RF Design of Normal Conducting Deflecting Cavity

Size: px
Start display at page:

Download "RF Design of Normal Conducting Deflecting Cavity"

Transcription

1 RF Design of Normal Conducting Deflecting Cavity Valery Dolgashev (SLAC), Geoff Waldschmidt, Ali Nassiri (Argonne National Laboratory, Advanced Photon Source) 48th ICFA Advanced Beam Dynamics Workshop on Future Light Sources March 1-5, 2010 SLAC National Accelerator Laboratory Menlo Park, California

2 Motivation Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 2

3 Simplified Configuration RF source Klystron Hybrid Hybrid Hybrid 1 st and 2 nd structures Undulator 3 rd and 4 th structures Storage ring Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 3

4 Outline Design considerations Thermal stability Wakefield damping Cavity pulsing X-band deflector Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 4

5 Design requirements for APS deflecting cavity, assuming 4 cavities in the system Frequency Deflecting Voltage Available power Repetition rate GHz 2 MV per structure 4 MW per structure ~1000 Hz The main constraints on the rf design are set by high average power loss in the cavity and heavy wakefield damping. Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 5

6 Design Considerations Available power ~ 25 MW for whole system Large aperture radius 21 mm => Low shunt impedance Pulsed heating < 100 o C => maximum surface magnetic field < 300 ka/m for 4 us pulse Maximum surface electric fields < 100 MV/m No field amplification on edges of input coupler => Fat lip coupler Heavy loading of LOM / HOM s High average power operation Do no harm the set of the transverse cavities should not degrade existing operation modes of the APS ring Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 6

7 Evolution of the Deflecting Cavity Design Input coupler not shown (a) 9-cell symmetric cavity with center-fed input coupler and no wakefield damping (b) 9-cell with wakefield damping and external loads (c) 9-cell with heavy wakefield damping and internal loads (d) 3-cell with heavy wakefield damping and internal loads Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 7

8 3-Cell deflector fed from middle cell, 2 MeV vertical kick with 2.83 MW of input rf power x beam axis z input waveguide damping waveguides y Surface electric fields for 2 MeV Surface magnetic fields for 2 MeV transverse kick. Maximum surface electric transverse kick. Maximum surface fields is 60 MV/m. magnetic fields 240 ka/m. Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 8

9 3 cell deflector fed from end cell, transverse kick 2 MeV, input power 2.86 MW 232 mm Surface electric fields for 2 MeV kick, maximum fields 60.5 MV/m Surface magnetic fields for 2 MeV kick, maximum fields 240 ka/m With an end-cell coupling the loaded Q of the next-to-working mode is reduced from to for critically coupled cavity and can be reduced more for over-coupled cavity. Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 9

10 Deflecting Cavity with Damping Waveguides and Loads Beam axis Input coupler LOM-HOM loads in ridged waveguides HOM load in rectangular waveguide Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 10

11 Deflecting Cavity Parameters Frequency Cavity Length GHz ~23 cm Deflecting Voltage 2 MV Peak Power 2.86 MW Working mode Q o R t / Q 117 Beam pipe aperture radius 21 mm Iris radius 22 mm Phase advance per cell π Structure length w/o beam cm pipes Iris thickness 18 mm Duty Factor 0.147% Kick / (Power) 1/ MeV/MW 1/2 Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 11

12 Transverse Electric and Magnetic Fields on Axis Electric Field [MV/m ], Magnetic Field * Zo [MV/m] Ey Hx Ex Hy z [mm] Transverse electric and magnetic fields on axis vs. z for 2MeV transverse kick Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 12

13 High Average Power Operation Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 13

14 Iris Optimization Large >21 mm radius aperture necessary to avoid radiation heating Klystron pulse width reduced to 1.3 μs to reduce thermal load => duty factor is 0.147%. Cavity iris thickened to 18 mm to reduce peak thermal gradients and increase cooling efficiency. Example: Optimization of iris thickness T Iris thickness (mm) R Iris radius (mm) Peak power density on cavity s iris surface T12R22: 0.94 MW/m 2 T15R23: 0.83 MW/m 2 T18R24: 0.68 MW/m 2 Elliptical iris with thickness of 18 mm and radius of 22 mm was chosen, for which peak power density was reduced by ~30% while reducing shunt impedance by ~15% Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 14

15 High Average Power Operation Thermal Stability Cavity will deform due to the rf losses and the deformed cavity may change field profile and result in increased losses. Deflecting field profile will be perturbed and may require additional power in order to maintain prescribed deflecting voltage. If this continues, the cavity will absorb more and more heat and exceed material stress limits. π-mode in the cavity is backward standing wave and it may be more susceptible to rf thermal issues. We need to show that the cavity is thermally stable. Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 15

16 RF / Thermal Flowchart with ANSYS Start of rf / thermal analysis Self-contained analysis performed entirely in ANSYS Loop continues until power level converges Undeformed cavity Deformed cavity Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 16

17 Multi-Pass Magnetic Field Distortion Minimal field distortion after 43 iterations Black: Original Field Magnitude Red: Deformed Cavity Field Magnitude Original / deformed fields are nearly identical Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 17

18 Multi-Pass Frequency Shift Maximum frequency shift from iterationto-iteration is 2.4 khz Frequency Shift Study done on the most recent slightly modified geometry Frequency (khz) Frequency converges after the third iteration Slater Method Slater: End Cell Slater: Center Cell Ansys HF Frequency shift shown for a full end / center cell Iteration Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 18

19 Multi-Pass Power Loss Maximum power variation from iterationto-iteration is 10.0 W 2098 Power Loss Study done on the most recent slightly modified geometry Power iterations simulated Iteration Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 19

20 Wakefield Damping Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 20

21 Low-Order-Modes/ Higher- Order-Mode analysis LOM / HOM monopole and HOM dipole modes were analyzed using the frequency-domain finite-element code HFSS up to 5-6 GHz. MAFIA and GdFidL time-domain wakefield solvers were used to evaluate the monopole and dipole mode impedances and compare with HFSS as a verification. GdfidL parallel simulations calculated mode impedances > 12 GHz with λ/10 resolution in the high permittivity (ε r = 30) damping material. 3-cell structure was adopted since the heavily-loaded 9-cell cavity could not be adequately damped for beam stability. Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 21

22 LOM/HOM Damping Considerations Mode coupling from cavity to damping waveguide was optimized to increase the damping of HOM / LOM s and reject the operating mode (while keeping thermal issues under control) Monopole and horizontal dipole modes are heavily damped with a loaded Q of less than 200 for the majority of modes. Vertical dipole modes are not easily damped since their frequency and field configurations may be close to the operating mode. Ridge waveguide has been integrated into the design to improve damping of the vertical modes. Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 22

23 Suppression of Long-Range Wakes x Monopole wake Horizontal wake Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 23

