahmad Sanjay Bhatt Morteza Kheirkhah Adam Kral Jannik Sundø

Understanding and Mitigating the Impact of Interference on Networks. By Gulzar Ahmad Sanjay Bhatt Morteza Kheirkhah Adam Kral Jannik Sundø Understanding and Mitigating the Impact of Interference on 802.11 Networks By Gulzar Ahmad Sanjay Bhatt Morteza Kheirkhah Adam Kral Jannik Sundø 1 Outline Background Contributions 1. Quantification & Classification

More information

Optimal Clock Synchronization in Networks. Christoph Lenzen Philipp Sommer Roger Wattenhofer

Optimal Clock Synchronization in Networks. Christoph Lenzen Philipp Sommer Roger Wattenhofer Optimal Clock Synchronization in Networks Christoph Lenzen Philipp Sommer Roger Wattenhofer Time in Sensor Networks Synchronized clocks are essential for many applications: Sensing TDMA Localization Duty-

More information

Wireless Network Security Spring 2016

Wireless Network Security Spring 2016 Wireless Network Security Spring 2016 Patrick Tague Class #16 Cross-Layer Attack & Defense 2016 Patrick Tague 1 Cross-layer design Class #16 Attacks using cross-layer data Cross-layer defenses / games

More information

Wireless Network Security Spring 2015

Wireless Network Security Spring 2015 Wireless Network Security Spring 2015 Patrick Tague Class #16 Cross-Layer Attack & Defense 2015 Patrick Tague 1 Cross-layer design Class #16 Attacks using cross-layer data Cross-layer defenses / games

More information

An Effective Defensive Node against Jamming Attacks in Sensor Networks

An Effective Defensive Node against Jamming Attacks in Sensor Networks International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 6ǁ June. 2013 ǁ PP.41-46 An Effective Defensive Node against Jamming Attacks in Sensor

More information

Securing Wireless Localization: Living with Bad Guys. Zang Li, Yanyong Zhang, Wade Trappe Badri Nath

Securing Wireless Localization: Living with Bad Guys. Zang Li, Yanyong Zhang, Wade Trappe Badri Nath Securing Wireless Localization: Living with Bad Guys Zang Li, Yanyong Zhang, Wade Trappe Badri Nath Talk Overview Wireless Localization Background Attacks on Wireless Localization Time of Flight Signal

More information

Denial of Service Attacks in Wireless Networks: The case of Jammers

Denial of Service Attacks in Wireless Networks: The case of Jammers Denial of Service Attacks in Wireless Networks: The case of Jammers Konstantinos Pelechrinis and Marios Iliofotou Department of Computer Science and Engineering UC Riverside, Riverside CA 92521 {kpele,marios}@cs.ucr.edu

More information

Wireless in the Real World. Principles

Wireless in the Real World. Principles Wireless in the Real World Principles Make every transmission count E.g., reduce the # of collisions E.g., drop packets early, not late Control errors Fundamental problem in wless Maximize spatial reuse

More information

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February ISSN

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February ISSN International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 181 A NOVEL RANGE FREE LOCALIZATION METHOD FOR MOBILE SENSOR NETWORKS Anju Thomas 1, Remya Ramachandran 2 1

More information

Syed Obaid Amin. Date: February 11 th, Networking Lab Kyung Hee University

Syed Obaid Amin. Date: February 11 th, Networking Lab Kyung Hee University Detecting Jamming Attacks in Ubiquitous Sensor Networks Networking Lab Kyung Hee University Date: February 11 th, 2008 Syed Obaid Amin obaid@networking.khu.ac.kr Contents Background Introduction USN (Ubiquitous

More information

Jamming Attack Detection and Isolation to Increase Efficiency of the Network in Mobile Ad-hoc Network

Jamming Attack Detection and Isolation to Increase Efficiency of the Network in Mobile Ad-hoc Network Jamming Attack Detection and Isolation to Increase Efficiency of the Network in Mobile Ad-hoc Network 1 Henna Khosla, Student, Department of Electronics and Communication Engineering, Punjabi University,

More information

DISTRIBUTED INTELLIGENT SPECTRUM MANAGEMENT IN COGNITIVE RADIO AD HOC NETWORKS. Yi Song

DISTRIBUTED INTELLIGENT SPECTRUM MANAGEMENT IN COGNITIVE RADIO AD HOC NETWORKS. Yi Song DISTRIBUTED INTELLIGENT SPECTRUM MANAGEMENT IN COGNITIVE RADIO AD HOC NETWORKS by Yi Song A dissertation submitted to the faculty of The University of North Carolina at Charlotte in partial fulfillment

