FFT Analyzer. Gianfranco Miele, Ph.D

Size: px
Start display at page:

Download "FFT Analyzer. Gianfranco Miele, Ph.D"

Transcription

1 FFT Analyzer Gianfranco Miele, Ph.D

2 Introduction It is a measurement instrument that evaluates the spectrum of a time domain signal applying the Fourier transform. + X f = x t e j2πft dt Observing this mathematical relation, it is possible to affirm that for an exact calculation of the frequency spectrum of an input signal, an infinite period of observation would be required. The result of this calculation would be a continuous spectrum, so the frequency resolution would be unlimited.

3 Introduction It is obvious that we cannot have an infinite period of observation but only a limited portion recorded in the time domain. To obtain the spectrum of the signal, the DFT, or better the FFT, can be applied to the recorded signal. N 1 X n f = x k e j2πnk N k=0 As a consequence, the frequency resolution is limited but the spectrum can nevertheless be determined with sufficient accuracy.

4 Simplified block diagram Analog signal f S x(t) Signal conditioning ADC Windowing Memory FFT Display Digital signal

5 Signal conditioning Goal It manipulates the analog signal in order to meet the requirements of the next block for further processing. As a consequence, to comprehend the operations that this stage has to execute, we have to analyze the characteristics of the next block. ADC

6 Analog-to-Digital Converter ADC Sampler Quantizer

7 Analog-to-Digital Converter Sampler It converts a continuous input signal into a time-discrete signal and the information about the time characteristic is lost. "Signal Sampling" by 4mobile (talk) Licensed under Public domain via Wikimedia Commons -

8 Analog-to-Digital Converter Sampler The bandwidth of the input signal must be limited or else the higher signal frequencies will cause aliasing effects due to sampling. no aliasing f max = f S 2 f S 2 f S 3f S 2 aliasing f max > f S 2 f S 2 f S 3f S 2

9 Analog-to-Digital Converter Quantizer It maps the amplitude values of the samples to a countable set. Generally a n-bit ADC has 2 n possible values. "3-bit resolution analog comparison" by Hyacinth Own work. Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons

10 Analog-to-Digital Converter Quantizer The difference between the quantized amplitude value of the digital signal and the actual amplitude value of the analog signal is called quantization error.

11 Analog-to-Digital Converter Quantizer 2V fs /2 /2 The range of input values that produces the same output is called quantum ( ). = 2V fs 2 n = V fs 2 n 1 Therefore the quantization error has a uniform distribution ranging in 2, 2.

12 Analog-to-Digital Converter Quantizer 2V fs This error can be considered as a quantization noise with a RMS value /2 /2 V rms = x 2 dx = 12

13 Analog-to-Digital Converter Underloading In an underload condition, the input signal does not fill the entire range of the ADC's available dynamic range. All of the available dynamic range of the analog-to-digital converter is not used effectively.

14 Analog-to-Digital Converter Large DC bias If the input signal has a large DC bias, all the dynamic range is occupied by the DC signal. As a consequence the alternating part is greatly influenced by the quantization error.

15 Analog-to-Digital Converter Overloading The ADC's dynamic range is too low for the amplitude of the input signal and this causes the clipping of the signal.

16 Signal conditioning Signal Conditioning Coupling AC coupling is used to avoid quantization error due to a large DC bias. It removes the DC component of the input signal by using a high pass filter.

17 Signal conditioning Signal Conditioning Coupling Amplifier or Attenuator The incoming signal is amplified or attenuated in order to better exploit the ADC's dynamic range.

18 Signal conditioning Signal Conditioning Coupling Amplifier or Attenuator Anti-alias filter To limit the input signal bandwidth a Low-Pass Filter with a cut-off frequency lower than f S /2. From AN Agilent Vector Signal Analysis Basics Copyright Agilent Technologies

19 Memory The output of the ADC represents a band-limited, digital version of the analog input signal in time-domain. This digital data stream is stored in sample memory. It can be seen as a circular FIFO (first in, first out) buffer that collects individual data samples into blocks of data called time records. N-1 0

20 Windowing To mitigate the effect of the spectral leakage several weighting functions called windows are used. They heavily weight the beginning and end of the sample record to zero and the middle of the sample is weighted towards unity. Several window function have been designed and they have different spectral characteristics.

21 Windowing Rectangular window The ADC's dynamic range is too low for the amplitude of the input signal and this causes the clipping of the signal.

22 Windowing Rectangular window Narrow main lobe Very large side lobes Slow roll-off It can introduce large amplitude errors up to 36%.

23 Windowing Hanning window

24 Windowing Hanning window Main lobe larger than rectangular window main lobe Side lobes large but lower than rectangular window side lobe Roll-off fast It can introduce amplitude errors up to 16%.

25 Windowing Flat-top window

26 Windowing Flat-top window Main lobe is very large and flat Side lobes are very low It is very accurate for amplitude measurement but has a very poor frequency resolution.

27 FFT and display The windowed time records are used by the Digital Signal Processor (DSP) in order to compute the FFT and the result is displayed on a display.