24 Monopole Modes R s 2 V = 2P l 2022 MHz 1956 MHz Q l ~ 130 Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 24

25 Horizontal Dipole Modes R t = V 2 r= r o 2 2Pl kro 2620 MHz 2663 MHz Q l ~ 20 Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 25

26 R t = V 2 r = r o 2 2Pl k ro Vertical Dipole Modes 2815 MHz MHz 2827 MHz mode has a large R t /Q and is damped minimally. It is the greatest HOM contributor to the vertical long range wake Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 26

27 Z-Impedance with Inter-Cavity-Coupling Effects 1956 MHz 2022 MHz o HFSS GdFidl f p *R S < 0.8 MOhm-GHz Monopole Impedance Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 27

28 Horizontal Transverse -Impedance with Inter-Cavity-Coupling Effects 2.5 MOhm/m 2620 MHz o HFSS GdFidl Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 28

29 Vertical Transverse Impedance with Inter-Cavity-Coupling Effects 2815 MHz 2827 MHz 2.5 MOhm/m o HFSS GdFidl 2930 MHz Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 29

30 LOM/HOM Damper Loads Simplified Model Load Y Load X Center Load X Outer Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 30

31 Beam Induced Damper Load (W) Total losses due to monopole modes is 2.03 kw Loss factor: Mafia: 7.802*10 11 GdFidl: 7.82* ma maximum beam current, 24 singlets fill pattern generates greatest damper losses Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 31

32 Cavity Pulsing Critically matched coupler requires ~2.8 MW peak power pulsed at 1 khz rep rate for a 2 MeV kick of the 16 ma bunch. Net deflecting voltage must be reduced below 13 kv for the following 86 ma bunch train (while cavity is emptying). Variations in cavity Q due to manufacturing or contamination creates a voltage differential Overcouple cavity to reduce fill time constant Reverse klystron phase to empty cavity more quickly Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 32

33 Pulse Shape and Approximate Timing Diagram Klystron power (100 ns ramp) 16 ma enters Cav. #1 (Sector 6) t = 0 Cavity power Timing pictorial in APS SR 86 ma enters Cav. #1 Duty factor 0.147% V t = 0.2 MV Red: Ideal square input Black: 100 ns ramp Q l ~ 6000 for critically coupled input coupler Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 33

34 Deflecting Voltage Differential for 86 ma Bunch Single cavity in cavity set #2 with Q 1-5% lower than nominal value (12,000) All cavities have Q s ranging from Q u = 12,000 ± 600. Cavities optimally positioned based on Q s. β = 1.7 1% 2% 3% 4% 5% Peak input power at cavity Net difference in deflecting voltage between cavity set #1 and cavity set #2 P=3.0 MW Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 34

35 APS Deflector Summary The deflecting cavity design has evolved to satisfy strict requirements in beam stability and high average power losses. A 3-cell standing wave structure will produce 2 MeV kick with ~2.86 MW input power for a critically coupled cavity. Four structures will produce a 4 MeV initial kick and a 4 MeV recovery kick. A single, commercially available 25 MW klystron is sufficient. A set of two structures will occupy less then 50 cm of beam space. Low-order and high-order modes are heavily loaded by six ridged and four rectangular waveguides with internal loads. Cavity power coupling has been characterized for various parameters affecting parasitic voltage kicks to the beam. Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 35

36 X-band Deflector Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07

37 6 cell SW GHz deflector Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07

38 Periodic cell of Pi standing wave deflector, 0.25 MW/cell, deflecting gradient 26 MV/m Maximum surface magnetic fields 410 ka/m, Pulse heating 23 deg. C for 100 ns pulse. Maximum surface electric fields 105 MV/m. a = 6 mm t = 2 mm, round iris Q=7,792 Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07

39 Waveguide coupler for 6 cell SW X-band deflector, 1.5 MW of input power, deflection 2 MeV Maximum surface magnetic fields ~420 ka/m, Pulse heating 24 deg. C for 100 ns pulse. Maximum surface electric fields ~105 MV/m. Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07

40 Parameters of 6 cell X-band SW deflector Frequency GHz Beam pipe diameter 10 mm One cell length mm Phase advance per cell One cell kick Structure kick (6 cells) π 0.34 MeV/Sqrt(0.25 MW) 1 MeV/Sqrt(375 kw) Unloaded Q 7800 Loaded Q 3800 Maximum Electric field 53 MV/m / Sqrt(375 kw) Maximum Magnetic field 210 (ka/m) / Sqrt(375 kw) Structure length (with beam pipes) 12 cm Near mode separation 13.6 MHz Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07

41 Summary of RF Power Considerations for X-band option SLAC 11 GHz XL-4 klystron can produce 50 MW of power at 120 Hz repetition rate and pulse length 2 μs. We expect that with some development a modified klystron can work in low power mode ~5 MW at 1 khz repetition rate. A pair of 6-cell deflectors bracketing one undulator will need about 1 MW, so one such klystron is capable of powering 5 (~20 with SLED) short x-ray pulse stations at ~1 khz repletion rate. For 1kHz operation, average power loss in 6 cell deflector would be manageable 200 W. With lower beam energy (say for SPEAR III) the deflectors could be driven by commercial 100 kw klystrons, like CPI s VKX-7876E. Deflecting Cavity RF Design and Analysis G. Waldschmidt 8/23/07 41

FAST RF KICKER DESIGN

FAST RF KICKER DESIGN FAST RF KICKER DESIGN David Alesini LNF-INFN, Frascati, Rome, Italy ICFA Mini-Workshop on Deflecting/Crabbing Cavity Applications in Accelerators, Shanghai, April 23-25, 2008 FAST STRIPLINE INJECTION KICKERS

More information

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH INVESTIGATION OF A RIDGE-LOADED WAVEGUIDE STRUCTURE FOR CLIC X-BAND CRAB CAVITY

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH INVESTIGATION OF A RIDGE-LOADED WAVEGUIDE STRUCTURE FOR CLIC X-BAND CRAB CAVITY CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CLIC Note 1003 INVESTIGATION OF A RIDGE-LOADED WAVEGUIDE STRUCTURE FOR CLIC X-BAND CRAB CAVITY V.F. Khan, R. Calaga and A. Grudiev CERN, Geneva, Switzerland.

