Parallel Circuits. Objectives: Summary of Theory:

Size: px
Start display at page:

Download "Parallel Circuits. Objectives: Summary of Theory:"

Transcription

1 Parallel Circuits Objectives: 1. Demonstrate that the total resistance in a parallel circuit decreases as resistors are added. 2. Compute and measure resistance and currents in parallel circuits. 3. Explain how to troubleshoot parallel circuits. Summary of Theory: a parallel circuit is one in which there is more than one path for current to flow, it can be thought of as two parallel lines, representing conductors, with a voltage source and components connected between the lines. This idea is illustrated in figure 9-1.The source voltage appears across each component. Each path for current is called a branch. The current in any branch is dependent only on the resistance of that branch and the source voltage. As more branches are added to a parallel circuit, the total resistance decreases. If the total current in a circuit increases, with no change in source voltage, the total resistance must decrease according to

2 ohm s law. When connected in parallel the voltage is the same across all branches but the current is divided at branches. E = V1 = V2 =V3 1/RT = 1/R1 + 1/R2 + 1/R3 1/RT = R2R3/R1R2R3 + R1R3/R1R2R3 + R1R2/R1R2R3 RT = R1R2R3/ ((R2+R3) + (R1R3) + (R1R2)) If R1 = R2 = R3. RT = R 3 /3R 2 = R/3 In Parallel: RT< Rmin Kirchhoff s current law: The sum of the currents entering a circuit junction is equal to the sum of the currents leaving the junction. The current leaving the source must be equal to the sum of the individual branch currents. While Kirchhoff s voltage law is developed in the study of series circuits and the current law is developed in the study of parallel circuits, both laws are applicable to any circuit. In parallel circuit, it is the current that is divided between the resistances. Keep in mind that the larger the resistance, the smaller the current. The general current divider rule.

3 In parallel: IT = I1 + I2 RT = R1R2/ (R1+R2) V1 = V2 = E I1 = IT I2 I1 = V1/R1 = E/R1 = ITRT/R1 = IT (R1R2/R1+R2)/R1 = ITR2/R1+R2 I2 = ITR1/R1+R2 So Ii = ITRj/ Ri+Rj (This is the equation of current divider rule). Materials Needed: Resistors: one 2.2kΩ, one 2.7kΩ, one 1kΩ, one 0.2kΩ. One dc ammeter, 0-10 ma. Procedure: 1. Obtain the resistors listed in Table 9-1. Measure and record the value of each resistor.

4 Table 9-1 Component Listed Value Measured Value R1 = 2.2kΩ 2.19kΩ R2 = 2.7kΩ 2.684kΩ R3 = 1kΩ 1.002kΩ R4 = 0.2kΩ 0.219kΩ 2. In Table 9-2 you will tabulate the total resistance as resistors are added in parallel. Enter the measured value of R1 in the table. Then connect R2 in parallel with R1 and measure the total resistance as shown in figure 9-3. Enter the measured resistance of R1 in parallel with R2 in Table 9-2. Table 9-2 R1 R1 R2 R1 R2 R3 R1 R2 R3 R4 RT(measured) 2.19kΩ 1.205kΩ 0.547kΩ 0.156kΩ IT(measured) 5.45mA 9.91mA 21.88mA 77.1mA 3. Add R3 in parallel with R1 and R2. Measure the parallel resistance of all three resistors. Then add R4 in parallel with the other three resistors and repeat the measurement. Record your results in Table Complete the parallel circuits by adding the voltage source and the ammeter as shown in figure 9-4. Measure the total current in the circuit and record it in Table 9-2.

5 5. Measure the voltage across each resistor. How does the voltage across each resistor compare to the source voltage? 6. Use ohm s law to compute the branch current in each resistor. Use the source voltage and the measured resistances. Tabulate the computed currents in Table 9-3. Table 9-3 I1 = Vs/R1 I2 = Vs/R2 I3 = Vs/R3 I4 = Vs/R4 I (computed) ma ma ma Use the general current divider rule to compute the current in each branch. Use the total current and total resistance that you recorded in Table 9-2. Compare the calculation using the current divider rule with the results using ohm s law. Show your results in Table 9-4. Table 9-4 I1 = RTIT/R1 I2 = RTIT/R2 I3 = RTIT/R3 I4 = RTIT/R4 I (computed) 5.45 ma ma ma ma The same result. 8. Simulate a burned-out resistor by removing R4 from the circuit. What is the new total current? IT = ma Conclusion: When connect the circuit in parallel the voltage is the same across all branches but the current is divided at branches.