28 FFT and display 0 f max Span

29 Zoom 0 f max f max 2

30 Zoom In order to enlarge the desired spectrum portion it is not sufficient to plot the previously-computed bins that are in the considered frequency interval, because we will have a poor resolution. To improve the frequency resolution we have to change the sampling rate. In fact, choosing f = f S N f S < f S we obtain f = f S N < f

31 New block diagram Analog signal f S x(t) Signal conditioning ADC Decimating filter Windowing Memory FFT Display Digital signal

32 Decimating filter Decimating filter Digital LPF Decimator The digital decimating filters simultaneously decrease the sample rate and limit the bandwidth of the signal. The sampling rate into the digital filter is f S ; the sampling rate out of the filter is f S /n, where n is the decimation factor and an integer value. Similarly, the bandwidth at the input filter is BW, and the bandwidth at the output of the filter is BW/n.

33 Decimating filter Decimating filter Digital LPF Decimator Typically a binary decimation is performed, which means that the sampling rate is changed by integer powers of 2. Span = Span 2 m These new span are called cardinal spans.

34 Zoom 0 f max 2

35 Arbitrary span In order to obtain arbitrary span it is necessary to interpolate and resample the time record stored in the memory. In this way we can have any desired sampling rate.

36 New block diagram Analog signal f S x(t) Signal conditioning ADC Decimating filter Windowing Resampling Memory FFT Display Digital signal

37 Band selectable Fourier analysis The FFT is inherently a baseband transform. This means that the frequency range of the FFT starts from 0 Hz (or DC) and extends to some maximum frequency, f S /2. This can be a significant limitation in measurement situations where a small frequency band, that does not start from 0 Hz, needs to be analyzed.

38 Band selectable Fourier analysis 0 f C f max 2 f max

39 New block diagram Analog signal f S e j2πf CnT S x(t) Signal conditioning ADC Decimating filter Windowing Resampling Memory FFT Display Digital signal

40 Band selectable Fourier analysis The frequency span of interest is mixed with a complex sinusoid at the zoom span center frequency, which causes that frequency span to be mixed down to baseband. The signal is filtered and decimated/resampled for the specified span and all out-of-band frequencies are removed.

41 Band selectable Fourier analysis f C span 2 f C f C + span 2

42 Strong points The phase information is not lost during the complex Fourier transform. FFT analyzers are therefore able to determine the complex spectrum by magnitude and phase. It takes a time record of the signal and processes all frequencies simultaneously.

43 Weak points Quantization of the samples causes the quantization noise which causes a limitation of the dynamic range towards its lower end. The higher the resolution (number of bits) of the A/D converter used, the lower the quantization noise. Due to the limited bandwidth of the available highresolution A/D converters, a compromise between dynamic range and maximum input frequency has to be found for FFT analyzers. FFT analyzers are not suitable for the analysis of pulsed signals.

Windows and Leakage Brief Overview

Windows and Leakage Brief Overview Windows and Leakage Brief Overview When converting a signal from the time domain to the frequency domain, the Fast Fourier Transform (FFT) is used. The Fourier Transform is defined by the Equation: j2πft

More information

Agilent Vector Signal Analysis Basics. Application Note

Agilent Vector Signal Analysis Basics. Application Note Agilent Vector Signal Analysis Basics Application Note Table of Contents Vector signal Analysis 3 VSA measurement advantages 4 VSA measurement concepts and theory of operation 6 Data windowing leakage

More information

Swept-tuned spectrum analyzer. Gianfranco Miele, Ph.D

Swept-tuned spectrum analyzer. Gianfranco Miele, Ph.D Swept-tuned spectrum analyzer Gianfranco Miele, Ph.D www.eng.docente.unicas.it/gianfranco_miele g.miele@unicas.it Reference level and logarithmic amplifier The signal displayed on the instrument screen

More information

Chapter 5 Window Functions. periodic with a period of N (number of samples). This is observed in table (3.1).

Chapter 5 Window Functions. periodic with a period of N (number of samples). This is observed in table (3.1). Chapter 5 Window Functions 5.1 Introduction As discussed in section (3.7.5), the DTFS assumes that the input waveform is periodic with a period of N (number of samples). This is observed in table (3.1).

More information

Spectrum Analysis - Elektronikpraktikum

Spectrum Analysis - Elektronikpraktikum Spectrum Analysis Introduction Why measure a spectra? In electrical engineering we are most often interested how a signal develops over time. For this time-domain measurement we use the Oscilloscope. Like

More information

Advanced Digital Signal Processing Part 2: Digital Processing of Continuous-Time Signals

Advanced Digital Signal Processing Part 2: Digital Processing of Continuous-Time Signals Advanced Digital Signal Processing Part 2: Digital Processing of Continuous-Time Signals Gerhard Schmidt Christian-Albrechts-Universität zu Kiel Faculty of Engineering Institute of Electrical Engineering

More information

Frequency Domain Representation of Signals

Frequency Domain Representation of Signals Frequency Domain Representation of Signals The Discrete Fourier Transform (DFT) of a sampled time domain waveform x n x 0, x 1,..., x 1 is a set of Fourier Coefficients whose samples are 1 n0 X k X0, X

More information

Laboratory Experiment #1 Introduction to Spectral Analysis

Laboratory Experiment #1 Introduction to Spectral Analysis J.B.Francis College of Engineering Mechanical Engineering Department 22-403 Laboratory Experiment #1 Introduction to Spectral Analysis Introduction The quantification of electrical energy can be accomplished

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Amplitude Amplitude Discrete Fourier Transform (DFT) DFT transforms the time domain signal samples to the frequency domain components. DFT Signal Spectrum Time Frequency DFT is often used to do frequency