More information

Room Temperature High Repetition Rate RF Structures for Light Sources

Room Temperature High Repetition Rate RF Structures for Light Sources Room Temperature High Repetition Rate RF Structures for Light Sources Sami G. Tantawi SLAC Claudio Pellegrini, R. Ruth, J. Wang. V. Dolgashev, C. Bane, Zhirong Huang, Jeff Neilson, Z. Li Outline Motivation

More information

A Design Study of a 100-MHz Thermionic RF Gun for the ANL XFEL-O Injector

A Design Study of a 100-MHz Thermionic RF Gun for the ANL XFEL-O Injector A Design Study of a 100-MHz Thermionic RF Gun for the ANL XFEL-O Injector A. Nassiri Advanced Photon Source For ANL XFEL-O Injector Study Group M. Borland (ASD), B. Brajuskovic (AES), D. Capatina (AES),

More information

COUPLER DESIGN CONSIDERATIONS FOR THE ILC CRAB CAVITY

COUPLER DESIGN CONSIDERATIONS FOR THE ILC CRAB CAVITY COUPLER DESIGN CONSIDERATIONS FOR THE ILC CRAB CAVITY C. Beard 1), G. Burt 2), A. C. Dexter 2), P. Goudket 1), P. A. McIntosh 1), E. Wooldridge 1) 1) ASTeC, Daresbury laboratory, Warrington, Cheshire,

More information

Attosecond Diagnostics of Muti GeV Electron Beams Using W Band Deflectors

Attosecond Diagnostics of Muti GeV Electron Beams Using W Band Deflectors Attosecond Diagnostics of Muti GeV Electron Beams Using W Band Deflectors V.A. Dolgashev, P. Emma, M. Dal Forno, A. Novokhatski, S. Weathersby SLAC National Accelerator Laboratory FEIS 2: Femtosecond Electron

More information

Physics Requirements Document Document Title: SCRF 1.3 GHz Cryomodule Document Number: LCLSII-4.1-PR-0146-R0 Page 1 of 7

Physics Requirements Document Document Title: SCRF 1.3 GHz Cryomodule Document Number: LCLSII-4.1-PR-0146-R0 Page 1 of 7 Document Number: LCLSII-4.1-PR-0146-R0 Page 1 of 7 Document Approval: Originator: Tor Raubenheimer, Physics Support Lead Date Approved Approver: Marc Ross, Cryogenic System Manager Approver: Jose Chan,

More information

Christopher Nantista ISG8 SLAC June 25, 2002

Christopher Nantista ISG8 SLAC June 25, 2002 Christopher Nantista ISG8 SLAC June 25, 2002 TM 01 Mode Launcher Development Developed for upcoming traveling-wave single- structure tests as part of R&D to solve rf breakdown problem. Launchers to be

More information

Normal-Conducting Photoinjector for High Power CW FEL

Normal-Conducting Photoinjector for High Power CW FEL LA-UR-04-5617,-5808 www.arxiv.org: physics/0404109 Normal-Conducting Photoinjector for High Power CW FEL Sergey Kurennoy, LANL, Los Alamos, NM, USA An RF photoinjector capable of producing high continuous

More information

Short-Pulse X-ray at the Advanced Photon Source Overview

Short-Pulse X-ray at the Advanced Photon Source Overview Short-Pulse X-ray at the Advanced Photon Source Overview Vadim Sajaev and Louis Emery Accelerator Operations and Physics Group Accelerator Systems Division Mini-workshop on Methods of Data Analysis in

More information

International Technology Recommendation Panel. X-Band Linear Collider Path to the Future. RF System Overview. Chris Adolphsen

International Technology Recommendation Panel. X-Band Linear Collider Path to the Future. RF System Overview. Chris Adolphsen International Technology Recommendation Panel X-Band Linear Collider Path to the Future RF System Overview Chris Adolphsen Stanford Linear Accelerator Center April 26-27, 2004 Delivering the Beam Energy

More information

CEBAF waveguide absorbers. R. Rimmer for JLab SRF Institute

CEBAF waveguide absorbers. R. Rimmer for JLab SRF Institute CEBAF waveguide absorbers R. Rimmer for JLab SRF Institute Outline Original CEBAF HOM absorbers Modified CEBAF loads for FEL New materials for replacement loads High power loads for next generation FELs

More information

REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES. S. Belomestnykh

REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES. S. Belomestnykh REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES S. Belomestnykh HPC workshop JLAB, 30 October 2002 Introduction Many aspects of the high-power coupler design, fabrication, preparation, conditioning, integration

More information

HOM/LOM Coupler Study for the ILC Crab Cavity*

HOM/LOM Coupler Study for the ILC Crab Cavity* SLAC-PUB-1249 April 27 HOM/LOM Coupler Study for the ILC Crab Cavity* L. Xiao, Z. Li, K. Ko, SLAC, Menlo Park, CA9425, U.S.A Abstract The FNAL 9-cell 3.9GHz deflecting mode cavity designed for the CKM

More information

Main Injector Cavity Simulation and Optimization for Project X

Main Injector Cavity Simulation and Optimization for Project X Main Injector Cavity Simulation and Optimization for Project X Liling Xiao Advanced Computations Group Beam Physics Department Accelerator Research Division Status Meeting, April 7, 2011 Outline Background

More information

1.5 GHz Cavity design for the Clic Damping Ring and as Active Third Harmonic cavity for ALBA.

1.5 GHz Cavity design for the Clic Damping Ring and as Active Third Harmonic cavity for ALBA. 1 1.5 GHz Cavity design for the Clic Damping Ring and as Active Third Harmonic cavity for ALBA. Beatriz Bravo Overview 2 1.Introduction 2.Active operation 3.Electromagnetic design 4.Mechanical design Introduction

More information

CLIC Power Extraction and Transfer Structure. (2004)

CLIC Power Extraction and Transfer Structure. (2004) CLIC Power Extraction and Transfer Structure. (24) CLIC linac subunit layout: CLIC accelerating Structure (HDS) Main beam 3 GHz, 2 MW per structure Drive beam (64 A) CLIC Power Extraction and Transfer

More information

A HIGH EFFICIENCY 17GHz TW CHOPPERTRON

A HIGH EFFICIENCY 17GHz TW CHOPPERTRON 1 SLAC 07 A HIGH EFFICIENCY 17GHz TW CHOPPERTRON J. Haimson and B. Mecklenburg Work performed under the auspices of the U.S. Department of Energy SBIR Grant No.DE-FG02-06ER84468 2 SLAC 07 Figure 1. Centerline

More information

Normal-conducting high-gradient rf systems

Normal-conducting high-gradient rf systems Normal-conducting high-gradient rf systems Introduction Motivation for high gradient Order of 100 GeV/km Operational and state-of-the-art SwissFEL C-band linac: Just under 30 MV/m CLIC prototypes: Over

More information

Electromagnetic, Thermal and Structural Analysis of the LUX Photoinjector Cavity using ANSYS. Steve Virostek Lawrence Berkeley National Lab

Electromagnetic, Thermal and Structural Analysis of the LUX Photoinjector Cavity using ANSYS. Steve Virostek Lawrence Berkeley National Lab Electromagnetic, Thermal and Structural Analysis of the LUX Photoinjector Cavity using ANSYS Steve Virostek Lawrence Berkeley National Lab 13 December 2004 Photoinjector Background The proposed LBNL LUX