6 Total resistance less than the smallest resistance in the circuit.

7 10 Series- Parallel Combination Circuits Objectives: 1. Use the concept of equivalent circuits to simplify series-parallel circuit analysis. 2. Compute the currents and voltages in a series-parallel combination circuit and verify your computation with circuit measurements. Summary of theory: Many circuits can be analyzed by applying the ideas developed for series and parallel circuits to them. In this experiment, the circuit elements are connected in composite circuits containing both series and parallel combinations. The key to solving these circuits is to form equivalent circuits from the series or parallel elements. The components that are in series or parallel may be replaced with an equivalent component. For example, in figure 10-1 (a) we see that the identical current must flow through both R2 and R3. We conclude that these resistors are in series and could be replaced by an equivalent resistor equal to their sum. Figure 10-1(b) illustrates this idea.

8 Materials Needed: Resistors: one 2.2kΩ, one 2.7kΩ, one 1kΩ, one 0.2kΩ. Procedure: 1. Measure and record the actual values of the four resistors listed in Table Table 10-1 Component Listed Value Measured Value R1 = 2.2kΩ 2.19kΩ R2 = 2.7kΩ 2.684kΩ R3 = 1kΩ 1.002kΩ R4 = 0.2kΩ 0.219kΩ 2. Connect the circuit shown in figures Then answer the following questions.

9 (a) Are there any resistors for which the identical current will flow through the resistors? Answer yes or no for each resistors: R1 Yes, R2 No, R3 No, R4 Yes. (b) Does any resistor have both ends directly to both ends of another resistor? Answer yes or no for each resistors: R1 Yes, R2 Yes, R3 Yes, R4 Yes. 3. Compute the total resistance of this equivalent circuit and enter it in the first two columns of Table Then disconnect the power supply and measure the total resistance to confirm your calculation. Table 10-2 Computed Voltage Divider Ohm s Law Measured RT 3.137KΩ 3.137KΩ 3.137kΩ IT 3.825mA V V V V V2,3 3.8 V V V V V I2 I3 VT 12.0 V 12.0 V V

The sum of the currents entering a circuit junction is equal to the sum of the currents leaving the junction.

The sum of the currents entering a circuit junction is equal to the sum of the currents leaving the junction. By substituting the definition for resistance into the formula for conductance, the reciprocal formula for resistance in parallel circuits is obtained: In parallel circuits, there are junctions where two

More information

Solving Parallel and Mixed Circuits, and Kirchhoff s Current Law

Solving Parallel and Mixed Circuits, and Kirchhoff s Current Law Exercise 7 Solving Parallel and Mixed Circuits, and Kirchhoff s Current Law EXERCISE OBJECTIVE When you have completed this exercise, you will be able to calculate the equivalent resistance of multiple

More information

Unit 8 Combination Circuits

Unit 8 Combination Circuits Unit 8 Combination Circuits Objectives: Define a combination circuit. List the rules for parallel circuits. List the rules for series circuits. Solve for combination circuit values. Characteristics There

More information

Ohm s Law and Electrical Circuits

Ohm s Law and Electrical Circuits Ohm s Law and Electrical Circuits INTRODUCTION In this experiment, you will measure the current-voltage characteristics of a resistor and check to see if the resistor satisfies Ohm s law. In the process

More information

Solving Series Circuits and Kirchhoff s Voltage Law

Solving Series Circuits and Kirchhoff s Voltage Law Exercise 6 Solving Series Circuits and Kirchhoff s Voltage Law EXERCISE OBJECTIVE When you have completed this exercise, you will be able to calculate the equivalent resistance of multiple resistors in

More information

electronics fundamentals

electronics fundamentals electronics fundamentals circuits, devices, and applications THOMAS L. FLOYD DAVID M. BUCHLA chapter 6 Identifying series-parallel relationships Most practical circuits have combinations of series and

More information

Bell Ringer: Define to the best of your ability the definition of: Current Voltage Resistance

Bell Ringer: Define to the best of your ability the definition of: Current Voltage Resistance Bell Ringer: Define to the best of your ability the definition of: Current Voltage Resistance Explain the behavior of the current and the voltage in a Series Circuit. Explain the behavior of the current

More information

Mixed Series & Parallel Circuits

Mixed Series & Parallel Circuits Add Important Mixed Series & arallel Circuits age: 477 Mixed Series & arallel Circuits NGSS Standards: N/A MA Curriculum Frameworks (006): 5. A hysics 1 Learning Objectives: 5.B.9.1, 5.B.9., 5.B.9., 5.C..1,

More information

Chapter 26: Direct current circuit

Chapter 26: Direct current circuit Chapter 26: Direct current circuit Resistors in circuits Equivalent resistance The nature of the electric potential and current in circuit Kirchhoff s rules (for complicated circuit analysis) Resistors

More information

Lab #2 Voltage and Current Division

Lab #2 Voltage and Current Division In this experiment, we will be investigating the concepts of voltage and current division. Voltage and current division is an application of Kirchoff s Laws. Kirchoff s Voltage Law Kirchoff s Voltage Law

More information

Prelab 4 Millman s and Reciprocity Theorems

Prelab 4 Millman s and Reciprocity Theorems Prelab 4 Millman s and Reciprocity Theorems I. For the circuit in figure (4-7a) and figure (4-7b) : a) Calculate : - The voltage across the terminals A- B with the 1kΩ resistor connected. - The current

More information

PH213 Chapter 26 solutions

PH213 Chapter 26 solutions PH213 Chapter 26 solutions 26.6. IDENTIFY: The potential drop is the same across the resistors in parallel, and the current into the parallel combination is the same as the current through the 45.0-Ω resistor.

