Bouncing off Walls and Trees: Multipath Channel Modeling for Satellite Navigation from the Samples Point of View

Size: px
Start display at page:

Download "Bouncing off Walls and Trees: Multipath Channel Modeling for Satellite Navigation from the Samples Point of View"

Transcription

1 Bouncing off Walls and Trees: Multipath Channel Modeling for Satellite Navigation from the Samples Point of View F. M. Schubert German Aerospace Center (DLR) Institute for Communications and Navigation

2 TUM Navigation Colloquium 2 GNSS Channel Modeling and its Application in Simulation ESA Networking/Partnering Initiative (NPI) Partner institutions ESA s Networking and Partnering Initiative connects ESA to universities through PhD exchange Partner institutions German Aerospace Center (DLR) Institute for Communications and Navigation European Space Agency (ESA/ESTEC/TEC-EEP) European Space Research and Technology Center Aalborg University Navigation and Communications Section

3 TUM Navigation Colloquium 4 GNSS Channel Modeling and its Application in Simulation GPS C/A code correlation function Satellites send spreading codes Receiver correlates rx signal with locally generated code replica Correlation function R(τ) = 1 T c Tc 0 c(t)x(t t sp /2 τ)dt Code 1 01 C/A code, Prompt 3 2 C/A code ACF, chip spacing 1 early late multipath contribution (t = 0.4) sum Code 1 01 Early Correlation 1 0 Code Late Time [µs] Time delay [chips]

4 TUM Navigation Colloquium 5 GNSS Channel Modeling and its Application in Simulation GPS Receiver Tracking Loop Structure

5 TUM Navigation Colloquium 6 GNSS Channel Modeling and its Application in Simulation Effects of Multipath Propagation on GNSS Receivers Two-Ray Model Two-Ray example, receiver reads line-of-sight signal (LOS) one additional ray Example error envelope for different delays ray 1 ray 2 (real) ray 2 (imag) P delay/m wave propagation effects in urban and rural areas lead to strong multipath reception reflection, scattering, diffraction on buildings, trees, etc. many echoes impinge within few nanoseconds after LOS

6 TUM Navigation Colloquium 7 GNSS Channel Modeling and its Application in Simulation GNSS performance in diffcult, high-multipath environments How to Analyse Multi-Path Disturbances? multipath propagation and shadowing are dominant error sources analysis analytically: works only for single echo (error envelope) GNSS measurements in position domain: only sum of effects visible, not the respective contributions sample-level simulation using a channel model computationally expensive due to high signal bandwidths new simulator for fast processing of channel data needed

7 TUM Navigation Colloquium 8 GNSS Channel Modeling and its Application in Simulation DLR Land Mobile Satellite Channel Sounding Measurements Measurement campaign To get to know the GNSS propagation channel: measurements have to be conducted DLR conducted field measurements in 2002 for urban, sub-urban, rural, and pedestrian scenarios frequency: MHz (L-band) bandwidth: 100 Mhz power: 10 W (EIRP)

8 TUM Navigation Colloquium 9 GNSS Channel Modeling and its Application in Simulation DLR Land Mobile Satellite Channel Sounding Measurements Results Raw measurements ESPRIT super-resolution result Delay [ns] Delay [ns]

9 TUM Navigation Colloquium 10 GNSS Channel Modeling and its Application in Simulation DLR GNSS Urban Channel Model Structure

10 Time-Variant Channel Impulse Responses (CIR) Sample output of DLR GNSS urban channel model time variable t, delay variable τ, update rate f CIR A t 1/f CIR t TUM Navigation Colloquium 11 GNSS Channel Modeling and its Application in Simulation

11 TUM Navigation Colloquium 12 GNSS Channel Modeling and its Application in Simulation DLR GNSS Urban Channel Model Output time-variant CIRs Power Delay Profile: 2D histogram p(p, τ) Power delay profile probability density function Resulting power delay profile of a Power [db] Delay [ns] sample urban simulation run CIR rate: 300 Hz simulated time: 5 s max vehicle speed: 50 km/h satellite elevation: 30 satellite azimut: 45

12 TUM Navigation Colloquium 13 GNSS Channel Modeling and its Application in Simulation Radio Channel Characteristics of Rural Environments Rural measurements cover villages vegetation trees, alleys, forests electricity poles Modeling approaches statistic of all measurements analyze measurements and identify contributors Synthesis approach at first, single trees will be analyzed

13 TUM Navigation Colloquium 14 GNSS Channel Modeling and its Application in Simulation Radio Channel Characteristics of Rural Environments

14 TUM Navigation Colloquium 16 GNSS Channel Modeling and its Application in Simulation Rural Measurements, Analysis of Single Trees van trajectory channel impulse responses track in open field needed, without buildings

15 TUM Navigation Colloquium 17 GNSS Channel Modeling and its Application in Simulation Wave Propagation Effects Caused by Single Trees Tree Parameterization Goal develop wide-band channel model for trees leaves cause mainly attenuation (water content) branches reponsible for scattering (wavelength) Model properties constant specific attenuation for tree canopy and trunk number of point scatterers inside canopy

16 TUM Navigation Colloquium 18 GNSS Channel Modeling and its Application in Simulation Rural Measurements, Analysis of Single Trees Delay Spread Determination minimum excess distance maximum excess distance

17 TUM Navigation Colloquium 19 GNSS Channel Modeling and its Application in Simulation Treetop Scattering d tree-rx (t) d a tx-tree (t) d LOS (t) receiver point sources drawn when incident angle changes multiple scattering inside treetop up to 3 rd order transmitter specific attenuation modeled for treetop and trunk