More information

Project X Cavity RF and mechanical design. T. Khabiboulline, FNAL/TD/SRF

Project X Cavity RF and mechanical design. T. Khabiboulline, FNAL/TD/SRF Project X Cavity RF and mechanical design T. Khabiboulline, FNAL/TD/SRF TTC meeting on CW-SRF, 2013 Project X Cavity RF and mechanical design T 1 High ß Low ß 0.5 HWR SSR1 SSR2 0 1 10 100 1 10 3 1 10 4

More information

Progress in High Gradient Accelerator Research at MIT

Progress in High Gradient Accelerator Research at MIT Progress in High Gradient Accelerator Research at MIT Presented by Richard Temkin MIT Physics and Plasma Science and Fusion Center May 23, 2007 MIT Accelerator Research Collaborators MIT Plasma Science

More information

Accelerating Cavities

Accelerating Cavities Accelerating Cavities for the Damping Ring (DR) Tetsuo ABE For KEKB RF/ARES Cavity Group (T. Abe, T. Kageyama, H. Sakai, Y. Takeuchi, and K. Yoshino) The 16 th KEKB Accelerator Review Meeting February

More information

High Gradient Studies at the NLC Test Accelerator (NLCTA)

High Gradient Studies at the NLC Test Accelerator (NLCTA) Chris Adolphsen High Gradient Studies at the NLC Test Accelerator (NLCTA) NLCTA Linac RF Unit (One of Two) Contributors C. Adolphsen, G. Bowden, D. Burke, J. Cornuelle, S. Dobert, V. Dolgashev, J. Frisch,

More information

Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser. P. Castro for the TTF-FEL team

Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser. P. Castro for the TTF-FEL team Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser P. Castro for the TTF-FEL team 100 nm 1 Å FEL radiation TESLA Test Facility at DESY

More information

3.9 GHz Deflecting Mode Cavity

3.9 GHz Deflecting Mode Cavity 3.9 GHz Deflecting Mode Cavity Timothy W. Koeth July 12, 2005 History of 3.9 GHz DMC Cavity Simulations The Other Modes concern and modeling R/Q Wake Field Simulations Design: OM couplers Testing: Vertical

More information

NEW OPPORTUNITIES IN VACUUM ELECTRONICS USING PHOTONIC BAND GAP STRUCTURES

NEW OPPORTUNITIES IN VACUUM ELECTRONICS USING PHOTONIC BAND GAP STRUCTURES NEW OPPORTUNITIES IN VACUUM ELECTRONICS USING PHOTONIC BAND GAP STRUCTURES J. R. Sirigiri, C. Chen, M. A. Shapiro, E. I. Smirnova, and R. J. Temkin Plasma Science and Fusion Center Massachusetts Institute

More information

SIMULATION OF : H.O.M DAMPED CAVITIES

SIMULATION OF : H.O.M DAMPED CAVITIES E.S.L.S Radio Frequency Meeting Aarhus, DENMARK Sept 2005 SIMULATION OF : H.O.M DAMPED CAVITIES Grenoble - FRANCE TARGET OF SIMULATIONS AT E.S.R.F DEVELOPPING A PROTOTYPE OF NORMAL CONDUCTING CAVITY (at

More information

Third Harmonic Cavity Status

Third Harmonic Cavity Status Third Harmonic Cavity Status General parameters Cavity design Main coupler calculation HOM analysis and HOM coupler design Lorentz Forces and Stress analysis Summary General parameters Third harmonic cavity

More information

BESSY VSR: SRF challenges and developments for a variable pulse-length next generation light source

BESSY VSR: SRF challenges and developments for a variable pulse-length next generation light source BESSY VSR: SRF challenges and developments for a variable pulse-length next generation light source Institut SRF - Wissenschaft und Technologie (FG-ISRF) Adolfo Vélez et al. SRF17 Lanzhou, 17-21/7/2017

More information

Experience with 3.9 GHz cavity HOM couplers

Experience with 3.9 GHz cavity HOM couplers Cornell University, October 11-13, 2010 Experience with 3.9 GHz cavity HOM couplers T. Khabiboulline, N. Solyak, FNAL. 3.9 GHz cavity general parameters Third harmonic cavity (3.9GHz) was proposed to compensate

More information

Development of a 20-MeV Dielectric-Loaded Accelerator Test Facility

Development of a 20-MeV Dielectric-Loaded Accelerator Test Facility SLAC-PUB-11299 Development of a 20-MeV Dielectric-Loaded Accelerator Test Facility S.H. Gold, et al. Contributed to 11th Advanced Accelerator Concepts Workshop (AAC 2004), 06/21/2004--6/26/2004, Stony

More information

CAGE CAVITY: A LOW COST, HIGH PERFORMANCE SRF ACCELERATING STRUCTURE*

CAGE CAVITY: A LOW COST, HIGH PERFORMANCE SRF ACCELERATING STRUCTURE* CAGE CAVITY: A LOW COST, HIGH PERFORMANCE SRF ACCELERATING STRUCTURE* J. Noonan, T.L. Smith, M. Virgo, G.J. Waldsmidt, Argonne National Laboratory J.W. Lewellen, Los Alamos National Laboratory Abstract

More information

MEASURES TO REDUCE THE IMPEDANCE OF PARASITIC RESONANT MODES IN THE DAΦNE VACUUM CHAMBER

MEASURES TO REDUCE THE IMPEDANCE OF PARASITIC RESONANT MODES IN THE DAΦNE VACUUM CHAMBER Frascati Physics Series Vol. X (1998), pp. 371-378 14 th Advanced ICFA Beam Dynamics Workshop, Frascati, Oct. 20-25, 1997 MEASURES TO REDUCE THE IMPEDANCE OF PARASITIC RESONANT MODES IN THE DAΦNE VACUUM

More information

Design and RF Measurements of an X-band Accelerating Structure for the Sparc Project

Design and RF Measurements of an X-band Accelerating Structure for the Sparc Project Design and RF Measurements of an X-band Accelerating Structure for the Sparc Project INFN-LNF ; UNIVERSITY OF ROME LA SAPIENZA ; INFN - MI Presented by BRUNO SPATARO Erice, Sicily, October 9-14; 2005 SALAF

More information

RF Cavity Design. Erk Jensen CERN BE/RF. CERN Accelerator School Accelerator Physics (Intermediate level) Darmstadt 2009

RF Cavity Design. Erk Jensen CERN BE/RF. CERN Accelerator School Accelerator Physics (Intermediate level) Darmstadt 2009 RF Cavity Design Erk Jensen CERN BE/RF CERN Accelerator School Accelerator Physics (Intermediate level) Darmstadt 009 CAS Darmstadt '09 RF Cavity Design 1 Overview DC versus RF Basic equations: Lorentz