More information

Kirchhoff s laws. Objectives. Assessment. Assessment. Assessment. Assessment 5/27/14. Apply Kirchhoff s first and second laws.

Kirchhoff s laws. Objectives. Assessment. Assessment. Assessment. Assessment 5/27/14. Apply Kirchhoff s first and second laws. Kirchhoff s laws Objectives Apply Kirchhoff s first and second laws. Calculate the current and voltage for resistor circuits connected in parallel. Calculate the current and voltage for resistor circuits

More information

Voltage, Current and Resistance

Voltage, Current and Resistance Voltage, Current and Resistance Foundations in Engineering WV Curriculum, 2002 Foundations in Engineering Content Standards and Objectives 2436.8.3 Explain the relationship between current, voltage, and

More information

The following symbols are used in electric circuits:

The following symbols are used in electric circuits: Circuit Electricity The following symbols are used in electric circuits: Four devices are commonly used in the laboratory to study Ohm s law: the battery, the voltmeter, the ammeter and a resistance. The

More information

Combined Series and Parallel Circuits

Combined Series and Parallel Circuits Combined Series and Parallel Circuits Objectives: 1. Calculate the equivalent resistance, current, and voltage of series and parallel circuits. 2. Calculate the equivalent resistance of circuits combining

More information

Ohm's Law and DC Circuits

Ohm's Law and DC Circuits Physics Lab II Ohm s Law Name: Partner: Partner: Partner: Ohm's Law and DC Circuits EQUIPMENT NEEDED: Circuits Experiment Board Two Dcell Batteries Wire leads Multimeter 100, 330, 560, 1k, 10k, 100k, 220k

More information

3. Voltage and Current laws

3. Voltage and Current laws 1 3. Voltage and Current laws 3.1 Node, Branches, and loops A branch represents a single element such as a voltage source or a resistor A node is the point of the connection between two or more elements

More information

Lab #5 ENG RC Circuits

Lab #5 ENG RC Circuits Name:. Lab #5 ENG 220-001 Date: Learning objectives of this experiment is that students will be able to: Measure the effects of frequency upon an RC circuit Calculate and understand circuit current, impedance,

More information

AP Physics - Problem Drill 14: Electric Circuits

AP Physics - Problem Drill 14: Electric Circuits AP Physics - Problem Drill 14: Electric Circuits No. 1 of 10 1. Identify the four electric circuit symbols. (A) 1. AC power 2. Battery 3. Light Bulb 4. Resistor (B) 1. Ammeter 2. Resistor 3. AC Power 4.

More information

Questions Bank of Electrical Circuits

Questions Bank of Electrical Circuits Questions Bank of Electrical Circuits 1. If a 100 resistor and a 60 XL are in series with a 115V applied voltage, what is the circuit impedance? 2. A 50 XC and a 60 resistance are in series across a 110V

More information

Lab 4 OHM S LAW AND KIRCHHOFF S CIRCUIT RULES

Lab 4 OHM S LAW AND KIRCHHOFF S CIRCUIT RULES 57 Name Date Partners Lab 4 OHM S LAW AND KIRCHHOFF S CIRCUIT RULES AMPS - VOLTS OBJECTIVES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in a circuit.

More information

Why it s important: Electrical circuits are the basis of every electrical device, from electric lights to microwave ovens to computers.

Why it s important: Electrical circuits are the basis of every electrical device, from electric lights to microwave ovens to computers. Why it s important: Electrical circuits are the basis of every electrical device, from electric lights to microwave ovens to computers. Understanding circuits helps you to use them, and to use them safely.

More information

Regents Physics Mr. Mellon Based on Chapter 22 and 23

Regents Physics Mr. Mellon Based on Chapter 22 and 23 Name Regents Physics Mr. Mellon Based on Chapter 22 and 23 Essential Questions What is current? How is it measured? What are the relationships for Ohm s Law? What device measures current and how is it

More information

PHYS 1402 General Physics II Experiment 5: Ohm s Law

PHYS 1402 General Physics II Experiment 5: Ohm s Law PHYS 1402 General Physics II Experiment 5: Ohm s Law Student Name Objective: To investigate the relationship between current and resistance for ordinary conductors known as ohmic conductors. Theory: For

More information

Direct Current Circuits

Direct Current Circuits PC1143 Physics III Direct Current Circuits 1 Objectives Apply Kirchhoff s rules to several circuits, solve for the currents in the circuits and compare the theoretical values predicted by Kirchhoff s rule