18 TUM Navigation Colloquium 20 GNSS Channel Modeling and its Application in Simulation Rural channel model output, signal model Complex amplitude of ith point source a i (t) = Pmax N 1 [d e,i (t)] 2 ej 2π «de,i (t) λ (1) Resulting signal at the receiver (LOS + N point sources in canopy): s(t, τ) = k e j 2π dlos (t) λ δ(τ) + N a i (t)δ(τ τ i ) (2) i=1

19 TUM Navigation Colloquium 21 GNSS Channel Modeling and its Application in Simulation Time-variance of the Radio Channel Artificial Scenery

20 TUM Navigation Colloquium 22 GNSS Channel Modeling and its Application in Simulation Rural Channel Model Output Comparison: Raw Measurements vs. Channel Model Output raw channel sounding measurements model output

21 TUM Navigation Colloquium 23 GNSS Channel Modeling and its Application in Simulation GNSS performance in diffcult, high-multipath environments How to Analyse Multi-Path Disturbances? GNSS channel model/measurements description of time-domain simulation

22 TUM Navigation Colloquium 24 GNSS Channel Modeling and its Application in Simulation Time-Domain Simulation, Structure Channel model output is used Simulation chain from sender to receiver

23 TUM Navigation Colloquium 25 GNSS Channel Modeling and its Application in Simulation Time-Variant Channel Impulse Responses (CIR) How to use continous CIRs in a discrete time-domain simulation?

24 TUM Navigation Colloquium 26 GNSS Channel Modeling and its Application in Simulation Time-Variant Channel Impulse Responses (CIR) Using Channel Model Data: CIR FIR Coefficients Interpolation magnitude CIR impulses sinc for CIR impulse 1 sinc for CIR impulse 2 sum of sinc functions FIR coefficients delay τ [s] x 10 8 Time-continuous CIR impulses must be interpolated to time-discrete FIR coefficients Low-pass interpolation: FIR(t) = mx k=0 ω max = 2π f smpl 2 A CIR (k) sin[ωmax(t T CIR (k))] ω max(t T CIR (k)) Example: f smpl = 100 MHz

25 TUM Navigation Colloquium 27 GNSS Channel Modeling and its Application in Simulation Time-Variant Channel Impulse Responses (CIR) CIR Usage in SNACS magnitude CIR impulses sinc for CIR impulse 1 sinc for CIR impulse 2 sum of sinc functions FIR coefficients delay τ [s] x 10 8

26 TUM Navigation Colloquium 28 GNSS Channel Modeling and its Application in Simulation SNACS GNSS Simulation Chain Implementation modular object-oriented approach, written in C++ parallel processing every processing block is implemented as its own thread complex convolution expands to multiple threads blocks are connected with circular buffers (asynchronous access)

27 GNSS Simulation Chain SNACS Demonstration simulation parameters Configuration File Simulation: { SamplingFrequency = 40e6; // Hz SignalLength = 10.0; // s IntermediateFrequency = 9e6; // Hz SNBlocks = ( sampling frequency signal two-sided bandwidth ADC resolution early-late spacing DLL discriminator correlation time 40 MHz GPS C/A MHz 3 bit 0.1 chips early-late s { Type = snsignalgenerategps ; SignalType = C/A ; } { Type = snprocessorlpf ; CutOffFrequency = 10.23e6; } { Type = snprocessoradc ; }, { Type = snsdrgps ; SignalType = C/A ; DiscriminatorType = EML ;... } TUM Navigation Colloquium 29 GNSS Channel Modeling and its Application in Simulation ); };

28 TUM Navigation Colloquium 30 GNSS Channel Modeling and its Application in Simulation SNACS Demonstration 1

29 GNSS Simulation Chain SNACS Demonstration simulation parameters Configuration File Simulation: { SamplingFrequency = 40e6; // Hz SignalLength = 10.0; // s IntermediateFrequency = 9e6; // Hz SNBlocks = ( sampling frequency signal two-sided bandwidth ADC resolution early-late spacing DLL discriminator correlation time 40 MHz GPS C/A MHz 3 bit 0.1 chips early-late s { Type = snsignalgenerategps ; SignalType = C/A ; } { Type = snprocessorlpf ; CutOffFrequency = 10.23e6; } { Type = snprocessorchannel ; Filename = /CIRs/ DLR-Urban-Elevation-25.h5 ; }, { Type = snprocessoradc ; }, { Type = snsdrgps ; SignalType = C/A ; DiscriminatorType = EML ;... } TUM Navigation Colloquium 31 GNSS Channel Modeling and its Application in Simulation ); };

30 TUM Navigation Colloquium 32 GNSS Channel Modeling and its Application in Simulation SNACS Demonstration 2

31 TUM Navigation Colloquium 33 GNSS Channel Modeling and its Application in Simulation SNACS simulation result GPS C/A signal standard DLL

32 TUM Navigation Colloquium 34 GNSS Channel Modeling and its Application in Simulation Simulation with Raw Measurement Data Drive through an Alley

33 TUM Navigation Colloquium 35 GNSS Channel Modeling and its Application in Simulation Simulation with Raw Measurement Data Drive through an Alley

34 TUM Navigation Colloquium 36 GNSS Channel Modeling and its Application in Simulation Bouncing off Walls and Trees: Multipath Channel Modeling for Satellite Navigation from the Samples Point of View Conclusion flexible wide-band rural channel model is being developed GNSS sample-level software simulator, C++, multi-threading usage of channel model data and raw channel measurements Future Rural Channel Model process all available measurement data for single tree scattering include electricity poles, forrests, and buildings SNACS time-domain GNSS simulation Galileo signals implementation multi-link simulation