More information

Raja Ramanna Center for Advanced Technology, Indore, India

Raja Ramanna Center for Advanced Technology, Indore, India Electromagnetic Design of g = 0.9, 650 MHz Superconducting Radiofrequency Cavity Arup Ratan Jana 1, Vinit Kumar 1, Abhay Kumar 2 and Rahul Gaur 1 1 Materials and Advanced Accelerator Science Division 2

More information

STATUS OF THE ILC CRAB CAVITY DEVELOPMENT

STATUS OF THE ILC CRAB CAVITY DEVELOPMENT STATUS OF THE ILC CRAB CAVITY DEVELOPMENT SLAC-PUB-4645 G. Burt, A. Dexter, Cockcroft Institute, Lancaster University, LA 4YR, UK C. Beard, P. Goudket, P. McIntosh, ASTeC, STFC, Daresbury laboratories,

More information

Calibrating the Cavity Voltage. Presentation of an idea

Calibrating the Cavity Voltage. Presentation of an idea Calibrating the Cavity Voltage. Presentation of an idea Stefan Wilke, DESY MHF-e 21st ESLS rf meeting Kraków, 15th/16th nov 2017 Accelerators at DESY. linear and circular Page 2 Accelerators at DESY. linear

More information

High acceleration gradient. Critical applications: Linear colliders e.g. ILC X-ray FELs e.g. DESY XFEL

High acceleration gradient. Critical applications: Linear colliders e.g. ILC X-ray FELs e.g. DESY XFEL High acceleration gradient Critical applications: Linear colliders e.g. ILC X-ray FELs e.g. DESY XFEL Critical points The physical limitation of a SC resonator is given by the requirement that the RF magnetic

More information

SIMULATIONS OF TRANSVERSE HIGHER ORDER DEFLECTING MODES IN THE MAIN LINACS OF ILC

SIMULATIONS OF TRANSVERSE HIGHER ORDER DEFLECTING MODES IN THE MAIN LINACS OF ILC SIMULATIONS OF TRANSVERSE HIGHER ORDER DEFLECTING MODES IN THE MAIN LINACS OF ILC C.J. Glasman, R.M. Jones, I. Shinton, G. Burt, The University of Manchester, Manchester M13 9PL, UK Cockcroft Institute

More information

A High Gradient Coreless Induction Method of Acceleration

A High Gradient Coreless Induction Method of Acceleration A High Gradient Coreless Induction Method of Acceleration A. Krasnykh (SLAC National Accelerator Lab, USA) and A. Kardo-Sysoev (Ioffe PTI, St. Petersburg, Russia) ICFA Workshop on Novel Concepts, 2009

More information

Overview of ERL Projects: SRF Issues and Challenges. Matthias Liepe Cornell University

Overview of ERL Projects: SRF Issues and Challenges. Matthias Liepe Cornell University Overview of ERL Projects: SRF Issues and Challenges Matthias Liepe Cornell University Overview of ERL projects: SRF issues and challenges Slide 1 Outline Introduction: SRF for ERLs What makes it special

More information

The European Spallation Source. Dave McGinnis Chief Engineer ESS\Accelerator Division IVEC 2013

The European Spallation Source. Dave McGinnis Chief Engineer ESS\Accelerator Division IVEC 2013 The European Spallation Source Dave McGinnis Chief Engineer ESS\Accelerator Division IVEC 2013 Overview The European Spallation Source (ESS) will house the most powerful proton linac ever built. The average

More information

RF design studies of 1300 MHz CW buncher for European X-FEL. Shankar Lal PITZ DESY-Zeuthen

RF design studies of 1300 MHz CW buncher for European X-FEL. Shankar Lal PITZ DESY-Zeuthen RF design studies of 1300 MHz CW buncher for European X-FEL Shankar Lal PITZ DESY-Zeuthen Outline Introduction Buncher design: Literature survey RF design of two-cell buncher: First design Two- cell buncher:

More information

Superstructures; First Cold Test and Future Applications

Superstructures; First Cold Test and Future Applications Superstructures; First Cold Test and Future Applications DESY: C. Albrecht, V. Ayvazyan, R. Bandelmann, T. Büttner, P. Castro, S. Choroba, J. Eschke, B. Faatz, A. Gössel, K. Honkavaara, B. Horst, J. Iversen,

More information

Electron Linacs for Cargo Inspection and Other Industrial Applications

Electron Linacs for Cargo Inspection and Other Industrial Applications Electron Linacs for Cargo Inspection and Other Industrial Applications Chuanxiang Tang 1, Huaibi Chen 1,Yaohong Liu 2 Tang.xuh@tsinghua.edu.cn 1 Department of Engineering Physics, Tsinghua U., Beijing

More information

Predictions of LER-HER limits

Predictions of LER-HER limits Predictions of LER-HER limits PEP-II High Current Performance T. Mastorides, C. Rivetta, J.D. Fox, D. Van Winkle Accelerator Technology Research Div., SLAC 2e 34 Meeting, May 2, 27 Contents In this presentation

More information

Fundamental mode rejection in SOLEIL dipole HOM couplers

Fundamental mode rejection in SOLEIL dipole HOM couplers Fundamental mode rejection in SOLEIL dipole HOM couplers G. Devanz, DSM/DAPNIA/SACM, CEA/Saclay, 91191 Gif-sur-Yvette 14th June 2004 1 Introduction The SOLEIL superconducting accelerating cavity is a heavily

More information

A 3 GHz SRF reduced-β Cavity for the S-DALINAC

A 3 GHz SRF reduced-β Cavity for the S-DALINAC A 3 GHz SRF reduced-β Cavity for the S-DALINAC D. Bazyl*, W.F.O. Müller, H. De Gersem Gefördert durch die DFG im Rahmen des GRK 2128 20.11.2018 M.Sc. Dmitry Bazyl TU Darmstadt TEMF Upgrade of the Capture

More information

200 MHz 350 MHz 750 MHz Linac2 RFQ2 202 MHz 0.5 MeV /m Weight : 1000 kg/m Ext. diameter : 45 cm

200 MHz 350 MHz 750 MHz Linac2 RFQ2 202 MHz 0.5 MeV /m Weight : 1000 kg/m Ext. diameter : 45 cm M. Vretenar, CERN for the HF-RFQ Working Group (V.A. Dimov, M. Garlasché, A. Grudiev, B. Koubek, A.M. Lombardi, S. Mathot, D. Mazur, E. Montesinos, M. Timmins, M. Vretenar) 1 1988-92 Linac2 RFQ2 202 MHz