More information

6 Sampling. Sampling. The principles of sampling, especially the benefits of coherent sampling

6 Sampling. Sampling. The principles of sampling, especially the benefits of coherent sampling Note: Printed Manuals 6 are not in Color Objectives This chapter explains the following: The principles of sampling, especially the benefits of coherent sampling How to apply sampling principles in a test

More information

Hideo Okawara s Mixed Signal Lecture Series. DSP-Based Testing Fundamentals 14 FIR Filter

Hideo Okawara s Mixed Signal Lecture Series. DSP-Based Testing Fundamentals 14 FIR Filter Hideo Okawara s Mixed Signal Lecture Series DSP-Based Testing Fundamentals 14 FIR Filter Verigy Japan June 2009 Preface to the Series ADC and DAC are the most typical mixed signal devices. In mixed signal

More information

Fourier Theory & Practice, Part I: Theory (HP Product Note )

Fourier Theory & Practice, Part I: Theory (HP Product Note ) Fourier Theory & Practice, Part I: Theory (HP Product Note 54600-4) By: Robert Witte Hewlett-Packard Co. Introduction: This product note provides a brief review of Fourier theory, especially the unique

More information

DIGITAL SIGNAL PROCESSING. Chapter 1 Introduction to Discrete-Time Signals & Sampling

DIGITAL SIGNAL PROCESSING. Chapter 1 Introduction to Discrete-Time Signals & Sampling DIGITAL SIGNAL PROCESSING Chapter 1 Introduction to Discrete-Time Signals & Sampling by Dr. Norizam Sulaiman Faculty of Electrical & Electronics Engineering norizam@ump.edu.my OER Digital Signal Processing

More information

Signal Processing Toolbox

Signal Processing Toolbox Signal Processing Toolbox Perform signal processing, analysis, and algorithm development Signal Processing Toolbox provides industry-standard algorithms for analog and digital signal processing (DSP).

More information

Understanding Spectrum Analysis

Understanding Spectrum Analysis Understanding Spectrum Analysis Swept, FFT, and RTSA principles E & T Team September 2017 Operation principles of SPA architectures Agenda Part I Chasing dynamic and transient signals Probability of intercept

More information

CHAPTER 4. PULSE MODULATION Part 2

CHAPTER 4. PULSE MODULATION Part 2 CHAPTER 4 PULSE MODULATION Part 2 Pulse Modulation Analog pulse modulation: Sampling, i.e., information is transmitted only at discrete time instants. e.g. PAM, PPM and PDM Digital pulse modulation: Sampling

More information

The Fundamentals of Mixed Signal Testing

The Fundamentals of Mixed Signal Testing The Fundamentals of Mixed Signal Testing Course Information The Fundamentals of Mixed Signal Testing course is designed to provide the foundation of knowledge that is required for testing modern mixed

More information

Pulsed VNA Measurements:

Pulsed VNA Measurements: Pulsed VNA Measurements: The Need to Null! January 21, 2004 presented by: Loren Betts Copyright 2004 Agilent Technologies, Inc. Agenda Pulsed RF Devices Pulsed Signal Domains VNA Spectral Nulling Measurement

More information

Time Matters How Power Meters Measure Fast Signals

Time Matters How Power Meters Measure Fast Signals Time Matters How Power Meters Measure Fast Signals By Wolfgang Damm, Product Management Director, Wireless Telecom Group Power Measurements Modern wireless and cable transmission technologies, as well

More information

Communications I (ELCN 306)

Communications I (ELCN 306) Communications I (ELCN 306) c Samy S. Soliman Electronics and Electrical Communications Engineering Department Cairo University, Egypt Email: samy.soliman@cu.edu.eg Website: http://scholar.cu.edu.eg/samysoliman

More information

Understanding Digital Signal Processing

Understanding Digital Signal Processing Understanding Digital Signal Processing Richard G. Lyons PRENTICE HALL PTR PRENTICE HALL Professional Technical Reference Upper Saddle River, New Jersey 07458 www.photr,com Contents Preface xi 1 DISCRETE

More information

The Fundamentals of FFT-Based Signal Analysis and Measurement Michael Cerna and Audrey F. Harvey

The Fundamentals of FFT-Based Signal Analysis and Measurement Michael Cerna and Audrey F. Harvey Application ote 041 The Fundamentals of FFT-Based Signal Analysis and Measurement Michael Cerna and Audrey F. Harvey Introduction The Fast Fourier Transform (FFT) and the power spectrum are powerful tools

More information

Islamic University of Gaza. Faculty of Engineering Electrical Engineering Department Spring-2011

Islamic University of Gaza. Faculty of Engineering Electrical Engineering Department Spring-2011 Islamic University of Gaza Faculty of Engineering Electrical Engineering Department Spring-2011 DSP Laboratory (EELE 4110) Lab#4 Sampling and Quantization OBJECTIVES: When you have completed this assignment,

More information

Linear Time-Invariant Systems

Linear Time-Invariant Systems Linear Time-Invariant Systems Modules: Wideband True RMS Meter, Audio Oscillator, Utilities, Digital Utilities, Twin Pulse Generator, Tuneable LPF, 100-kHz Channel Filters, Phase Shifter, Quadrature Phase