More information

DC CIRCUITS AND OHM'S LAW

DC CIRCUITS AND OHM'S LAW July 15, 2008 DC Circuits and Ohm s Law 1 Name Date Partners DC CIRCUITS AND OHM'S LAW AMPS - VOLTS OBJECTIVES OVERVIEW To learn to apply the concept of potential difference (voltage) to explain the action

More information

Unit 3. Electrical Circuits

Unit 3. Electrical Circuits Strand G. Electricity Unit 3. Electrical Circuits Contents Page Representing Direct Current Circuits 2 Rules for Series Circuits 5 Rules for Parallel Circuits 9 Circuit Calculations 14 G.3.1. Representing

More information

Lecture Week 5. Voltage Divider Method Equivalent Circuits Review Lab Report Template and Rubric Workshop

Lecture Week 5. Voltage Divider Method Equivalent Circuits Review Lab Report Template and Rubric Workshop Lecture Week 5 Voltage Divider Method Equivalent Circuits Review Lab Report Template and Rubric Workshop Voltage Divider Method The voltage divider is a method/tool that can be used to: Design voltage

More information

1 V = IR P = IV R eq. 1 R i. = R i. = R eq. V = Energy Q. I = Q t

1 V = IR P = IV R eq. 1 R i. = R i. = R eq. V = Energy Q. I = Q t Chapters 34 & 35: Electric Circuits NAME: Text: Chapter 34 Chapter 35 Think and Explain: 1-3, 6-8, 10 Think and Explain: 1-10 Think and Solve: 1-6 Think and Solve: 1-4 Vocabulary: Ohm s Law, resistance,

More information

PHYS102 Previous Exam Problems. Circuits

PHYS102 Previous Exam Problems. Circuits PHYS102 Previous Exam Problems CHAPTER 27 Circuits Combination of resistors Potential differences Single loop circuits Kirchhoff laws Multiloop circuits RC circuits General 1. Figure 1 shows two resistors

More information

Lecture # 3 Circuit Configurations

Lecture # 3 Circuit Configurations CPEN 206 Linear Circuits Lecture # 3 Circuit Configurations Dr. Godfrey A. Mills Email: gmills@ug.edu.gh Phone: 0269073163 February 15, 2016 Course TA David S. Tamakloe CPEN 206 Lecture 3 2015_2016 1 Circuit

More information

Survival Skills for Circuit Analysis

Survival Skills for Circuit Analysis P. R. Nelson Fall 2010 WhatToKnow - p. 1/46 Survival Skills for Circuit Analysis What you need to know from ECE 109 Phyllis R. Nelson prnelson@csupomona.edu Professor, Department of Electrical and Computer

More information

Strand G Unit 3: Electrical Circuits. Introduction. Learning Objectives. Introduction. Key Facts and Principles.

Strand G Unit 3: Electrical Circuits. Introduction. Learning Objectives. Introduction. Key Facts and Principles. Learning Objectives At the end of this unit you should be able to; Represent an electrical circuit using a circuit diagram. Correctly identify common components in a circuit diagram. Calculate current,

More information

Industrial Electricity

Industrial Electricity Industrial Electricity Name DUE //7 or //7 (Your next lab day) Prelab: efer to the tables on Page 5. Show work neatly and completely on separate paper for any entry labeled calculated. You do not need

More information

Electric Current & DC Circuits

Electric Current & DC Circuits Electric Current & DC Circuits PSI AP Physics B Name Multiple-Choice 1. The length of an aluminum wire is quadrupled and the radius is doubled. By which factor does the resistance change? (A) 2 (B) 4 (C)

More information

A battery transforms chemical energy into electrical energy. Chemical reactions within the cell create a potential difference between the terminals

A battery transforms chemical energy into electrical energy. Chemical reactions within the cell create a potential difference between the terminals D.C Electricity Volta discovered that electricity could be created if dissimilar metals were connected by a conductive solution called an electrolyte. This is a simple electric cell. The Electric Battery

More information

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior.

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior. Ohm s Law Object To study resistors, Ohm s law, linear behavior, and non-linear behavior. pparatus esistors, power supply, meters, wires, and alligator clips. Theory resistor is a circuit element which

More information

EE 201 Lab 1. Meters, DC sources, and DC circuits with resistors

EE 201 Lab 1. Meters, DC sources, and DC circuits with resistors Meters, DC sources, and DC circuits with resistors 0. Prior to lab Read through the lab and do as many of the calculations as possible. Then, learn how to determine resistance values using the color codes.

More information

Configurations of Resistors

Configurations of Resistors Configurations of Resistors Safety and Equipment Multimeter with probes or banana leads. Two of 50Ω and one of 100Ω resistors 5 connecting wires with double alligator clips Introduction There are two basic

More information

Experiment 16: Series and Parallel Circuits

Experiment 16: Series and Parallel Circuits Experiment 16: Series and Parallel Circuits Figure 16.1: Series Circuit Figure 16.2: Parallel Circuit 85 86 Experiment 16: Series and Parallel Circuits Figure 16.3: Combination Circuit EQUIPMENT Universal

More information

Electronic Principles Eighth Edition

Electronic Principles Eighth Edition Part 1 Electronic Principles Eighth Edition Chapter 1 Introduction SELF-TEST 1. a 7. b 13. c 19. b 2. c 8. c 14. d 20. c 3. a 9. b 15. b 21. b 4. b 10. a 16. b 22. b 5. d 11. a 17. a 23. c 6. d 12. a 18.