More information

Status of the HOM Damped Cavity Project

Status of the HOM Damped Cavity Project Status of the HOM Damped Cavity Project E. Weihreter / BESSY for the HOM Damped Cavity Collaboration BESSY, Daresbury Lab, DELTA, MaxLab, NTHU Project funded by the EC under contract HPRI-CT-1999-50011

More information

S-band Magnetron. Tuner revolutions to cover frequency range 4.75 (note 3) Mounting position (note 4) Any Cooling (note 5) Water

S-band Magnetron. Tuner revolutions to cover frequency range 4.75 (note 3) Mounting position (note 4) Any Cooling (note 5) Water S-band Magnetron GENERAL DESCRIPTION is a mechanical tuned pulsed type S-band magnetron intended primarily for linear accelerator. It is water cooled and has circle waveguide output type. It is designed

More information

ARES Upgrade for Super-KEKB

ARES Upgrade for Super-KEKB 3th Advanced ICFA Beam Dynamics Workshop on High Luminosity e+e- Collisions, October 3-6, 23, Stanford, California ARES Upgrade for Super-KEKB Tetsuo Abe KEK, Tsukuba, Ibaraki 35-8, Japan ARES is a normal-conducting

More information

Energy Recovering Linac Issues

Energy Recovering Linac Issues Energy Recovering Linac Issues L. Merminga Jefferson Lab EIC Accelerator Workshop Brookhaven National Laboratory February 26-27, 2002 Outline Energy Recovery RF Stability in Recirculating, Energy Recovering

More information

Thermionic Bunched Electron Sources for High-Energy Electron Cooling

Thermionic Bunched Electron Sources for High-Energy Electron Cooling Thermionic Bunched Electron Sources for High-Energy Electron Cooling Vadim Jabotinski 1, Yaroslav Derbenev 2, and Philippe Piot 3 1 Institute for Physics and Technology (Alexandria, VA) 2 Thomas Jefferson

More information

Behavior of the TTF2 RF Gun with long pulses and high repetition rates

Behavior of the TTF2 RF Gun with long pulses and high repetition rates Behavior of the TTF2 RF Gun with long pulses and high repetition rates J. Baehr 1, I. Bohnet 1, J.-P. Carneiro 2, K. Floettmann 2, J. H. Han 1, M. v. Hartrott 3, M. Krasilnikov 1, O. Krebs 2, D. Lipka

More information

2008 JINST 3 S The RF systems and beam feedback. Chapter Introduction

2008 JINST 3 S The RF systems and beam feedback. Chapter Introduction Chapter 4 The RF systems and beam feedback 4.1 Introduction The injected beam will be captured, accelerated and stored using a 400 MHz superconducting cavity system, and the longitudinal injection errors

More information

Cornell ERL s Main Linac Cavities

Cornell ERL s Main Linac Cavities Cornell ERL s Main Linac Cavities N. Valles for Cornell ERL Team 1 Overview RF Design Work Cavity Design Considerations Optimization Methods Results Other Design Considerations Coupler Kicks Stiffening

More information

R.K.YADAV. 2. Explain with suitable sketch the operation of two-cavity Klystron amplifier. explain the concept of velocity and current modulations.

R.K.YADAV. 2. Explain with suitable sketch the operation of two-cavity Klystron amplifier. explain the concept of velocity and current modulations. Question Bank DEPARTMENT OF ELECTRONICS AND COMMUNICATION SUBJECT- MICROWAVE ENGINEERING(EEC-603) Unit-III 1. What are the high frequency limitations of conventional tubes? Explain clearly. 2. Explain

More information

LC Technology Hans Weise / DESY

LC Technology Hans Weise / DESY LC Technology Hans Weise / DESY All you need is... Luminosity! L σ 2 N e x σ y σ y σ x L n b f rep Re-writing reflects the LC choices... L P E b c. m. N e σ σ x y... beam power... bunch population... Ac-to-beam

More information

The TESLA Linear Collider. Winfried Decking (DESY) for the TESLA Collaboration

The TESLA Linear Collider. Winfried Decking (DESY) for the TESLA Collaboration The TESLA Linear Collider Winfried Decking (DESY) for the TESLA Collaboration Outline Project Overview Highlights 2000/2001 Publication of the TDR Cavity R&D TTF Operation A0 and PITZ TESLA Beam Dynamics

More information

DESIGN OF A FABRY-PEROT OPEN RESONATOR AT RADIO FREQUENCIES FOR AN MgB2 TESTING PLATFORM

DESIGN OF A FABRY-PEROT OPEN RESONATOR AT RADIO FREQUENCIES FOR AN MgB2 TESTING PLATFORM DESIGN OF A FABRY-PEROT OPEN RESONATOR AT RADIO FREQUENCIES FOR AN MgB2 TESTING PLATFORM Lauren Perez, Florida International University, FL 33193, U.S.A. Supervisors: Ali Nassiri and Bob Kustom, Argonne

More information

INSTALLATION AND FIRST COMMISSIONING OF THE LLRF SYSTEM

INSTALLATION AND FIRST COMMISSIONING OF THE LLRF SYSTEM INSTALLATION AND FIRST COMMISSIONING OF THE LLRF SYSTEM FOR THE EUROPEAN XFEL Julien Branlard, for the LLRF team TALK OVERVIEW 2 Introduction Brief reminder about the XFEL LLRF system Commissioning goals

More information

Outline. I. Progress and R&D plan on SRF cavity. II. HOM damping for low-risk and FFAG lattice erhic. III. Summary. Wencan Xu 2

Outline. I. Progress and R&D plan on SRF cavity. II. HOM damping for low-risk and FFAG lattice erhic. III. Summary. Wencan Xu 2 BROOKHAVEN SCIENCE ASSOCIATES SRF R&D for erhic On behalf of team Brookhaven National Laboratory JLEIC Collaboration workshop 1 Outline I. Progress and R&D plan on SRF cavity II. HOM damping for low-risk

More information

RF thermal and new cold part design studies on TTF-III input coupler for Project-X

RF thermal and new cold part design studies on TTF-III input coupler for Project-X RF thermal and new cold part design studies on TTF-III input coupler for Project-X PEI Shilun( 裴士伦 ) 1; 1) Chris E Adolphsen 2 LI Zenghai( 李增海 ) 2 Nikolay A Solyak 3 Ivan V Gonin 3 1 Institute of High

More information

TECHNICAL CHALLENGES OF THE LCLS-II CW X-RAY FEL *

TECHNICAL CHALLENGES OF THE LCLS-II CW X-RAY FEL * TECHNICAL CHALLENGES OF THE LCLS-II CW X-RAY FEL * T.O. Raubenheimer # for the LCLS-II Collaboration, SLAC, Menlo Park, CA 94025, USA Abstract The LCLS-II will be a CW X-ray FEL upgrade to the existing

More information

Does the short pulse mode need energy recovery?