More information

EE 215 Semester Project SPECTRAL ANALYSIS USING FOURIER TRANSFORM

EE 215 Semester Project SPECTRAL ANALYSIS USING FOURIER TRANSFORM EE 215 Semester Project SPECTRAL ANALYSIS USING FOURIER TRANSFORM Department of Electrical and Computer Engineering Missouri University of Science and Technology Page 1 Table of Contents Introduction...Page

More information

UNIVERSITY OF SWAZILAND

UNIVERSITY OF SWAZILAND UNIVERSITY OF SWAZILAND MAIN EXAMINATION, MAY 2013 FACULTY OF SCIENCE AND ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING TITLE OF PAPER: INTRODUCTION TO DIGITAL SIGNAL PROCESSING COURSE

More information

Measurement of RMS values of non-coherently sampled signals. Martin Novotny 1, Milos Sedlacek 2

Measurement of RMS values of non-coherently sampled signals. Martin Novotny 1, Milos Sedlacek 2 Measurement of values of non-coherently sampled signals Martin ovotny, Milos Sedlacek, Czech Technical University in Prague, Faculty of Electrical Engineering, Dept. of Measurement Technicka, CZ-667 Prague,

More information

ME scope Application Note 01 The FFT, Leakage, and Windowing

ME scope Application Note 01 The FFT, Leakage, and Windowing INTRODUCTION ME scope Application Note 01 The FFT, Leakage, and Windowing NOTE: The steps in this Application Note can be duplicated using any Package that includes the VES-3600 Advanced Signal Processing

More information

SAMPLING THEORY. Representing continuous signals with discrete numbers

SAMPLING THEORY. Representing continuous signals with discrete numbers SAMPLING THEORY Representing continuous signals with discrete numbers Roger B. Dannenberg Professor of Computer Science, Art, and Music Carnegie Mellon University ICM Week 3 Copyright 2002-2013 by Roger

More information

Biomedical Signals. Signals and Images in Medicine Dr Nabeel Anwar

Biomedical Signals. Signals and Images in Medicine Dr Nabeel Anwar Biomedical Signals Signals and Images in Medicine Dr Nabeel Anwar Noise Removal: Time Domain Techniques 1. Synchronized Averaging (covered in lecture 1) 2. Moving Average Filters (today s topic) 3. Derivative

More information

ENGR 210 Lab 12: Sampling and Aliasing

ENGR 210 Lab 12: Sampling and Aliasing ENGR 21 Lab 12: Sampling and Aliasing In the previous lab you examined how A/D converters actually work. In this lab we will consider some of the consequences of how fast you sample and of the signal processing

More information

System on a Chip. Prof. Dr. Michael Kraft

System on a Chip. Prof. Dr. Michael Kraft System on a Chip Prof. Dr. Michael Kraft Lecture 5: Data Conversion ADC Background/Theory Examples Background Physical systems are typically analogue To apply digital signal processing, the analogue signal

More information

Analyzing A/D and D/A converters

Analyzing A/D and D/A converters Analyzing A/D and D/A converters 2013. 10. 21. Pálfi Vilmos 1 Contents 1 Signals 3 1.1 Periodic signals 3 1.2 Sampling 4 1.2.1 Discrete Fourier transform... 4 1.2.2 Spectrum of sampled signals... 5 1.2.3

More information

Data Acquisition Systems. Signal DAQ System The Answer?

Data Acquisition Systems. Signal DAQ System The Answer? Outline Analysis of Waveforms and Transforms How many Samples to Take Aliasing Negative Spectrum Frequency Resolution Synchronizing Sampling Non-repetitive Waveforms Picket Fencing A Sampled Data System

More information

Summary Last Lecture

Summary Last Lecture Interleaved ADCs EE47 Lecture 4 Oversampled ADCs Why oversampling? Pulse-count modulation Sigma-delta modulation 1-Bit quantization Quantization error (noise) spectrum SQNR analysis Limit cycle oscillations

More information

Developer Techniques Sessions

Developer Techniques Sessions 1 Developer Techniques Sessions Physical Measurements and Signal Processing Control Systems Logging and Networking 2 Abstract This session covers the technologies and configuration of a physical measurement

More information

EE390 Final Exam Fall Term 2002 Friday, December 13, 2002

EE390 Final Exam Fall Term 2002 Friday, December 13, 2002 Name Page 1 of 11 EE390 Final Exam Fall Term 2002 Friday, December 13, 2002 Notes 1. This is a 2 hour exam, starting at 9:00 am and ending at 11:00 am. The exam is worth a total of 50 marks, broken down

More information

PART I: The questions in Part I refer to the aliasing portion of the procedure as outlined in the lab manual.