More information

Electromagnetism Unit- Current Sub-Unit

Electromagnetism Unit- Current Sub-Unit 4.2.1 Electrical Current Definitions current unit: or requires: Example #3 A wire carries a current of 50 amperes. How much charge flows through the wire in 10 seconds? How many electrons pass through

More information

Branch Current Method

Branch Current Method Script Hello friends. In this series of lectures we have been discussing the various types of circuits, the voltage and current laws and their application to circuits. Today in this lecture we shall be

More information

Electronic Simulation Software for Teaching and Learning

Electronic Simulation Software for Teaching and Learning Electronic Simulation Software for Teaching and Learning Electronic Simulation Software: 1. Ohms Law (a) Example 1 Zoom 200% (i) Run the simulation to verify the calculations provided. (ii) Stop the simulation

More information

Explain mathematically how a voltage that is applied to resistors in series is distributed among the resistors.

Explain mathematically how a voltage that is applied to resistors in series is distributed among the resistors. Objective of Lecture Explain mathematically how a voltage that is applied to resistors in series is distributed among the resistors. Chapter.5 in Fundamentals of Electric Circuits Chapter 5.7 Electric

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS TESTING OF DIODE CLIPPING CIRCUITS

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS TESTING OF DIODE CLIPPING CIRCUITS TESTING OF DIODE CLIPPING CIRCUITS Aim: Testing of diode clipping circuits. Apparatus required: Diode (1N4007/BY127), Resistor, DC regulated power supply, signal generator and CRO. Theory: The circuit

More information

Lab 3 DC CIRCUITS AND OHM'S LAW

Lab 3 DC CIRCUITS AND OHM'S LAW 43 Name Date Partners Lab 3 DC CIRCUITS AND OHM'S LAW AMPS + - VOLTS OBJECTIVES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in a circuit. To understand

More information

In this lecture, we will learn about some more basic laws governing the behaviour of electronic circuits beyond that of Ohm s law.

In this lecture, we will learn about some more basic laws governing the behaviour of electronic circuits beyond that of Ohm s law. In this lecture, we will learn about some more basic laws governing the behaviour of electronic circuits beyond that of Ohm s law. 1 Consider this circuit here. There is a voltage source providing power

More information

A piece of wire of resistance R is cut into five equal parts. These parts are then connected in

A piece of wire of resistance R is cut into five equal parts. These parts are then connected in Page 221»Exercise» Question 1: A piece of wire of resistance R is cut into five equal parts. These parts are then connected in parallel. If the equivalent resistance of this combination is R', then the

More information

BASIC ELECTRONICS DC CIRCUIT ANALYSIS. December 2011

BASIC ELECTRONICS DC CIRCUIT ANALYSIS. December 2011 AM 5-201 BASIC ELECTRONICS DC CIRCUIT ANALYSIS December 2011 DISTRIBUTION RESTRICTION: Approved for public release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT

More information

Chapters 35: Electric Circuits

Chapters 35: Electric Circuits Text: Chapter 35 Think and Explain: 1-10 Think and Solve: 1-4 Chapters 35: Electric Circuits NME: Vocabulary: ammeter, voltmeter, series, parallel, equivalent resistance, circuit, short circuit, open circuit

More information

Exercise 2: Ohm s Law Circuit Current

Exercise 2: Ohm s Law Circuit Current Exercise 2: Circuit Current EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine current by using Ohm s law. You will verify your results with a multimeter. DISCUSSION

More information

OHM'S LAW AND RESISTANCE NETWORKS OBJECT

OHM'S LAW AND RESISTANCE NETWORKS OBJECT 17 E7 E7.1 OHM'S LAW AND RESISTANCE NETWORKS OBJECT The objects of this experiment are to determine the voltage-current relationship for a resistor and to verify the series and parallel resistance formulae.

More information

Fig [5]

Fig [5] 1 (a) Fig. 4.1 shows the I-V characteristic of a light-emitting diode (LED). 40 I / 10 3 A 30 20 10 0 1.0 1.5 2.0 V / V Fig. 4.1 (i) In Describe the significant features of the graph in terms of current,

More information

LABORATORY Experiment 1

LABORATORY Experiment 1 LABORATORY Experiment 1 Resistivity Measurement, Resistors and Ohm s Law 1. Objectives To measure the resistance of conductors, insulators and semiconductor and calculate the resistivity of a copper wire.

More information

Closed circuit complete path for electrons follow. Open circuit no charge flow and no current.