35 Bouncing off Walls and Trees: Multipath Channel Modeling for Satellite Navigation from the Samples Point of View SNACS is an open-source project hosted on Thank you very much for your attention! TUM Navigation Colloquium 37 GNSS Channel Modeling and its Application in Simulation

Modeling the GNSS Rural Radio Channel: Wave Propagation Effects caused by Trees and Alleys

Modeling the GNSS Rural Radio Channel: Wave Propagation Effects caused by Trees and Alleys Modeling the GNSS Rural Radio Channel: Wave Propagation Effects caused by Trees and Alleys F. M. Schubert 1,2,3 (ION member), A. Lehner 1, A. Steingass 1, P. Robertson 1, B. H. Fleury 3,4, R. Prieto-Cerdeira

More information

The Influence of Multipath on the Positioning Error

The Influence of Multipath on the Positioning Error The Influence of Multipath on the Positioning Error Andreas Lehner German Aerospace Center Münchnerstraße 20 D-82230 Weßling, Germany andreas.lehner@dlr.de Co-Authors: Alexander Steingaß, German Aerospace

More information

Measuring GALILEOs multipath channel

Measuring GALILEOs multipath channel Measuring GALILEOs multipath channel Alexander Steingass German Aerospace Center Münchnerstraße 20 D-82230 Weßling, Germany alexander.steingass@dlr.de Co-Authors: Andreas Lehner, German Aerospace Center,

More information

Measuring Galileo s Channel the Pedestrian Satellite Channel

Measuring Galileo s Channel the Pedestrian Satellite Channel Satellite Navigation Systems: Policy, Commercial and Technical Interaction 1 Measuring Galileo s Channel the Pedestrian Satellite Channel A. Lehner, A. Steingass, German Aerospace Center, Münchnerstrasse

More information

Characteristics of the Land Mobile Navigation Channel for Pedestrian Applications

Characteristics of the Land Mobile Navigation Channel for Pedestrian Applications Characteristics of the Land Mobile Navigation Channel for Pedestrian Applications Andreas Lehner German Aerospace Center Münchnerstraße 20 D-82230 Weßling, Germany andreas.lehner@dlr.de Co-Authors: Alexander

More information

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P.

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. The Radio Channel COS 463: Wireless Networks Lecture 14 Kyle Jamieson [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. Steenkiste] Motivation The radio channel is what limits most radio

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2003 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2004 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2005 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

Wideband Channel Characterization. Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1

Wideband Channel Characterization. Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1 Wideband Channel Characterization Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1 Wideband Systems - ISI Previous chapter considered CW (carrier-only) or narrow-band signals which do NOT

More information

Pilot Aided Channel Estimation for MIMO MC-CDMA

Pilot Aided Channel Estimation for MIMO MC-CDMA Pilot Aided Channel Estimation for MIMO MC-CDMA Stephan Sand (DLR) Fabrice Portier CNRS/IETR NEWCOM Dept. 1, SWP 2, Barcelona, Spain, 3 rd November, 2005 Outline System model Frame structure MIMO Pilot

More information

RECOMMENDATION ITU-R P The prediction of the time and the spatial profile for broadband land mobile services using UHF and SHF bands

RECOMMENDATION ITU-R P The prediction of the time and the spatial profile for broadband land mobile services using UHF and SHF bands Rec. ITU-R P.1816 1 RECOMMENDATION ITU-R P.1816 The prediction of the time and the spatial profile for broadband land mobile services using UHF and SHF bands (Question ITU-R 211/3) (2007) Scope The purpose

More information

Antennas and Propagation. Chapter 6a: Propagation Definitions, Path-based Modeling

Antennas and Propagation. Chapter 6a: Propagation Definitions, Path-based Modeling Antennas and Propagation a: Propagation Definitions, Path-based Modeling Introduction Propagation How signals from antennas interact with environment Goal: model channel connecting TX and RX Antennas and

More information

Wireless Channel Propagation Model Small-scale Fading

Wireless Channel Propagation Model Small-scale Fading Wireless Channel Propagation Model Small-scale Fading Basic Questions T x What will happen if the transmitter - changes transmit power? - changes frequency? - operates at higher speed? Transmit power,

More information

A Real-Time Multi-Path Fading Channel Emulator Developed for LTE Testing

A Real-Time Multi-Path Fading Channel Emulator Developed for LTE Testing A Real-Time Multi-Path Fading Channel Emulator Developed for LTE Testing Elliot Briggs 1, Brian Nutter 1, Dan McLane 2 SDR 11 - WInnComm Washington D.C., November 29 th December 2 nd 1: Texas Tech University,

More information

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss Introduction Small-scale fading is used to describe the rapid fluctuation of the amplitude of a radio

More information

Channel. Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Multi-Path Fading. Dr. Noor M Khan EE, MAJU

Channel. Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Multi-Path Fading. Dr. Noor M Khan EE, MAJU Instructor: Prof. Dr. Noor M. Khan Department of Electronic Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN Ph: +9 (51) 111-878787, Ext. 19 (Office), 186 (Lab) Fax: +9

More information

Mobile Radio Propagation Channel Models

Mobile Radio Propagation Channel Models Wireless Information Transmission System Lab. Mobile Radio Propagation Channel Models Institute of Communications Engineering National Sun Yat-sen University Table of Contents Introduction Propagation

More information

Digital Communications over Fading Channel s

Digital Communications over Fading Channel s over Fading Channel s Instructor: Prof. Dr. Noor M Khan Department of Electronic Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN Ph: +9 (51) 111-878787, Ext. 19 (Office),