PART I: The questions in Part I refer to the aliasing portion of the procedure as outlined in the lab manual. Lab. #1 Signal Processing & Spectral Analysis Name: Date: Section / Group: NOTE: To help you correctly answer many of the following questions, it may be useful to actually run the cases outlined in the

More information

Capacitive MEMS accelerometer for condition monitoring

Capacitive MEMS accelerometer for condition monitoring Capacitive MEMS accelerometer for condition monitoring Alessandra Di Pietro, Giuseppe Rotondo, Alessandro Faulisi. STMicroelectronics 1. Introduction Predictive maintenance (PdM) is a key component of

More information

EECS 452 Midterm Exam (solns) Fall 2012

EECS 452 Midterm Exam (solns) Fall 2012 EECS 452 Midterm Exam (solns) Fall 2012 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. Scores: # Points Section I /40 Section

More information

Multirate DSP, part 3: ADC oversampling

Multirate DSP, part 3: ADC oversampling Multirate DSP, part 3: ADC oversampling Li Tan - May 04, 2008 Order this book today at www.elsevierdirect.com or by calling 1-800-545-2522 and receive an additional 20% discount. Use promotion code 92562

More information

Chapter 7. Introduction. Analog Signal and Discrete Time Series. Sampling, Digital Devices, and Data Acquisition

Chapter 7. Introduction. Analog Signal and Discrete Time Series. Sampling, Digital Devices, and Data Acquisition Chapter 7 Sampling, Digital Devices, and Data Acquisition Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Introduction Integrating analog electrical transducers with

More information

ANALOGUE AND DIGITAL COMMUNICATION

ANALOGUE AND DIGITAL COMMUNICATION ANALOGUE AND DIGITAL COMMUNICATION Syed M. Zafi S. Shah Umair M. Qureshi Lecture xxx: Analogue to Digital Conversion Topics Pulse Modulation Systems Advantages & Disadvantages Pulse Code Modulation Pulse

More information

EXPERIMENT WISE VIVA QUESTIONS

EXPERIMENT WISE VIVA QUESTIONS EXPERIMENT WISE VIVA QUESTIONS Pulse Code Modulation: 1. Draw the block diagram of basic digital communication system. How it is different from analog communication system. 2. What are the advantages of

More information

Chapter-2 SAMPLING PROCESS

Chapter-2 SAMPLING PROCESS Chapter-2 SAMPLING PROCESS SAMPLING: A message signal may originate from a digital or analog source. If the message signal is analog in nature, then it has to be converted into digital form before it can

More information

For the system to have the high accuracy needed for many measurements,

For the system to have the high accuracy needed for many measurements, Sampling and Digitizing Most real life signals are continuous analog voltages. These voltages might be from an electronic circuit or could be the output of a transducer and be proportional to current,

More information

! Multi-Rate Filter Banks (con t) ! Data Converters. " Anti-aliasing " ADC. " Practical DAC. ! Noise Shaping

! Multi-Rate Filter Banks (con t) ! Data Converters.  Anti-aliasing  ADC.  Practical DAC. ! Noise Shaping Lecture Outline ESE 531: Digital Signal Processing! (con t)! Data Converters Lec 11: February 16th, 2017 Data Converters, Noise Shaping " Anti-aliasing " ADC " Quantization "! Noise Shaping 2! Use filter

More information

EEE 309 Communication Theory

EEE 309 Communication Theory EEE 309 Communication Theory Semester: January 2016 Dr. Md. Farhad Hossain Associate Professor Department of EEE, BUET Email: mfarhadhossain@eee.buet.ac.bd Office: ECE 331, ECE Building Part 05 Pulse Code

More information

Concordia University. Discrete-Time Signal Processing. Lab Manual (ELEC442) Dr. Wei-Ping Zhu

Concordia University. Discrete-Time Signal Processing. Lab Manual (ELEC442) Dr. Wei-Ping Zhu Concordia University Discrete-Time Signal Processing Lab Manual (ELEC442) Course Instructor: Dr. Wei-Ping Zhu Fall 2012 Lab 1: Linear Constant Coefficient Difference Equations (LCCDE) Objective In this

More information

Real-Time Digital Down-Conversion with Equalization

Real-Time Digital Down-Conversion with Equalization Real-Time Digital Down-Conversion with Equalization February 20, 2019 By Alexander Taratorin, Anatoli Stein, Valeriy Serebryanskiy and Lauri Viitas DOWN CONVERSION PRINCIPLE Down conversion is basic operation

More information

The Fast Fourier Transform

The Fast Fourier Transform The Fast Fourier Transform Basic FFT Stuff That s s Good to Know Dave Typinski, Radio Jove Meeting, July 2, 2014, NRAO Green Bank Ever wonder how an SDR-14 or Dongle produces the spectra that it does?

More information

Spectrum. The basic idea of measurement. Instrumentation for spectral measurements Ján Šaliga 2017

Spectrum. The basic idea of measurement. Instrumentation for spectral measurements Ján Šaliga 2017 Instrumentation for spectral measurements Ján Šaliga 017 Spectrum Substitution of waveform by the sum of harmonics (sinewaves) with specific amplitudes, frequences and phases. The sum of sinewave have

More information

Sampling of Continuous-Time Signals. Reference chapter 4 in Oppenheim and Schafer.

Sampling of Continuous-Time Signals. Reference chapter 4 in Oppenheim and Schafer. Sampling of Continuous-Time Signals Reference chapter 4 in Oppenheim and Schafer. Periodic Sampling of Continuous Signals T = sampling period fs = sampling frequency when expressing frequencies in radians

More information

An Investigation into the Effects of Sampling on the Loop Response and Phase Noise in Phase Locked Loops

An Investigation into the Effects of Sampling on the Loop Response and Phase Noise in Phase Locked Loops An Investigation into the Effects of Sampling on the Loop Response and Phase oise in Phase Locked Loops Peter Beeson LA Techniques, Unit 5 Chancerygate Business Centre, Surbiton, Surrey Abstract. The majority

More information

Understanding PDM Digital Audio. Thomas Kite, Ph.D. VP Engineering Audio Precision, Inc.