Closed circuit complete path for electrons follow. Open circuit no charge flow and no current. Section 1 Schematic Diagrams and Circuits Electric Circuits, continued Closed circuit complete path for electrons follow. Open circuit no charge flow and no current. short circuit closed circuit, no load.

More information

Electric Circuits Notes 1 Circuits

Electric Circuits Notes 1 Circuits Electric Circuits Notes 1 Circuits In the last chapter we examined how static electric charges interact with one another. These fixed electrical charges are not the same as the electricity that we use

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 1. The figure below shows a circuit containing a battery of e.m.f. 12 V, two resistors, a light-dependent resistor (LDR), an ammeter and a switch S. The battery has negligible

More information

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING SCIENCE C103

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING SCIENCE C103 ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING SCIENCE C03 TUTORIAL 4 ELECTRICAL RESISTANCE On completion of this tutorial you should be able to do the following. Explain resistance and resistors. Explain

More information

Ohm s Law. What You ll Need A computer that can run JAVA applets Calculator Paper & Pencil for calculations.

Ohm s Law. What You ll Need A computer that can run JAVA applets Calculator Paper & Pencil for calculations. Ohm s Law What You ll Need A computer that can run JAVA applets Calculator Paper & Pencil for calculations. Ohm s Law, shown below, is a very important in the analysis of electrical phenomena and is especially

More information

Lab. 1: Simple Linear Circuit Analysis

Lab. 1: Simple Linear Circuit Analysis Lab. 1: Simple Linear Circuit Analysis Philippe Piot (February 9th, 27) 1. Ohm's Law The circuit shown in Figure 1 was built with resistance R=1 and then 1 kω. For these two values of the resistance, the

More information

CK-12 Physics Concepts - Intermediate Answer Key

CK-12 Physics Concepts - Intermediate Answer Key Chapter 19: Electrical Circuits 19.1 Series Circuits CK-12 Physics Concepts - Intermediate Answer Key 1. There are three 20.0 Ohm resistors connected in series across a 120 V generator. a. What is the

More information

Resistance and Ohm s law

Resistance and Ohm s law Resistance and Ohm s law Objectives Characterize materials as conductors or insulators based on their electrical properties. State and apply Ohm s law to calculate current, voltage or resistance in an

More information

NIRMA UNIVERSITY INSTITUTE OF TECHNOLOGY ELECTRICAL ENGINEERING DEPARTMENT EE101: Elements of Electrical Engineering DC CIRCUIT

NIRMA UNIVERSITY INSTITUTE OF TECHNOLOGY ELECTRICAL ENGINEERING DEPARTMENT EE101: Elements of Electrical Engineering DC CIRCUIT NIRMA UNIVERSITY INSTITUTE OF TECHNOLOGY ELECTRICAL ENGINEERING DEPARTMENT EE101: Elements of Electrical Engineering DC CIRCUIT Learning Objective: Resistance, Effect of temperature on resistance, temperature

More information

Chapter 23 Circuits. Chapter Goal: To understand the fundamental physical principles that govern electric circuits. Slide 23-1

Chapter 23 Circuits. Chapter Goal: To understand the fundamental physical principles that govern electric circuits. Slide 23-1 Chapter 23 Circuits Chapter Goal: To understand the fundamental physical principles that govern electric circuits. Slide 23-1 Chapter 23 Preview Looking Ahead: Analyzing Circuits Practical circuits consist

More information

University of Portland EE 271 Electrical Circuits Laboratory. Experiment: Digital-to-Analog Converter

University of Portland EE 271 Electrical Circuits Laboratory. Experiment: Digital-to-Analog Converter University of Portland EE 271 Electrical Circuits Laboratory Experiment: Digital-to-Analog Converter I. Objective The objective of this experiment is to build and test a circuit that can convert a binary

More information

Q3.: When switch S is open, the ammeter in the circuit shown in Fig 2 reads 2.0 A. When S is closed, the ammeter reading: (Ans: increases)

Q3.: When switch S is open, the ammeter in the circuit shown in Fig 2 reads 2.0 A. When S is closed, the ammeter reading: (Ans: increases) Old Exams-Chapter 27 T081 Q1. Fig 1 shows two resistors 3.0 Ω and 1.5 Ω connected in parallel and the combination is connected in series to a 4.0 Ω resistor and a 10 V emf device. The potential difference

More information

Wallace Hall Academy Physics Department. Electricity. Pupil Notes Name:

Wallace Hall Academy Physics Department. Electricity. Pupil Notes Name: Wallace Hall Academy Physics Department Electricity Pupil Notes Name: 1 Learning intentions for this unit? Be able to state that there are two types of charge; positive and negative Be able to state that

More information

Resistance and Ohm s Law

Resistance and Ohm s Law esistance and Ohm s Law Name D TA Partners Date Section Please be careful about the modes of the multimeter. When you measure a voltage, you are not allowed to use current mode (A), and vice versa. Otherwise,

More information

Exp. 1 USE OF BASIC ELECTRONIC MEASURING INSTRUMENTS, PART I

Exp. 1 USE OF BASIC ELECTRONIC MEASURING INSTRUMENTS, PART I Exp. 1 USE OF BASIC ELECTRONIC MEASURING INSTRUMENTS, PART I PURPOSE: To become familiar with some of the instruments used in this and subsequent labs. To develop proper laboratory procedures relative

More information

Exercise 3: Power in a Series/Parallel Circuit

Exercise 3: Power in a Series/Parallel Circuit DC Fundamentals Power in DC Circuits Exercise 3: Power in a Series/Parallel Circuit EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine the power dissipated in a series/

More information

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior.