More information

T. Yoo, E. Setton, X. Zhu, Pr. Goldsmith and Pr. Girod Department of Electrical Engineering Stanford University

T. Yoo, E. Setton, X. Zhu, Pr. Goldsmith and Pr. Girod Department of Electrical Engineering Stanford University Cross-layer design for video streaming over wireless ad hoc networks T. Yoo, E. Setton, X. Zhu, Pr. Goldsmith and Pr. Girod Department of Electrical Engineering Stanford University Outline Cross-layer

More information

Wireless Network Security Spring 2015

Wireless Network Security Spring 2015 Wireless Network Security Spring 2015 Patrick Tague Class #4 OMNET++ Intro; Physical Layer Threats 2015 Patrick Tague 1 Class #4 OMNET++ Intro PHY layer basics and threats 2015 Patrick Tague 2 Intro to

More information

A Routing Approach to Jamming Effects Mitigation in Wireless Multihop Networks. by Umang Sureshbhai Patel

A Routing Approach to Jamming Effects Mitigation in Wireless Multihop Networks. by Umang Sureshbhai Patel ABSTRACT PATEL, UMANG SURESHBHAI. A Routing Approach to Jamming Effects Mitigation in Wireless Multihop Networks. (Under the direction of Dr. Rudra Dutta.) Wireless networks are susceptible to radio jamming

More information

Mitigation of Periodic Jamming in a Spread Spectrum System by Adaptive Filter Selection

Mitigation of Periodic Jamming in a Spread Spectrum System by Adaptive Filter Selection Mitigation of Periodic Jamming in a Spread Spectrum System by Adaptive Filter Selection Bruce DeBruhl and Patrick Tague Carnegie Mellon University { debruhl, tague} @cmu.edu Keywords: Abstract: Adaptive

More information

Funneling-MAC: A Localized, Sink-Oriented MAC For Boosting Fidelity in Sensor Networks

Funneling-MAC: A Localized, Sink-Oriented MAC For Boosting Fidelity in Sensor Networks Funneling-MAC: A Localized, Sink-Oriented MAC For Boosting Fidelity in Sensor Networks Gahng-Seop Ahn, Emiliano Miluzzo, Andrew T. Campbell Se Gi Hong, Francesca Cuomo EE Dept., Columbia University CS

More information

DDRS algorithm over DoS Attack in Wireless Communication Due to Jammers Prof. Bhaumik Machhi 1

DDRS algorithm over DoS Attack in Wireless Communication Due to Jammers Prof. Bhaumik Machhi 1 Impact Factor (SJIF): 3.632 International Journal of Advance Research in Engineering, Science & Technology e-issn: 2393-9877, p-issn: 2394-2444 (Special Issue for ITECE 2016) DDRS algorithm over DoS Attack

More information

Efficient Method of Secondary Users Selection Using Dynamic Priority Scheduling

Efficient Method of Secondary Users Selection Using Dynamic Priority Scheduling Efficient Method of Secondary Users Selection Using Dynamic Priority Scheduling ABSTRACT Sasikumar.J.T 1, Rathika.P.D 2, Sophia.S 3 PG Scholar 1, Assistant Professor 2, Professor 3 Department of ECE, Sri

More information

Chapter 2 Overview. Duplexing, Multiple Access - 1 -

Chapter 2 Overview. Duplexing, Multiple Access - 1 - Chapter 2 Overview Part 1 (2 weeks ago) Digital Transmission System Frequencies, Spectrum Allocation Radio Propagation and Radio Channels Part 2 (last week) Modulation, Coding, Error Correction Part 3

More information

ENERGY EFFICIENT SENSOR NODE DESIGN IN WIRELESS SENSOR NETWORKS

ENERGY EFFICIENT SENSOR NODE DESIGN IN WIRELESS SENSOR NETWORKS Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 4, April 2014,

More information

PW-MMAC: Predictive-Wakeup Multi-Channel MAC Protocol for Wireless Sensor Networks

PW-MMAC: Predictive-Wakeup Multi-Channel MAC Protocol for Wireless Sensor Networks 26 UKSim-AMSS 8th International Conference on Computer Modelling and Simulation : Predictive-Wakeup Multi-Channel MAC Protocol for Wireless Sensor Networks Shagufta Henna Computer Science Department Bahria

More information

Control Channel Jamming: Resilience and Identification of Traitors

Control Channel Jamming: Resilience and Identification of Traitors Control Channel Jamming: Resilience and Identification of Traitors Agnes Chan, Xin Liu, Guevara Noubir, Bishal Thapa College of Computer and Information Scinece Northeastern University, Boston, MA 02115

More information

Wi-Fi. Wireless Fidelity. Spread Spectrum CSMA. Ad-hoc Networks. Engr. Mian Shahzad Iqbal Lecturer Department of Telecommunication Engineering