Understanding PDM Digital Audio. Thomas Kite, Ph.D. VP Engineering Audio Precision, Inc. Understanding PDM Digital Audio Thomas Kite, Ph.D. VP Engineering Audio Precision, Inc. Table of Contents Introduction... 3 Quick Glossary... 3 PCM... 3 Noise Shaping... 4 Oversampling... 5 PDM Microphones...

More information

SAMPLING AND RECONSTRUCTING SIGNALS

SAMPLING AND RECONSTRUCTING SIGNALS CHAPTER 3 SAMPLING AND RECONSTRUCTING SIGNALS Many DSP applications begin with analog signals. In order to process these analog signals, the signals must first be sampled and converted to digital signals.

More information

Topic 2. Signal Processing Review. (Some slides are adapted from Bryan Pardo s course slides on Machine Perception of Music)

Topic 2. Signal Processing Review. (Some slides are adapted from Bryan Pardo s course slides on Machine Perception of Music) Topic 2 Signal Processing Review (Some slides are adapted from Bryan Pardo s course slides on Machine Perception of Music) Recording Sound Mechanical Vibration Pressure Waves Motion->Voltage Transducer

More information

Hideo Okawara s Mixed Signal Lecture Series. DSP-Based Testing Fundamentals 22 Trend Removal (Part 2)

Hideo Okawara s Mixed Signal Lecture Series. DSP-Based Testing Fundamentals 22 Trend Removal (Part 2) Hideo Okawara s Mixed Signal Lecture Series DSP-Based Testing Fundamentals 22 Trend Removal (Part 2) Verigy Japan February 2010 Preface to the Series ADC and DAC are the most typical mixed signal devices.

More information

ADVANCED WAVEFORM GENERATION TECHNIQUES FOR ATE

ADVANCED WAVEFORM GENERATION TECHNIQUES FOR ATE ADVANCED WAVEFORM GENERATION TECHNIQUES FOR ATE Christopher D. Ziomek Emily S. Jones ZTEC Instruments, Inc. 7715 Tiburon Street NE Albuquerque, NM 87109 Abstract Comprehensive waveform generation is an

More information

ECE 6560 Multirate Signal Processing Lecture 9

ECE 6560 Multirate Signal Processing Lecture 9 Multirate Signal Processing Lecture 9 Dr. Bradley J. Bazuin estern Michigan University College of Engineering and Applied Sciences Department of Electrical and Computer Engineering 193. Michigan Ave. Kalamazoo

More information

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters FIR Filter Design Chapter Intended Learning Outcomes: (i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters (ii) Ability to design linear-phase FIR filters according

More information

Signal Processing. Introduction

Signal Processing. Introduction Signal Processing 0 Introduction One of the premiere uses of MATLAB is in the analysis of signal processing and control systems. In this chapter we consider signal processing. The final chapter of the

More information

AD9410 Prototype Evaluation

AD9410 Prototype Evaluation AD941 Prototype Evaluation Grant Hampson May 13, 22 Introduction This document describes the evaluation of a 2MHz analogue-to-digital converter acquisition evaluation board. The evaluation board contains

More information

Fundamentals of Data Converters. DAVID KRESS Director of Technical Marketing

Fundamentals of Data Converters. DAVID KRESS Director of Technical Marketing Fundamentals of Data Converters DAVID KRESS Director of Technical Marketing 9/14/2016 Analog to Electronic Signal Processing Sensor (INPUT) Amp Converter Digital Processor Actuator (OUTPUT) Amp Converter

More information

Final Exam Solutions June 14, 2006

Final Exam Solutions June 14, 2006 Name or 6-Digit Code: PSU Student ID Number: Final Exam Solutions June 14, 2006 ECE 223: Signals & Systems II Dr. McNames Keep your exam flat during the entire exam. If you have to leave the exam temporarily,

More information

The Case for Oversampling

The Case for Oversampling EE47 Lecture 4 Oversampled ADCs Why oversampling? Pulse-count modulation Sigma-delta modulation 1-Bit quantization Quantization error (noise) spectrum SQNR analysis Limit cycle oscillations nd order ΣΔ

More information

New Features of IEEE Std Digitizing Waveform Recorders

New Features of IEEE Std Digitizing Waveform Recorders New Features of IEEE Std 1057-2007 Digitizing Waveform Recorders William B. Boyer 1, Thomas E. Linnenbrink 2, Jerome Blair 3, 1 Chair, Subcommittee on Digital Waveform Recorders Sandia National Laboratories

More information

Laboratory Manual 2, MSPS. High-Level System Design

Laboratory Manual 2, MSPS. High-Level System Design No Rev Date Repo Page 0002 A 2011-09-07 MSPS 1 of 16 Title High-Level System Design File MSPS_0002_LM_matlabSystem_A.odt Type EX -- Laboratory Manual 2, Area MSPS ES : docs : courses : msps Created Per

More information

Multirate Filtering, Resampling Filters, Polyphase Filters. or how to make efficient FIR filters

Multirate Filtering, Resampling Filters, Polyphase Filters. or how to make efficient FIR filters Multirate Filtering, Resampling Filters, Polyphase Filters or how to make efficient FIR filters THE NOBLE IDENTITY 1 Efficient Implementation of Resampling filters H(z M ) M:1 M:1 H(z) Rule 1: Filtering