More information

Multi-Path Fading Channel

Multi-Path Fading Channel Instructor: Prof. Dr. Noor M. Khan Department of Electronic Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN Ph: +9 (51) 111-878787, Ext. 19 (Office), 186 (Lab) Fax: +9

More information

Channel Modelling ETIM10. Channel models

Channel Modelling ETIM10. Channel models Channel Modelling ETIM10 Lecture no: 6 Channel models Fredrik Tufvesson Department of Electrical and Information Technology Lund University, Sweden Fredrik.Tufvesson@eit.lth.se 2012-02-03 Fredrik Tufvesson

More information

Lecture 7/8: UWB Channel. Kommunikations

Lecture 7/8: UWB Channel. Kommunikations Lecture 7/8: UWB Channel Kommunikations Technik UWB Propagation Channel Radio Propagation Channel Model is important for Link level simulation (bit error ratios, block error ratios) Coverage evaluation

More information

The Measurement and Characterisation of Ultra Wide-Band (UWB) Intentionally Radiated Signals

The Measurement and Characterisation of Ultra Wide-Band (UWB) Intentionally Radiated Signals The Measurement and Characterisation of Ultra Wide-Band (UWB) Intentionally Radiated Signals Rafael Cepeda Toshiba Research Europe Ltd University of Bristol November 2007 Rafael.cepeda@toshiba-trel.com

More information

Navigation für herausfordernde Anwendungen Robuste Satellitennavigation für sicherheitskritische Anwendungen

Navigation für herausfordernde Anwendungen Robuste Satellitennavigation für sicherheitskritische Anwendungen www.dlr.de Chart 1 Navigation für herausfordernde Anwendungen Robuste Satellitennavigation für sicherheitskritische Anwendungen PD Dr.-Ing. habil. Michael Meurer German Aerospace Centre (DLR), Oberpfaffenhofen

More information

WIRELESS COMMUNICATION TECHNOLOGIES (16:332:546) LECTURE 5 SMALL SCALE FADING

WIRELESS COMMUNICATION TECHNOLOGIES (16:332:546) LECTURE 5 SMALL SCALE FADING WIRELESS COMMUNICATION TECHNOLOGIES (16:332:546) LECTURE 5 SMALL SCALE FADING Instructor: Dr. Narayan Mandayam Slides: SabarishVivek Sarathy A QUICK RECAP Why is there poor signal reception in urban clutters?

More information

EC 551 Telecommunication System Engineering. Mohamed Khedr

EC 551 Telecommunication System Engineering. Mohamed Khedr EC 551 Telecommunication System Engineering Mohamed Khedr http://webmail.aast.edu/~khedr 1 Mohamed Khedr., 2008 Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week

More information

EC 551 Telecommunication System Engineering. Mohamed Khedr

EC 551 Telecommunication System Engineering. Mohamed Khedr EC 551 Telecommunication System Engineering Mohamed Khedr http://webmail.aast.edu/~khedr 1 Mohamed Khedr., 2008 Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week

More information

Satellite Navigation Principle and performance of GPS receivers

Satellite Navigation Principle and performance of GPS receivers Satellite Navigation Principle and performance of GPS receivers AE4E08 GPS Block IIF satellite Boeing North America Christian Tiberius Course 2010 2011, lecture 3 Today s topics Introduction basic idea

More information

A Hybrid Indoor Tracking System for First Responders

A Hybrid Indoor Tracking System for First Responders A Hybrid Indoor Tracking System for First Responders Precision Indoor Personnel Location and Tracking for Emergency Responders Technology Workshop August 4, 2009 Marc Harlacher Director, Location Solutions

More information

Narrow- and wideband channels

Narrow- and wideband channels RADIO SYSTEMS ETIN15 Lecture no: 3 Narrow- and wideband channels Ove Edfors, Department of Electrical and Information technology Ove.Edfors@eit.lth.se 2012-03-19 Ove Edfors - ETIN15 1 Contents Short review

More information

MIMO Wireless Communications

MIMO Wireless Communications MIMO Wireless Communications Speaker: Sau-Hsuan Wu Date: 2008 / 07 / 15 Department of Communication Engineering, NCTU Outline 2 2 MIMO wireless channels MIMO transceiver MIMO precoder Outline 3 3 MIMO

More information

5G Antenna Design & Network Planning

5G Antenna Design & Network Planning 5G Antenna Design & Network Planning Challenges for 5G 5G Service and Scenario Requirements Massive growth in mobile data demand (1000x capacity) Higher data rates per user (10x) Massive growth of connected

More information

STATISTICAL DISTRIBUTION OF INCIDENT WAVES TO MOBILE ANTENNA IN MICROCELLULAR ENVIRONMENT AT 2.15 GHz

STATISTICAL DISTRIBUTION OF INCIDENT WAVES TO MOBILE ANTENNA IN MICROCELLULAR ENVIRONMENT AT 2.15 GHz EUROPEAN COOPERATION IN COST259 TD(99) 45 THE FIELD OF SCIENTIFIC AND Wien, April 22 23, 1999 TECHNICAL RESEARCH EURO-COST STATISTICAL DISTRIBUTION OF INCIDENT WAVES TO MOBILE ANTENNA IN MICROCELLULAR

More information

Small-Scale Fading I PROF. MICHAEL TSAI 2011/10/27

Small-Scale Fading I PROF. MICHAEL TSAI 2011/10/27 Small-Scale Fading I PROF. MICHAEL TSAI 011/10/7 Multipath Propagation RX just sums up all Multi Path Component (MPC). Multipath Channel Impulse Response An example of the time-varying discrete-time impulse