Does the short pulse mode need energy recovery? Does the short pulse mode need energy recovery? Rep. rate Beam power @ 5GeV 1nC @ 100MHz 500MW Absolutely 1nC @ 10MHz 1nC @ 1MHz 50MW 5MW Maybe 1nC @ 100kHz 0.5MW No Most applications we have heard about

More information

The design of a radio frequency quadrupole LINAC for the RIB project at VECC Kolkata

The design of a radio frequency quadrupole LINAC for the RIB project at VECC Kolkata PRAMANA cfl Indian Academy of Sciences Vol. 59, No. 6 journal of December 2002 physics pp. 957 962 The design of a radio frequency quadrupole LINAC for the RIB project at VECC Kolkata V BANERJEE 1;Λ, ALOK

More information

FAST KICKERS LNF-INFN

FAST KICKERS LNF-INFN ILC Damping Rings R&D Workshop - ILCDR06 September 26-28, 2006 at Cornell University FAST KICKERS R&D @ LNF-INFN Fabio Marcellini for the LNF fast kickers study group* * D. Alesini, F. Marcellini P. Raimondi,

More information

Advance on High Power Couplers for SC Accelerators

Advance on High Power Couplers for SC Accelerators Advance on High Power Couplers for SC Accelerators Eiji Kako (KEK, Japan) IAS conference at Hong Kong for High Energy Physics, 2017, January 23th Eiji KAKO (KEK, Japan) IAS at Hong Kong, 2017 Jan. 23 1

More information

A Design of a 3rd Harmonic Cavity for the TTF 2 Photoinjector

A Design of a 3rd Harmonic Cavity for the TTF 2 Photoinjector TESLA-FEL 2002-05 A Design of a 3rd Harmonic Cavity for the TTF 2 Photoinjector J. Sekutowicz, R. Wanzenberg DESY, Notkestr. 85, 22603 Hamburg, Germany W.F.O. Müller, T. Weiland TEMF, TU Darmstadt, Schloßgartenstr.

More information

ALICE SRF SYSTEM COMMISSIONING EXPERIENCE A. Wheelhouse ASTeC, STFC Daresbury Laboratory

ALICE SRF SYSTEM COMMISSIONING EXPERIENCE A. Wheelhouse ASTeC, STFC Daresbury Laboratory ALICE SRF SYSTEM COMMISSIONING EXPERIENCE A. Wheelhouse ASTeC, STFC Daresbury Laboratory ERL 09 8 th 12 th June 2009 ALICE Accelerators and Lasers In Combined Experiments Brief Description ALICE Superconducting

More information

SEVEN-CELL CAVITY OPTIMIZATION FOR CORNELL S ENERGY RECOVERY LINAC

SEVEN-CELL CAVITY OPTIMIZATION FOR CORNELL S ENERGY RECOVERY LINAC SEVEN-CELL CAVITY OPTIMIZATION FOR CORNELL S ENERGY RECOVERY LINAC N. Valles and M. Liepe, Cornell University, CLASSE, Ithaca, NY 14853, USA Abstract This paper discusses the optimization of superconducting

More information

Detailed Design Report

Detailed Design Report Detailed Design Report Chapter 2 MAX IV 3 GeV Storage Ring 2.6. The Radio Frequency System MAX IV Facility CHAPTER 2.6. THE RADIO FREQUENCY SYSTEM 1(15) 2.6. The Radio Frequency System 2.6. The Radio Frequency

More information

Beam Diagnostics, Low Level RF and Feedback for Room Temperature FELs. Josef Frisch Pohang, March 14, 2011

Beam Diagnostics, Low Level RF and Feedback for Room Temperature FELs. Josef Frisch Pohang, March 14, 2011 Beam Diagnostics, Low Level RF and Feedback for Room Temperature FELs Josef Frisch Pohang, March 14, 2011 Room Temperature / Superconducting Very different pulse structures RT: single bunch or short bursts

More information

Design of ESS-Bilbao RFQ Linear Accelerator

Design of ESS-Bilbao RFQ Linear Accelerator Design of ESS-Bilbao RFQ Linear Accelerator J.L. Muñoz 1*, D. de Cos 1, I. Madariaga 1 and I. Bustinduy 1 1 ESS-Bilbao *Corresponding author: Ugaldeguren III, Polígono A - 7 B, 48170 Zamudio SPAIN, jlmunoz@essbilbao.org

More information

MULTIPACTING IN THE CRAB CAVITY

MULTIPACTING IN THE CRAB CAVITY MULTIPACTING IN TH CRAB CAVITY Y. Morita, K. Hara, K. Hosoyama, A. Kabe, Y. Kojima, H. Nakai, KK, 1-1, Oho, Tsukuba, Ibaraki 3-81, JAPAN Md. M. Rahman, K. Nakanishi, Graduate University for Advanced Studies,

More information

Fabrication Techniques for the X-band Accelerator Structures. Juwen Wang WORKSHOP ON X-BAND RF TECHNOLOGY FOR FELs March 5, 2010

Fabrication Techniques for the X-band Accelerator Structures. Juwen Wang WORKSHOP ON X-BAND RF TECHNOLOGY FOR FELs March 5, 2010 Fabrication Techniques for the X-band Accelerator Structures Juwen Wang WORKSHOP ON X-BAND RF TECHNOLOGY FOR FELs March 5, 2010 Outline 1. Introduction Brief history Achievements 2. Basics of X-Band Accelerator

More information

DQW HOM Coupler for LHC

DQW HOM Coupler for LHC DQW HOM Coupler for LHC J. A. Mitchell 1, 2 1 Engineering Department Lancaster University 2 BE-RF-BR Section CERN 03/07/2017 J. A. Mitchell (PhD Student) HL LHC UK Jul 17 03/07/2017 1 / 27 Outline 1 LHC

More information

REVIEW OF FAST BEAM CHOPPING F. Caspers CERN AB-RF-FB

REVIEW OF FAST BEAM CHOPPING F. Caspers CERN AB-RF-FB F. Caspers CERN AB-RF-FB Introduction Review of several fast chopping systems ESS-RAL LANL-SNS JAERI CERN-SPL Discussion Conclusion 1 Introduction Beam choppers are typically used for β = v/c values between

More information

Resonant Excitation of High Order Modes in the 3.9 GHz Cavity of LCLS-II Linac

Resonant Excitation of High Order Modes in the 3.9 GHz Cavity of LCLS-II Linac Resonant Excitation of High Order Modes in the 3.9 GHz Cavity of LCLS-II Linac LCLS-II TN-16-05 9/12/2016 A. Lunin, T. Khabiboulline, N. Solyak, A. Sukhanov, V. Yakovlev April 10, 2017 LCLSII-TN-16-06