More information

CS3291: Digital Signal Processing

CS3291: Digital Signal Processing CS39 Exam Jan 005 //08 /BMGC University of Manchester Department of Computer Science First Semester Year 3 Examination Paper CS39: Digital Signal Processing Date of Examination: January 005 Answer THREE

More information

An Introduction to the FDM-TDM Digital Transmultiplexer: Appendix C *

An Introduction to the FDM-TDM Digital Transmultiplexer: Appendix C * OpenStax-CNX module: m32675 1 An Introduction to the FDM-TDM Digital Transmultiplexer: Appendix C * John Treichler This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution

More information

Butterworth Active Bandpass Filter using Sallen-Key Topology

Butterworth Active Bandpass Filter using Sallen-Key Topology Butterworth Active Bandpass Filter using Sallen-Key Topology Technical Report 5 Milwaukee School of Engineering ET-3100 Electronic Circuit Design Submitted By: Alex Kremnitzer Date: 05-11-2011 Date Performed:

More information

Choosing the Best ADC Architecture for Your Application Part 3:

Choosing the Best ADC Architecture for Your Application Part 3: Choosing the Best ADC Architecture for Your Application Part 3: Hello, my name is Luis Chioye, I am an Applications Engineer with the Texas Instruments Precision Data Converters team. And I am Ryan Callaway,

More information

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters FIR Filter Design Chapter Intended Learning Outcomes: (i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters (ii) Ability to design linear-phase FIR filters according

More information

14 fasttest. Multitone Audio Analyzer. Multitone and Synchronous FFT Concepts

14 fasttest. Multitone Audio Analyzer. Multitone and Synchronous FFT Concepts Multitone Audio Analyzer The Multitone Audio Analyzer (FASTTEST.AZ2) is an FFT-based analysis program furnished with System Two for use with both analog and digital audio signals. Multitone and Synchronous

More information

Analogue Interfacing. What is a signal? Continuous vs. Discrete Time. Continuous time signals

Analogue Interfacing. What is a signal? Continuous vs. Discrete Time. Continuous time signals Analogue Interfacing What is a signal? Signal: Function of one or more independent variable(s) such as space or time Examples include images and speech Continuous vs. Discrete Time Continuous time signals

More information

Agilent PNA Microwave Network Analyzers

Agilent PNA Microwave Network Analyzers Agilent PNA Microwave Network Analyzers Application Note 1408-12 Pulsed-RF S-Parameter Measurements Using Wideband and Narrowband Detection Table of Contents Introduction..................................................................3

More information

Michael F. Toner, et. al.. "Distortion Measurement." Copyright 2000 CRC Press LLC. <

Michael F. Toner, et. al.. Distortion Measurement. Copyright 2000 CRC Press LLC. < Michael F. Toner, et. al.. "Distortion Measurement." Copyright CRC Press LLC. . Distortion Measurement Michael F. Toner Nortel Networks Gordon W. Roberts McGill University 53.1

More information

II Year (04 Semester) EE6403 Discrete Time Systems and Signal Processing

II Year (04 Semester) EE6403 Discrete Time Systems and Signal Processing Class Subject Code Subject II Year (04 Semester) EE6403 Discrete Time Systems and Signal Processing 1.CONTENT LIST: Introduction to Unit I - Signals and Systems 2. SKILLS ADDRESSED: Listening 3. OBJECTIVE

More information

Design of FIR Filter for Efficient Utilization of Speech Signal Akanksha. Raj 1 Arshiyanaz. Khateeb 2 Fakrunnisa.Balaganur 3

Design of FIR Filter for Efficient Utilization of Speech Signal Akanksha. Raj 1 Arshiyanaz. Khateeb 2 Fakrunnisa.Balaganur 3 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 03, 2015 ISSN (online): 2321-0613 Design of FIR Filter for Efficient Utilization of Speech Signal Akanksha. Raj 1 Arshiyanaz.

More information

Hideo Okawara s Mixed Signal Lecture Series. DSP-Based Testing Fundamentals 6 Spectrum Analysis -- FFT

Hideo Okawara s Mixed Signal Lecture Series. DSP-Based Testing Fundamentals 6 Spectrum Analysis -- FFT Hideo Okawara s Mixed Signal Lecture Series DSP-Based Testing Fundamentals 6 Spectrum Analysis -- FFT Verigy Japan October 008 Preface to the Series ADC and DAC are the most typical mixed signal devices.

More information

Signal Processing for Digitizers

Signal Processing for Digitizers Signal Processing for Digitizers Modular digitizers allow accurate, high resolution data acquisition that can be quickly transferred to a host computer. Signal processing functions, applied in the digitizer

More information

CHAPTER. delta-sigma modulators 1.0

CHAPTER. delta-sigma modulators 1.0 CHAPTER 1 CHAPTER Conventional delta-sigma modulators 1.0 This Chapter presents the traditional first- and second-order DSM. The main sources for non-ideal operation are described together with some commonly

More information

Lecture Outline. ESE 531: Digital Signal Processing. Anti-Aliasing Filter with ADC ADC. Oversampled ADC. Oversampled ADC