More information

Chapter 3. Mobile Radio Propagation

Chapter 3. Mobile Radio Propagation Chapter 3 Mobile Radio Propagation Based on the slides of Dr. Dharma P. Agrawal, University of Cincinnati and Dr. Andrea Goldsmith, Stanford University Propagation Mechanisms Outline Radio Propagation

More information

UWB Channel Modeling

UWB Channel Modeling Channel Modeling ETIN10 Lecture no: 9 UWB Channel Modeling Fredrik Tufvesson & Johan Kåredal, Department of Electrical and Information Technology fredrik.tufvesson@eit.lth.se 2011-02-21 Fredrik Tufvesson

More information

Narrow- and wideband channels

Narrow- and wideband channels RADIO SYSTEMS ETIN15 Lecture no: 3 Narrow- and wideband channels Ove Edfors, Department of Electrical and Information technology Ove.Edfors@eit.lth.se 27 March 2017 1 Contents Short review NARROW-BAND

More information

Digital signal processing for satellitebased

Digital signal processing for satellitebased Digital signal processing for satellitebased positioning Department of Communications Engineering (DCE), Tampere University of Technology Simona Lohan, Dr. Tech, Docent (Adjunct Professor) E-mail:elena-simona.lohan@tut.fi

More information

Channel Modeling ETI 085

Channel Modeling ETI 085 Channel Modeling ETI 085 Overview Lecture no: 9 What is Ultra-Wideband (UWB)? Why do we need UWB channel models? UWB Channel Modeling UWB channel modeling Standardized UWB channel models Fredrik Tufvesson

More information

Use-case analysis of the BOC/CBOC modulations in GIOVE-B E1 Signal

Use-case analysis of the BOC/CBOC modulations in GIOVE-B E1 Signal Use-case analysis of the BOC/CBOC modulations in GIOVE-B E1 Signal Rui Sarnadas, Teresa Ferreira GMV Lisbon, Portugal www.gmv.com Sergio Carrasco, Gustavo López-Risueño ESTEC, ESA Noordwijk, The Netherlands

More information

Performance Analysis of LTE Downlink System with High Velocity Users

Performance Analysis of LTE Downlink System with High Velocity Users Journal of Computational Information Systems 10: 9 (2014) 3645 3652 Available at http://www.jofcis.com Performance Analysis of LTE Downlink System with High Velocity Users Xiaoyue WANG, Di HE Department

More information

Utilizing Batch Processing for GNSS Signal Tracking

Utilizing Batch Processing for GNSS Signal Tracking Utilizing Batch Processing for GNSS Signal Tracking Andrey Soloviev Avionics Engineering Center, Ohio University Presented to: ION Alberta Section, Calgary, Canada February 27, 2007 Motivation: Outline

More information

Channel Models. Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1

Channel Models. Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1 Channel Models Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1 Narrowband Channel Models Statistical Approach: Impulse response modeling: A narrowband channel can be represented by an impulse

More information

Introduction to wireless systems

Introduction to wireless systems Introduction to wireless systems Wireless Systems a.a. 2014/2015 Un. of Rome La Sapienza Chiara Petrioli Department of Computer Science University of Rome Sapienza Italy Background- Wireless Systems What

More information

Wireless Physical Layer Concepts: Part II

Wireless Physical Layer Concepts: Part II Wireless Physical Layer Concepts: Part II Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at:

More information

SPREAD SPECTRUM CHANNEL MEASUREMENT INSTRUMENT

SPREAD SPECTRUM CHANNEL MEASUREMENT INSTRUMENT SPACE SPREAD SPECTRUM CHANNEL MEASUREMENT INSTRUMENT Satellite communications, earth observation, navigation and positioning and control stations indracompany.com SSCMI SPREAD SPECTRUM CHANNEL MEASUREMENT

More information

Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Fading Channel. Base Station

Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Fading Channel. Base Station Fading Lecturer: Assoc. Prof. Dr. Noor M Khan Department of Electronic Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN Ph: +9 (51) 111-878787, Ext. 19 (Office), 186 (ARWiC

More information

EITN85, FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY

EITN85, FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY Wireless Communication Channels Lecture 6: Channel Models EITN85, FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY Content Modelling methods Okumura-Hata path loss model COST 231 model Indoor models

More information

TEMPUS PROJECT JEP Wideband Analysis of the Propagation Channel in Mobile Broadband System

TEMPUS PROJECT JEP Wideband Analysis of the Propagation Channel in Mobile Broadband System Department of Electrical Engineering and Computer Science TEMPUS PROJECT JEP 743-94 Wideband Analysis of the Propagation Channel in Mobile Broadband System Krzysztof Jacek Kurek Final report Supervisor:

More information

Lab on GNSS Signal Processing Part II

Lab on GNSS Signal Processing Part II JRC SUMMERSCHOOL GNSS Lab on GNSS Signal Processing Part II Daniele Borio European Commission Joint Research Centre Davos, Switzerland, July 15-25, 2013 INTRODUCTION Second Part of the Lab: Introduction

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [60 GHz Channel Measurements for Video Supply in Trains, Busses and Aircraft Scenario] Date Submitted: [14

More information

CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FADING CHANNEL CHARACTERIZATION AND MODELING

CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FADING CHANNEL CHARACTERIZATION AND MODELING CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FADING CHANNEL CHARACTERIZATION AND MODELING A graduate project submitted in partial fulfillment of the requirements For the degree of Master of Science in Electrical

More information

On multipath characterization through software receivers and ray-tracing

On multipath characterization through software receivers and ray-tracing On multipath characterization through software receivers and ray-tracing Marios Smyrnaios 1, Steffen Schön 1, Marcos Liso 2, Thomas Kürner 2 1 Institut für Erdmessung (IfE), Leibniz-Universität Hannover

More information

EITN85, FREDRIK TUFVESSON, JOHAN KÅREDAL ELECTRICAL AND INFORMATION TECHNOLOGY. Why do we need UWB channel models?