Wi-Fi. Wireless Fidelity. Spread Spectrum CSMA. Ad-hoc Networks. Engr. Mian Shahzad Iqbal Lecturer Department of Telecommunication Engineering Wi-Fi Wireless Fidelity Spread Spectrum CSMA Ad-hoc Networks Engr. Mian Shahzad Iqbal Lecturer Department of Telecommunication Engineering Outline for Today We learned how to setup a WiFi network. This

More information

Living with Interference in Unmanaged Wireless. Environments. Intel Research & University of Washington

Living with Interference in Unmanaged Wireless. Environments. Intel Research & University of Washington Living with Interference in Unmanaged Wireless Environments David Wetherall, Daniel Halperin and Tom Anderson Intel Research & University of Washington This talk 1. The problem: inefficient spectrum scheduling

More information

PULSE: A MAC Protocol for RFID Networks

PULSE: A MAC Protocol for RFID Networks PULSE: A MAC Protocol for RFID Networks Shailesh M. Birari and Sridhar Iyer K. R. School of Information Technology Indian Institute of Technology, Powai, Mumbai, India 400 076. (e-mail: shailesh,sri@it.iitb.ac.in)

More information

Ultra-Low Duty Cycle MAC with Scheduled Channel Polling

Ultra-Low Duty Cycle MAC with Scheduled Channel Polling Ultra-Low Duty Cycle MAC with Scheduled Channel Polling Wei Ye and John Heidemann CS577 Brett Levasseur 12/3/2013 Outline Introduction Scheduled Channel Polling (SCP-MAC) Energy Performance Analysis Implementation

More information

Error Minimizing Jammer Localization Through Smart Estimation of Ambient Noise

Error Minimizing Jammer Localization Through Smart Estimation of Ambient Noise Error Minimizing Jammer Localization Through Smart Estimation of Ambient Noise Zhenhua liu, Hongbo Liu, Wenyuan Xu and Yingying Chen Dept. of Computer Science and Engineering, University of South Carolina,

More information

Mobile Computing. Chapter 3: Medium Access Control

Mobile Computing. Chapter 3: Medium Access Control Mobile Computing Chapter 3: Medium Access Control Prof. Sang-Jo Yoo Contents Motivation Access methods SDMA/FDMA/TDMA Aloha Other access methods Access method CDMA 2 1. Motivation Can we apply media access

More information

ISSN Vol.06,Issue.09, October-2014, Pages:

ISSN Vol.06,Issue.09, October-2014, Pages: ISSN 2348 2370 Vol.06,Issue.09, October-2014, Pages:882-886 www.ijatir.org Wireless Network Packet Classification Selective Jamming Attacks VARTIKA GUPTA 1, M.VINAYA BABU 2 1 PG Scholar, Vishnu Sree Institute

More information

Achieving Network Consistency. Octav Chipara

Achieving Network Consistency. Octav Chipara Achieving Network Consistency Octav Chipara Reminders Homework is postponed until next class if you already turned in your homework, you may resubmit Please send me your peer evaluations 2 Next few lectures

More information

Local Area Networks NETW 901

Local Area Networks NETW 901 Local Area Networks NETW 901 Lecture 2 Medium Access Control (MAC) Schemes Course Instructor: Dr. Ing. Maggie Mashaly maggie.ezzat@guc.edu.eg C3.220 1 Contents Why Multiple Access Random Access Aloha Slotted

More information

IEEE g,n Multi-Network Jamming Attacks - A Cognitive Radio Based Approach. by Sudarshan Prasad

IEEE g,n Multi-Network Jamming Attacks - A Cognitive Radio Based Approach. by Sudarshan Prasad ABSTRACT PRASAD, SUDARSHAN. IEEE 802.11g,n Multi-Network Jamming Attacks - A Cognitive Radio Based Approach. (Under the direction of Dr. David Thuente.) Wireless networks are susceptible to jamming attacks,

More information

Performance Evaluation of AODV, DSDV and DSR or Avoiding Selective Jamming Attacks in WLAN

Performance Evaluation of AODV, DSDV and DSR or Avoiding Selective Jamming Attacks in WLAN IJIRST International Journal for Innovative Research in Science & Technology Volume 3 Issue 02 July 2016 ISSN (online): 2349-6010 Performance Evaluation of AODV, DSDV and DSR or Avoiding Selective Jamming

More information

IJSER 1. INTRODUCTION 2. ANALYSIS

IJSER 1. INTRODUCTION 2. ANALYSIS International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1011 Packet-Hiding Methods for Preventing Selective Jamming Attacks Guttula Pavani Abstract The open nature