More information

Progresses on China ADS Superconducting Cavities

Progresses on China ADS Superconducting Cavities Progresses on China ADS Superconducting Cavities Peng Sha IHEP, CAS 2013/06/12 1 Outline 1. Introduction 2. Spoke012 cavity 3. Spoke021 cavity 4. Spoke040 cavity 5. 650MHz β=0.82 5-cell cavity 6. High

More information

Numerical Simulation of &hepep-i1 Beam Position Monitor*

Numerical Simulation of &hepep-i1 Beam Position Monitor* SLACPUB957006 September 1995 Numerical Simulation of &hepepi1 Beam Position Monitor* N. Kurita D. Martin C.K. Ng S. Smith Stanford Linear Accelerator Center Stanford University Stanford CA 94309USA and

More information

Status of the 1.5 GeV Synchrotron Light Source DELTA and Related Accelerator Physics Activities

Status of the 1.5 GeV Synchrotron Light Source DELTA and Related Accelerator Physics Activities Status of the 1.5 GeV Synchrotron Light Source and Related Accelerator Physics Activities 2006 RuPAC, September 10-14, Novosibirsk Thomas Weis for the machine and accelerator physics group Dortmund University

More information

Drive Beam Photo-injector Option for the CTF3 Nominal Phase

Drive Beam Photo-injector Option for the CTF3 Nominal Phase CTF3 Review Drive Beam Photo-injector Option for the CTF3 Nominal Phase Motivation CTF3 Drive Beam Requirements CTF3 RF gun design The Laser (I. Ross / RAL) The Photocathode Cost estimate Possible schedule

More information

Beam BreakUp at Daresbury. Emma Wooldridge ASTeC

Beam BreakUp at Daresbury. Emma Wooldridge ASTeC Beam BreakUp at Daresbury Emma Wooldridge ASTeC Outline The causes of Beam Breakup (BBU) Types of BBU Why investigate BBU? Possible solutions Causes of BBU There are four main causes. Interaction with

More information

Circumference 187 m (bending radius = 8.66 m)

Circumference 187 m (bending radius = 8.66 m) 4. Specifications of the Accelerators Table 1. General parameters of the PF storage ring. Energy 2.5 GeV (max 3.0 GeV) Initial stored current multi-bunch 450 ma (max 500 ma at 2.5GeV) single bunch 70 ma

More information

The BESSY Higher Order Mode Damped Cavity - Further Improvements -

The BESSY Higher Order Mode Damped Cavity - Further Improvements - The BESSY Higher Order Mode Damped Cavity - Further Improvements - Ernst Weihreter Reminder of Technical Problems Solutions Conclusions BESSY HOM Damped Cavity Project collaboration: (EC funded) - BESSY

More information

Spaceborne Electron Accelerators

Spaceborne Electron Accelerators Spaceborne Electron Accelerators J.W. Lewellen, C. Buechler, G. Dale, N.A. Moody, D.C. Nguyen LINAC 2016 26 September 2016 Acknowledgements LANL Program Development and Pathfinder funding LANL team members

More information

Cavity BPMs for the NLC

Cavity BPMs for the NLC SLAC-PUB-9211 May 2002 Cavity BPMs for the NLC Ronald Johnson, Zenghai Li, Takashi Naito, Jeffrey Rifkin, Stephen Smith, and Vernon Smith Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo

More information

Acceleration of High-Intensity Protons in the J-PARC Synchrotrons. KEK/J-PARC M. Yoshii

Acceleration of High-Intensity Protons in the J-PARC Synchrotrons. KEK/J-PARC M. Yoshii Acceleration of High-Intensity Protons in the J-PARC Synchrotrons KEK/J-PARC M. Yoshii Introduction 1. J-PARC consists of 400 MeV Linac, 3 GeV Rapid Cycling Synchrotron (RCS) and 50 GeV Main synchrotron

More information

Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA

Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA d e Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA Accelerator & Fusion Research Division I # RECEIVED Presented at the International Workshop on Collective Effects and Impedance for B-Factories,

More information

Bunch-by-Bunch Broadband Feedback for the ESRF

Bunch-by-Bunch Broadband Feedback for the ESRF Bunch-by-Bunch Broadband Feedback for the ESRF ESLS RF meeting / Aarhus 21-09-2005 J. Jacob, E. Plouviez, J.-M. Koch, G. Naylor, V. Serrière Goal: Active damping of longitudinal and transverse multibunch

More information

O. Napoly LC02, SLAC, Feb. 5, Higher Order Modes Measurements

O. Napoly LC02, SLAC, Feb. 5, Higher Order Modes Measurements O. Napoly LC02, SLAC, Feb. 5, 2002 Higher Order Modes Measurements with Beam at the TTF Linac TTF Measurements A collective effort including most of Saclay, Orsay and DESY TTF physicists : S. Fartoukh,

More information

J. Jacob: Status of the ESRF RF upgrade

J. Jacob: Status of the ESRF RF upgrade 17th ESLS RF Meeting 2013 HZB BESSY 18th 19th September Status of the ESRF RF upgrade J. Jacob J.-M. Mercier V. Serrière M. Langlois G. Gautier [CINEL] 1 RF upgrade phase 1 until 2015 - reminder Replacement

More information

Beam Instability Investigations at DELTA

Beam Instability Investigations at DELTA 10 th ESLS-RF Meeting, September 27-28, Dortmund Beam Instability Investigations at Thomas Weis for the group Dortmund University Synchrotron Radiation Center Content: Status of the Facility Instability

More information

CST MWS simulation of the SARAF RFQ 1.5 MeV/nucleon proton/deuteron accelerator

CST MWS simulation of the SARAF RFQ 1.5 MeV/nucleon proton/deuteron accelerator CST MWS simulation of the SARAF RFQ 1.5 MeV/nucleon proton/deuteron accelerator Jacob Rodnizki SARAF Soreq NRC APril 19-21 th, 2010 Outline 1. SARAF accelerator 2. Presentation of the four rods RFQ 3.

More information

Bioimaging of cells and tissues using accelerator-based sources

Bioimaging of cells and tissues using accelerator-based sources Analytical and Bioanalytical Chemistry Electronic Supplementary Material Bioimaging of cells and tissues using accelerator-based sources Cyril Petibois, Mariangela Cestelli Guidi Main features of Free

More information

Third Harmonic Superconducting passive cavities in ELETTRA and SLS

Third Harmonic Superconducting passive cavities in ELETTRA and SLS RF superconductivity application to synchrotron radiation light sources Third Harmonic Superconducting passive cavities in ELETTRA and SLS 2 cryomodules (one per machine) with 2 Nb/Cu cavities at 1.5 GHz

More information