EITN85, FREDRIK TUFVESSON, JOHAN KÅREDAL ELECTRICAL AND INFORMATION TECHNOLOGY. Why do we need UWB channel models? Wireless Communication Channels Lecture 9:UWB Channel Modeling EITN85, FREDRIK TUFVESSON, JOHAN KÅREDAL ELECTRICAL AND INFORMATION TECHNOLOGY Overview What is Ultra-Wideband (UWB)? Why do we need UWB channel

More information

Bit Error Rate Assessment of Digital Modulation Schemes on Additive White Gaussian Noise, Line of Sight and Non Line of Sight Fading Channels

Bit Error Rate Assessment of Digital Modulation Schemes on Additive White Gaussian Noise, Line of Sight and Non Line of Sight Fading Channels International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 3 Issue 8 ǁ August 2014 ǁ PP.06-10 Bit Error Rate Assessment of Digital Modulation Schemes

More information

Session2 Antennas and Propagation

Session2 Antennas and Propagation Wireless Communication Presented by Dr. Mahmoud Daneshvar Session2 Antennas and Propagation 1. Introduction Types of Anttenas Free space Propagation 2. Propagation modes 3. Transmission Problems 4. Fading

More information

Channel Modelling for Beamforming in Cellular Systems

Channel Modelling for Beamforming in Cellular Systems Channel Modelling for Beamforming in Cellular Systems Salman Durrani Department of Engineering, The Australian National University, Canberra. Email: salman.durrani@anu.edu.au DERF June 26 Outline Introduction

More information

Chapter 1: Telecommunication Fundamentals

Chapter 1: Telecommunication Fundamentals Chapter 1: Telecommunication Fundamentals Block Diagram of a communication system Noise n(t) m(t) Information (base-band signal) Signal Processing Carrier Circuits s(t) Transmission Medium r(t) Signal

More information

CHAPTER 2 WIRELESS CHANNEL

CHAPTER 2 WIRELESS CHANNEL CHAPTER 2 WIRELESS CHANNEL 2.1 INTRODUCTION In mobile radio channel there is certain fundamental limitation on the performance of wireless communication system. There are many obstructions between transmitter

More information

Chapter 1 Introduction

Chapter 1 Introduction Wireless Information Transmission System Lab. Chapter 1 Introduction National Sun Yat-sen University Table of Contents Elements of a Digital Communication System Communication Channels and Their Wire-line

More information

Application Note 37. Emulating RF Channel Characteristics

Application Note 37. Emulating RF Channel Characteristics Application Note 37 Emulating RF Channel Characteristics Wireless communication is one of the most demanding applications for the telecommunications equipment designer. Typical signals at the receiver

More information

Chapter 4 DOA Estimation Using Adaptive Array Antenna in the 2-GHz Band

Chapter 4 DOA Estimation Using Adaptive Array Antenna in the 2-GHz Band Chapter 4 DOA Estimation Using Adaptive Array Antenna in the 2-GHz Band 4.1. Introduction The demands for wireless mobile communication are increasing rapidly, and they have become an indispensable part

More information

NETW 701: Wireless Communications. Lecture 5. Small Scale Fading

NETW 701: Wireless Communications. Lecture 5. Small Scale Fading NETW 701: Wireless Communications Lecture 5 Small Scale Fading Small Scale Fading Most mobile communication systems are used in and around center of population. The transmitting antenna or Base Station

More information

Multipath Propagation Model for High Altitude Platform (HAP) Based on Circular Straight Cone Geometry

Multipath Propagation Model for High Altitude Platform (HAP) Based on Circular Straight Cone Geometry Multipath Propagation Model for High Altitude Platform (HAP) Based on Circular Straight Cone Geometry J. L. Cuevas-Ruíz ITESM-CEM México D.F., México jose.cuevas@itesm.mx A. Aragón-Zavala ITESM-Qro Querétaro

More information

Wireless Communication Fundamentals Feb. 8, 2005

Wireless Communication Fundamentals Feb. 8, 2005 Wireless Communication Fundamentals Feb. 8, 005 Dr. Chengzhi Li 1 Suggested Reading Chapter Wireless Communications by T. S. Rappaport, 001 (version ) Rayleigh Fading Channels in Mobile Digital Communication

More information

Revision of Lecture One

Revision of Lecture One Revision of Lecture One System blocks and basic concepts Multiple access, MIMO, space-time Transceiver Wireless Channel Signal/System: Bandpass (Passband) Baseband Baseband complex envelope Linear system:

More information

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman Antennas & Propagation CSG 250 Fall 2007 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception

More information

2 Sensitivity Improvement by Estimation of the Multipath Fading Statistics

2 Sensitivity Improvement by Estimation of the Multipath Fading Statistics PROCEEDINGS OF THE 2nd WORKSHOP ON POSITIONING, NAVIGATION AND COMMUNICATION WPNC 5) & st ULTRA-WIDEBAND EXPERT TALK UET'5) Rice Factor Estimation for GNSS Reception Sensitivity Improvement in Multipath

More information

SX-NSR 2.0 A Multi-frequency and Multi-sensor Software Receiver with a Quad-band RF Front End