More information

ENHANCING THE EFFICACY AND SECURITY OF EMERGING WIRELESS SYSTEMS

ENHANCING THE EFFICACY AND SECURITY OF EMERGING WIRELESS SYSTEMS ENHANCING THE EFFICACY AND SECURITY OF EMERGING WIRELESS SYSTEMS by YU ZHANG A Dissertation submitted to the Graduate School New Brunswick Rutgers, The State University of New Jersey in partial fulfillment

More information

Energy-Efficient MANET Routing: Ideal vs. Realistic Performance

Energy-Efficient MANET Routing: Ideal vs. Realistic Performance Energy-Efficient MANET Routing: Ideal vs. Realistic Performance Paper by: Thomas Knuz IEEE IWCMC Conference Aug. 2008 Presented by: Farzana Yasmeen For : CSE 6590 2013.11.12 Contents Introduction Review:

More information

By Ryan Winfield Woodings and Mark Gerrior, Cypress Semiconductor

By Ryan Winfield Woodings and Mark Gerrior, Cypress Semiconductor Avoiding Interference in the 2.4-GHz ISM Band Designers can create frequency-agile 2.4 GHz designs using procedures provided by standards bodies or by building their own protocol. By Ryan Winfield Woodings

More information

Chutima Prommak and Boriboon Deeka. Proceedings of the World Congress on Engineering 2007 Vol II WCE 2007, July 2-4, 2007, London, U.K.

Chutima Prommak and Boriboon Deeka. Proceedings of the World Congress on Engineering 2007 Vol II WCE 2007, July 2-4, 2007, London, U.K. Network Design for Quality of Services in Wireless Local Area Networks: a Cross-layer Approach for Optimal Access Point Placement and Frequency Channel Assignment Chutima Prommak and Boriboon Deeka ESS

More information

CSIsnoop: Attacker Inference of Channel State Information in Multi-User WLANs

CSIsnoop: Attacker Inference of Channel State Information in Multi-User WLANs CSIsnoop: Attacker Inference of Channel State Information in Multi-User WLANs Xu Zhang and Edward W. Knightly ECE Department, Rice University Channel State Information (CSI) CSI plays a key role in wireless

More information

Wireless Sensor Network based Shooter Localization

Wireless Sensor Network based Shooter Localization Wireless Sensor Network based Shooter Localization Miklos Maroti, Akos Ledeczi, Gyula Simon, Gyorgy Balogh, Branislav Kusy, Andras Nadas, Gabor Pap, Janos Sallai ISIS - Vanderbilt University Overview CONOPS

More information

Field Testing of Wireless Interactive Sensor Nodes

Field Testing of Wireless Interactive Sensor Nodes Field Testing of Wireless Interactive Sensor Nodes Judith Mitrani, Jan Goethals, Steven Glaser University of California, Berkeley Introduction/Purpose This report describes the University of California

More information

for Vehicular Ad Hoc Networks

for Vehicular Ad Hoc Networks Distributed Fair Transmit Power Adjustment for Vehicular Ad Hoc Networks Third Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON 06) Reston, VA,

More information

Cross-layer Network Design for Quality of Services in Wireless Local Area Networks: Optimal Access Point Placement and Frequency Channel Assignment

Cross-layer Network Design for Quality of Services in Wireless Local Area Networks: Optimal Access Point Placement and Frequency Channel Assignment Cross-layer Network Design for Quality of Services in Wireless Local Area Networks: Optimal Access Point Placement and Frequency Channel Assignment Chutima Prommak and Boriboon Deeka Abstract This paper

More information

Opportunistic electromagnetic energy harvesting enabled IEEE MAC protocols employing multi-channel scheduled channel polling

Opportunistic electromagnetic energy harvesting enabled IEEE MAC protocols employing multi-channel scheduled channel polling CREaTION Workshop Opportunistic electromagnetic energy harvesting enabled IEEE 802.15.4 MAC protocols employing multi-channel scheduled channel polling Luís M. Borges Rodolfo Oliveira Fernando J. Velez

More information

DiCa: Distributed Tag Access with Collision-Avoidance among Mobile RFID Readers

DiCa: Distributed Tag Access with Collision-Avoidance among Mobile RFID Readers DiCa: Distributed Tag Access with Collision-Avoidance among Mobile RFID Readers Kwang-il Hwang, Kyung-tae Kim, and Doo-seop Eom Department of Electronics and Computer Engineering, Korea University 5-1ga,

More information

UWB for Sensor Networks:

UWB for Sensor Networks: IEEE-UBC Symposium on future wireless systems March 10 th 2006, Vancouver UWB for Sensor Networks: The 15.4a standard Andreas F. Molisch Mitsubishi Electric Research Labs, and also at Department of Electroscience,

More information