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior. Ohm s Law Object To study resistors, Ohm s law, linear behavior, and non-linear behavior. pparatus esistors, power supply, meters, wires, and alligator clips. Theory resistor is a circuit element which

More information

Basic Circuits. PC1222 Fundamentals of Physics II. 1 Objectives. 2 Equipment List. 3 Theory

Basic Circuits. PC1222 Fundamentals of Physics II. 1 Objectives. 2 Equipment List. 3 Theory PC1222 Fundamentals of Physics II Basic Circuits 1 Objectives Investigate the relationship among three variables (resistance, current and voltage) in direct current circuits. Investigate the behaviours

More information

AP Physics 1 Multiple Choice Questions - Chapter 12

AP Physics 1 Multiple Choice Questions - Chapter 12 1 If a current of 125 ma exists in a metal wire, how many electrons flow past a given cross section of the wire in 10 minutes? a 6.25 x 10 21 electrons b 3.98 x 10 19 electrons c 5.35 x 10 22 electrons

More information

Fundamental of Electrical Engineering Lab Manual

Fundamental of Electrical Engineering Lab Manual Fundamental of Electrical Engineering Lab Manual EngE-111/318 Dr.Hidayath Mirza & Dr.Rais Ahmad Sheikh 1/9/19 EngE111 Testing Battery (DC) Testing AC Testing Wire 1 P a g e Resistor measurement Testing

More information

A battery transforms chemical energy into electrical energy. Chemical reactions within the cell create a potential difference between the terminals

A battery transforms chemical energy into electrical energy. Chemical reactions within the cell create a potential difference between the terminals D.C Electricity Volta discovered that electricity could be created if dissimilar metals were connected by a conductive solution called an electrolyte. This is a simple electric cell. The Electric Battery

More information

EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING

EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING Tai-Chang Chen University of Washington, Bothell Spring 2010 EE215 1 1 WEEK 2 SIMPLE RESISTIVE CIRCUITS April 9 th, 2010 TC Chen UWB 2010 EE215 2 2 QUESTIONS

More information

SCRIPT. Voltage Dividers

SCRIPT. Voltage Dividers SCRIPT Hello friends in our earlier discussion we talked about series resistive circuits, when connected in series, resistors form a "string" in which there is only one path for current. Ohm's law can

More information

ELECTRICAL CIRCUITS LABORATORY MANUAL (II SEMESTER)

ELECTRICAL CIRCUITS LABORATORY MANUAL (II SEMESTER) ELECTRICAL CIRCUITS LABORATORY MANUAL (II SEMESTER) LIST OF EXPERIMENTS. Verification of Ohm s laws and Kirchhoff s laws. 2. Verification of Thevenin s and Norton s Theorem. 3. Verification of Superposition

More information

Kirchhoff s laws, induction law, Maxwell equations, current, voltage, resistance, parallel connection, series connection, potentiometer

Kirchhoff s laws, induction law, Maxwell equations, current, voltage, resistance, parallel connection, series connection, potentiometer Kirchhoff s laws with Cobra4 TEP Related Topics Kirchhoff s laws, induction law, Maxwell equations, current, voltage, resistance, parallel connection, series connection, potentiometer Principle First Kirchhoff

More information

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I ECE285 Electric Circuit Analysis I Spring 2014 Nathalia Peixoto Rev.2.0: 140124. Rev 2.1. 140813 1 Lab reports Background: these 9 experiments are designed as simple building blocks (like Legos) and students

More information

Electrical Circuits I (ENGR 2405) Chapter 2 Ohm s Law, KCL, KVL, Resistors in Series/Parallel

Electrical Circuits I (ENGR 2405) Chapter 2 Ohm s Law, KCL, KVL, Resistors in Series/Parallel Electrical Circuits I (ENG 2405) Chapter 2 Ohm s Law, KCL, KVL, esistors in Series/Parallel esistivity Materials tend to resist the flow of electricity through them. This property is called resistance

More information

Lightbulbs and Dimmer Switches: DC Circuits

Lightbulbs and Dimmer Switches: DC Circuits Introduction It is truly amazing how much we rely on electricity, and especially on devices operated off of DC current. Your PDA, cell phone, laptop computer and calculator are all examples of DC electronics.