SX-NSR 2.0 A Multi-frequency and Multi-sensor Software Receiver with a Quad-band RF Front End SX-NSR 2.0 A Multi-frequency and Multi-sensor Software Receiver with a Quad-band RF Front End - with its use for Reflectometry - N. Falk, T. Hartmann, H. Kern, B. Riedl, T. Pany, R. Wolf, J.Winkel, IFEN

More information

Detection of Multipath Propagation Effects in SAR-Tomography with MIMO Modes

Detection of Multipath Propagation Effects in SAR-Tomography with MIMO Modes Detection of Multipath Propagation Effects in SAR-Tomography with MIMO Modes Tobias Rommel, German Aerospace Centre (DLR), tobias.rommel@dlr.de, Germany Gerhard Krieger, German Aerospace Centre (DLR),

More information

Monitoring Station for GNSS and SBAS

Monitoring Station for GNSS and SBAS Monitoring Station for GNSS and SBAS Pavel Kovář, Czech Technical University in Prague Josef Špaček, Czech Technical University in Prague Libor Seidl, Czech Technical University in Prague Pavel Puričer,

More information

Channel modelling activities related to the satellite navigation channel in the SatNEx project

Channel modelling activities related to the satellite navigation channel in the SatNEx project Channel modelling activities related to the satellite navigation channel in the SatNEx project U.-C. Fiebig #1, G. Artaud 2, J.-L. Issler 3, T. Jost #4, B. Krach #5, F. Lacoste 6, F. Pérez-Fontán *7, F.

More information

It is well known that GNSS signals

It is well known that GNSS signals GNSS Solutions: Multipath vs. NLOS signals GNSS Solutions is a regular column featuring questions and answers about technical aspects of GNSS. Readers are invited to send their questions to the columnist,

More information

Testing c2k Mobile Stations Using a Digitally Generated Faded Signal

Testing c2k Mobile Stations Using a Digitally Generated Faded Signal Testing c2k Mobile Stations Using a Digitally Generated Faded Signal Agenda Overview of Presentation Fading Overview Mitigation Test Methods Agenda Fading Presentation Fading Overview Mitigation Test Methods

More information

FADING DEPTH EVALUATION IN MOBILE COMMUNICATIONS FROM GSM TO FUTURE MOBILE BROADBAND SYSTEMS

FADING DEPTH EVALUATION IN MOBILE COMMUNICATIONS FROM GSM TO FUTURE MOBILE BROADBAND SYSTEMS FADING DEPTH EVALUATION IN MOBILE COMMUNICATIONS FROM GSM TO FUTURE MOBILE BROADBAND SYSTEMS Filipe D. Cardoso 1,2, Luis M. Correia 2 1 Escola Superior de Tecnologia de Setúbal, Polytechnic Institute of

More information

Revision of Lecture One

Revision of Lecture One Revision of Lecture One System block Transceiver Wireless Channel Signal / System: Bandpass (Passband) Baseband Baseband complex envelope Linear system: complex (baseband) channel impulse response Channel:

More information

Ultra Wideband Radio Propagation Measurement, Characterization and Modeling

Ultra Wideband Radio Propagation Measurement, Characterization and Modeling Ultra Wideband Radio Propagation Measurement, Characterization and Modeling Rachid Saadane rachid.saadane@gmail.com GSCM LRIT April 14, 2007 achid Saadane rachid.saadane@gmail.com ( GSCM Ultra Wideband

More information

Modern radio techniques

Modern radio techniques Modern radio techniques for probing the ionosphere Receiver, radar, advanced ionospheric sounder, and related techniques Cesidio Bianchi INGV - Roma Italy Ionospheric properties related to radio waves

More information

UNIT Derive the fundamental equation for free space propagation?

UNIT Derive the fundamental equation for free space propagation? UNIT 8 1. Derive the fundamental equation for free space propagation? Fundamental Equation for Free Space Propagation Consider the transmitter power (P t ) radiated uniformly in all the directions (isotropic),

More information

Mobile Communications

Mobile Communications Mobile Communications Part IV- Propagation Characteristics Professor Z Ghassemlooy School of Computing, Engineering and Information Sciences University of Northumbria U.K. http://soe.unn.ac.uk/ocr Contents

More information

Channel Analysis for an OFDM-MISO Train Communications System Using Different Antennas

Channel Analysis for an OFDM-MISO Train Communications System Using Different Antennas EVA-STAR (Elektronisches Volltextarchiv Scientific Articles Repository) http://digbib.ubka.uni-karlsruhe.de/volltexte/011407 Channel Analysis for an OFDM-MISO Train Communications System Using Different

More information

ECC Recommendation (16)04

ECC Recommendation (16)04 ECC Recommendation (16)04 Determination of the radiated power from FM sound broadcasting stations through field strength measurements in the frequency band 87.5 to 108 MHz Approved 17 October 2016 Edition

More information

Antennas and Propagation. Chapter 5

Antennas and Propagation. Chapter 5 Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

Effects of Fading Channels on OFDM

Effects of Fading Channels on OFDM IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719, Volume 2, Issue 9 (September 2012), PP 116-121 Effects of Fading Channels on OFDM Ahmed Alshammari, Saleh Albdran, and Dr. Mohammad

More information

Effects of multipath propagation on design and operation of line-of-sight digital radio-relay systems

Effects of multipath propagation on design and operation of line-of-sight digital radio-relay systems Rec. ITU-R F.1093-1 1 RECOMMENDATION ITU-R F.1093-1* Rec. ITU-R F.1093-1 EFFECTS OF MULTIPATH PROPAGATION ON THE DESIGN AND OPERATION OF LINE-OF-SIGHT DIGITAL RADIO-RELAY SYSTEMS (Question ITU-R 122/9)