Lecture Outline. ESE 531: Digital Signal Processing. Anti-Aliasing Filter with ADC ADC. Oversampled ADC. Oversampled ADC Lecture Outline ESE 531: Digital Signal Processing Lec 12: February 21st, 2017 Data Converters, Noise Shaping (con t)! Data Converters " Anti-aliasing " ADC " Quantization "! Noise Shaping 2 Anti-Aliasing

More information

Multirate Digital Signal Processing

Multirate Digital Signal Processing Multirate Digital Signal Processing Basic Sampling Rate Alteration Devices Up-sampler - Used to increase the sampling rate by an integer factor Down-sampler - Used to increase the sampling rate by an integer

More information

Moving from continuous- to discrete-time

Moving from continuous- to discrete-time Moving from continuous- to discrete-time Sampling ideas Uniform, periodic sampling rate, e.g. CDs at 44.1KHz First we will need to consider periodic signals in order to appreciate how to interpret discrete-time

More information

Understanding Probability of Intercept for Intermittent Signals

Understanding Probability of Intercept for Intermittent Signals 2013 Understanding Probability of Intercept for Intermittent Signals Richard Overdorf & Rob Bordow Agilent Technologies Agenda Use Cases and Signals Time domain vs. Frequency Domain Probability of Intercept

More information

Figure 1: Block diagram of Digital signal processing

Figure 1: Block diagram of Digital signal processing Experiment 3. Digital Process of Continuous Time Signal. Introduction Discrete time signal processing algorithms are being used to process naturally occurring analog signals (like speech, music and images).

More information

Lab 4 Digital Scope and Spectrum Analyzer

Lab 4 Digital Scope and Spectrum Analyzer Lab 4 Digital Scope and Spectrum Analyzer Page 4.1 Lab 4 Digital Scope and Spectrum Analyzer Goals Review Starter files Interface a microphone and record sounds, Design and implement an analog HPF, LPF

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 12: February 21st, 2017 Data Converters, Noise Shaping (con t) Lecture Outline! Data Converters " Anti-aliasing " ADC " Quantization " Practical DAC! Noise Shaping

More information

EECS 452 Midterm Exam Winter 2012

EECS 452 Midterm Exam Winter 2012 EECS 452 Midterm Exam Winter 2012 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. Scores: # Points Section I /40 Section II

More information

Based with permission on lectures by John Getty Laboratory Electronics II (PHSX262) Spring 2011 Lecture 9 Page 1

Based with permission on lectures by John Getty Laboratory Electronics II (PHSX262) Spring 2011 Lecture 9 Page 1 Today 3// Lecture 9 Analog Digital Conversion Sampled Data Acquisition Systems Discrete Sampling and Nyquist Digital to Analog Conversion Analog to Digital Conversion Homework Study for Exam next week

More information

Chapter 3 Data Transmission COSC 3213 Summer 2003

Chapter 3 Data Transmission COSC 3213 Summer 2003 Chapter 3 Data Transmission COSC 3213 Summer 2003 Courtesy of Prof. Amir Asif Definitions 1. Recall that the lowest layer in OSI is the physical layer. The physical layer deals with the transfer of raw

More information

ECEGR Lab #8: Introduction to Simulink

ECEGR Lab #8: Introduction to Simulink Page 1 ECEGR 317 - Lab #8: Introduction to Simulink Objective: By: Joe McMichael This lab is an introduction to Simulink. The student will become familiar with the Help menu, go through a short example,

More information

Sampling and Reconstruction of Analog Signals

Sampling and Reconstruction of Analog Signals Sampling and Reconstruction of Analog Signals Chapter Intended Learning Outcomes: (i) Ability to convert an analog signal to a discrete-time sequence via sampling (ii) Ability to construct an analog signal

More information

EECS 452 Practice Midterm Exam Solutions Fall 2014

EECS 452 Practice Midterm Exam Solutions Fall 2014 EECS 452 Practice Midterm Exam Solutions Fall 2014 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. Scores: # Points Section

More information

EE521 Analog and Digital Communications

EE521 Analog and Digital Communications EE51 Analog and Digital Communications January 5, 006 Instructor: James K Beard, PhD Office: Ft. Washington TBA Email:. jkbeard@temple.edu, jkbeard@comcast.net Office Hours: Wednesdays 3:00 PM to 4:30

More information

Discrete-Time Signal Processing (DTSP) v14

Discrete-Time Signal Processing (DTSP) v14 EE 392 Laboratory 5-1 Discrete-Time Signal Processing (DTSP) v14 Safety - Voltages used here are less than 15 V and normally do not present a risk of shock. Objective: To study impulse response and the

More information

LAB #7: Digital Signal Processing

LAB #7: Digital Signal Processing LAB #7: Digital Signal Processing Equipment: Pentium PC with NI PCI-MIO-16E-4 data-acquisition board NI BNC 2120 Accessory Box VirtualBench Instrument Library version 2.6 Function Generator (Tektronix

More information

Outline. Discrete time signals. Impulse sampling z-transform Frequency response Stability INF4420. Jørgen Andreas Michaelsen Spring / 37 2 / 37

Outline. Discrete time signals. Impulse sampling z-transform Frequency response Stability INF4420. Jørgen Andreas Michaelsen Spring / 37 2 / 37 INF4420 Discrete time signals Jørgen Andreas Michaelsen Spring 2013 1 / 37 Outline Impulse sampling z-transform Frequency response Stability Spring 2013 Discrete time signals 2 2 / 37 Introduction More

More information