More information

Multimeter Introduction

Multimeter Introduction Multimeter Introduction Abstract The general aim of this lab is to introduce you to the proper use of a digital multimeter with its associated uncertainties and to show how to propagate those uncertainties.

More information

AC/DC ELECTRICAL SYSTEMS

AC/DC ELECTRICAL SYSTEMS AC/DC ELECTRICAL SYSTEMS LEARNING ACTIVITY PACKET COMBINATION CIRCUITS BB227-BC05UEN LEARNING ACTIVITY PACKET 5 COMBINATION CIRCUITS INTRODUCTION This LAP will continue to build on series circuits and

More information

Equipment Requirements Recommended Model. Voltage Range: 0V to 1000V Accuracy: <0.04% No substitute. No substitute No substitute

Equipment Requirements Recommended Model. Voltage Range: 0V to 1000V Accuracy: <0.04% No substitute. No substitute No substitute This manual change describes the procedure when use the Agilent 6353A/6353H Standard Resistor Set instead of the Agilent 6340A RC-Box in 4339B Performance Test. When use the Agilent 6340A RC-Box, refer

More information

PHYS 1112L - Introductory Physics Laboratory II

PHYS 1112L - Introductory Physics Laboratory II PHYS 1112L - Introductory Physics Laboratory II Laboratory Advanced Sheet dc Circuits 1. Objectives. The objectives of this laboratory are a. to be able to construct dc circuits given a circuit diagram

More information

Electric Circuits. Physics 6 th Six Weeks

Electric Circuits. Physics 6 th Six Weeks Electric Circuits Physics 6 th Six Weeks Electric Circuits (a review) A circuit is a path through which electricity can flow Electric Circuits always contain 3 things: a voltage source, a conductor (usually

More information

Objective of the Lecture

Objective of the Lecture Objective of the Lecture Present Kirchhoff s Current and Voltage Laws. Chapter 5.6 and Chapter 6.3 Principles of Electric Circuits Chapter4.6 and Chapter 5.5 Electronics Fundamentals or Electric Circuit

More information

ENGR 1181 Lab 3: Circuits

ENGR 1181 Lab 3: Circuits ENGR 1181 Lab 3: Circuits - - Lab Procedure - Report Guidelines 2 Overview of Circuits Lab: The Circuits Lab introduces basic concepts of electric circuits such as series and parallel circuit, used in

More information

Example: In the given circuit: (a) How much power is drawn from the battery? (b) How much current flows through each resistor? And in what direction?

Example: In the given circuit: (a) How much power is drawn from the battery? (b) How much current flows through each resistor? And in what direction? 0.8 Circuits Wired Partially in Series and Partially in Parallel Example: n the given circuit: (a) How much power is drawn from the battery? (b) How much current flows through each resistor? And in what

More information

+ R 2. EE 2205 Lab 2. Circuit calculations: Node-Voltage and Mesh-Current

+ R 2. EE 2205 Lab 2. Circuit calculations: Node-Voltage and Mesh-Current Circuit calculations: Node-Voltage and Mesh-Current We continue our study of some simple and representative circuits as we develop and practice our understanding of basic circuit analysis techniques. Below

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 8 NETWORK ANALYSIS OBJECTIVES The purpose of this experiment is to mathematically analyze a circuit

More information

Exercise 1: Series RLC Circuits

Exercise 1: Series RLC Circuits RLC Circuits AC 2 Fundamentals Exercise 1: Series RLC Circuits EXERCISE OBJECTIVE When you have completed this exercise, you will be able to analyze series RLC circuits by using calculations and measurements.

More information

Wheatstone bridge (Item No.: P )

Wheatstone bridge (Item No.: P ) Wheatstone bridge (Item No.: P2410200) Curricular Relevance Area of Expertise: Physics Education Level: University Topic: Electricity and Magnetism Subtopic: Electric Current and Resistance Experiment:

More information

San Francisco State University. School of Engineering

San Francisco State University. School of Engineering 1 San Francisco State University School of Engineering ENGR 300 ENGR EXPERIMENATION Final Project: MULTI SOURCE CIRCUITS ANALYSIS TECHNIQUES Submitted By: Kuan Keong Austin Yiu Yin Yin Wu March 8, 2005

More information

Source Transformations

Source Transformations Source Transformations Introduction The circuits in this set of problems consist of independent sources, resistors and a meter. In particular, these circuits do not contain dependent sources. Each of these

More information

Unit-1(A) Circuit Analysis Techniques

Unit-1(A) Circuit Analysis Techniques Unit-1(A Circuit Analysis Techniques Basic Terms used in a Circuit 1. Node :- It is a point in a circuit where two or more circuit elements are connected together. 2. Branch :- It is that part of a network

More information

Exercise 1: The Rheostat

Exercise 1: The Rheostat Potentiometers and Rheostats DC Fundamentals Exercise 1: The Rheostat EXERCISE OBJECTIVE When you have completed this exercise, you will be able to vary current by using a rheostat. You will verify your

More information