More information

Antennas and Propagation. Chapter 5

Antennas and Propagation. Chapter 5 Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

Channel Modelling ETIM10. Propagation mechanisms

Channel Modelling ETIM10. Propagation mechanisms Channel Modelling ETIM10 Lecture no: 2 Propagation mechanisms Ghassan Dahman \ Fredrik Tufvesson Department of Electrical and Information Technology Lund University, Sweden 2012-01-20 Fredrik Tufvesson

More information

Antennas and Propagation

Antennas and Propagation Mobile Networks Module D-1 Antennas and Propagation 1. Introduction 2. Propagation modes 3. Line-of-sight transmission 4. Fading Slides adapted from Stallings, Wireless Communications & Networks, Second

More information

MULTIPATH EFFECT MITIGATION IN SIGNAL PROPAGATION THROUGH AN INDOOR ENVIRONMENT

MULTIPATH EFFECT MITIGATION IN SIGNAL PROPAGATION THROUGH AN INDOOR ENVIRONMENT JOURNAL OF APPLIED ENGINEERING SCIENCES VOL. 2(15), issue 2_2012 ISSN 2247-3769 ISSN-L 2247-3769 (Print) / e-issn:2284-7197 MULTIPATH EFFECT MITIGATION IN SIGNAL PROPAGATION THROUGH AN INDOOR ENVIRONMENT

More information

Propagation Channels. Chapter Path Loss

Propagation Channels. Chapter Path Loss Chapter 9 Propagation Channels The transmit and receive antennas in the systems we have analyzed in earlier chapters have been in free space with no other objects present. In a practical communication

More information

Experimental Evaluation Scheme of UWB Antenna Performance

Experimental Evaluation Scheme of UWB Antenna Performance Tokyo Tech. Experimental Evaluation Scheme of UWB Antenna Performance Sathaporn PROMWONG Wataru HACHITANI Jun-ichi TAKADA TAKADA-Laboratory Mobile Communication Research Group Graduate School of Science

More information

Exam 3 is two weeks from today. Today s is the final lecture that will be included on the exam.

Exam 3 is two weeks from today. Today s is the final lecture that will be included on the exam. ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2010 Lecture 19 Today: (1) Diversity Exam 3 is two weeks from today. Today s is the final lecture that will be included on the exam.

More information

5.9 GHz V2X Modem Performance Challenges with Vehicle Integration

5.9 GHz V2X Modem Performance Challenges with Vehicle Integration 5.9 GHz V2X Modem Performance Challenges with Vehicle Integration October 15th, 2014 Background V2V DSRC Why do the research? Based on 802.11p MAC PHY ad-hoc network topology at 5.9 GHz. Effective Isotropic

More information

Remote Reflector p. Local Scattering around Mobile. Remote Reflector 1. Base Station. θ p

Remote Reflector p. Local Scattering around Mobile. Remote Reflector 1. Base Station. θ p A Stochastic Vector Channel Model - Implementation and Verification Matthias Stege, Jens Jelitto, Nadja Lohse, Marcus Bronzel, Gerhard Fettweis Mobile Communications Systems Chair, Dresden University of

More information

OFDMA Networks. By Mohamad Awad

OFDMA Networks. By Mohamad Awad OFDMA Networks By Mohamad Awad Outline Wireless channel impairments i and their effect on wireless communication Channel modeling Sounding technique OFDM as a solution OFDMA as an improved solution MIMO-OFDMA

More information

HIGH GAIN ADVANCED GPS RECEIVER

HIGH GAIN ADVANCED GPS RECEIVER ABSTRACT HIGH GAIN ADVANCED GPS RECEIVER NAVSYS High Gain Advanced () uses a digital beam-steering antenna array to enable up to eight GPS satellites to be tracked, each with up to dbi of additional antenna

More information

PROPAGATION CHANNEL EMULATOR : ECP

PROPAGATION CHANNEL EMULATOR : ECP PROPAGATION CHANNEL EMULATOR : ECP The ECP (Propagation Channel Emulator) synthesizes the principal phenomena of propagation occurring on RF signal links between earth and space. Developed by the R&D laboratory,

More information

Lab 3.0. Pulse Shaping and Rayleigh Channel. Faculty of Information Engineering & Technology. The Communications Department

Lab 3.0. Pulse Shaping and Rayleigh Channel. Faculty of Information Engineering & Technology. The Communications Department Faculty of Information Engineering & Technology The Communications Department Course: Advanced Communication Lab [COMM 1005] Lab 3.0 Pulse Shaping and Rayleigh Channel 1 TABLE OF CONTENTS 2 Summary...

More information

A Land Mobile Channel Modeling in LabVIEW

A Land Mobile Channel Modeling in LabVIEW Proceedings of the 009 IEEE International Conference on Systems, Man, and Cybernetics San Antonio, TX, USA - October 009 A Land Mobile Channel Modeling in LabVIEW Grant Huang, Arpine Soghoyan, David Akopian,

More information

UHF Wideband Mobile Channel Measurements and Characterization using ATSC Signals with Diversity Antennas

UHF Wideband Mobile Channel Measurements and Characterization using ATSC Signals with Diversity Antennas UHF Wideband Mobile Channel Measurements and Characterization using ATSC Signals with Diversity Antennas Assia Semmar, Viet Ha Pham, Jean-Yves Chouinard Department of Electrical and Computer Engineering

More information